English
新闻公告
More
化学进展 2022, Vol. 34 Issue (3): 643-664 DOI: 10.7536/PC210215 前一篇   后一篇

• 综述 •

湿气源吸附碳捕集: CO2/H2O共吸附机制及应用

赵洁1,2, 邓帅1,2,*(), 赵力1, 赵睿恺1,2   

  1. 1 天津大学中低温热能高效利用教育部重点实验室 天津 300350
    2 天津市超低能耗碳捕集国际联合研究中心 天津 300350
  • 收稿日期:2021-02-20 修回日期:2021-06-25 出版日期:2021-07-29 发布日期:2021-07-29
  • 通讯作者: 邓帅
  • 基金资助:
    国家重点研发计划(2017YFE0125100); 国家自然科学基金项目(51876134); 天津市科学技术研究计划(18YDYGHZ00090)

CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application

Jie Zhao1,2, Shuai Deng1,2(), Li Zhao1, Ruikai Zhao1,2   

  1. 1 Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), Ministry of Education of China,Tianjin 300350, China
    2 International Cooperation Research Centre of Carbon Capture in Ultra-low Energy-consumption, Tianjin University,Tianjin 300350, China
  • Received:2021-02-20 Revised:2021-06-25 Online:2021-07-29 Published:2021-07-29
  • Contact: Shuai Deng
  • Supported by:
    National Key Research and Development Program of China(2017YFE0125100); National Natural Science Foundation of China(51876134); Research Plan of Science and Technology of Tianjin City(18YDYGHZ00090)

大型湿气源排放中普遍存在的水汽是制约吸附碳捕集规模化发展的重要挑战之一。H2O的极性往往会导致吸附材料的CO2捕集率降低甚至出现失效,也会造成捕集系统产生温降、压降等寄生损失,甚至形成设备腐蚀、吸附剂中毒等不利影响,最终额外能耗和成本大幅提高。为解决上述挑战,深入理解CO2与H2O共吸附过程的作用机制,据此开发成本合理、再生能耗低且对水气不敏感的高效CO2吸附剂及吸附技术是实现湿气源下高效吸附碳捕集的重要途径。目前,由于分散在多个领域且各有侧重,关于H2O对CO2吸附影响的机制分析缺乏汇总与概括,难以形成相对统一的观点。本文针对CO2与H2O共吸附过程,从宏观与微观层面进行了详细综述。首先,基于共吸附机制的基础研究,依次介绍了竞争吸附、变湿吸附和呼吸效应领域的研究进展并进行了简要评价。其次,基于共吸附的应用研究,阐述了湿气源CO2捕集技术的吸附剂研发与工艺改进两部分的现状及进展,也对不同湿气源下CO2捕集水平进行了简要评价。最后,总结了目前研究中的不足之处并展望了未来的研究方向。本文将分散于各领域的CO2与H2O共吸附过程进行集中归纳、分析和对比,或可为湿气源碳捕集技术提供有效的指导。

The presence of water vapor in gas streams is a significant technical issue for restricting the large-scale development of carbon capture. The polarity of H2O often leads to the decrease or even failure of CO2 capture rate of adsorbents. In addition, it also causes parasitic losses such as temperature and pressure drop to the system, and even causes equipment corrosion and adsorbent poisoning, thus greatly increasing the extra energy consumption and cost. In order to solve the above bottleneck, understanding the mechanism of H2O/CO2 co-adsorption and developing the highly efficient CO2 adsorbent with reasonable cost, low regeneration energy consumption and insensitivity to H2O are the important basis for the realization of effective CO2 adsorption capture under wet gas streams. At present, due to the dispersion in multiple fields and different emphasis points, there is a lack of summary on the mechanism analysis of the influence of H2O on CO2 adsorption, and it is difficult to form a relatively unified view. In this paper, the co-adsorption process of CO2 and H2O are reviewed in detail from the macro and micro levels. Firstly, according to the fundamental research of co-adsorption mechanism, the progress in the fields of competitive adsorption, moisture swing adsorption and “breathing effect” are reviewed and briefly evaluated. Secondly, based on the application research of co-adsorption, the status and progress of adsorbent development and technology improvement of wet gas CO2 adsorption are described. Furthermore, the CO2 adsorption capture level under different wet gas sources is also briefly evaluated. Finally, the shortcomings of the current research are summarized and the future directions are prospected. This paper attempts to summarize, analyze and compare the CO2/H2O co-adsorption processes in various fields, which may provide effective guidance for CO2 adsorption capture in wet gas source.

Contents

1 Introduction

2 Fundamental research on CO2/H2O co-adsorption mechanism

2.1 Competitive adsorption

2.2 Moisture swing adsorption

2.3 Breathing effect

2.4 Evaluation of CO2/H2O co-adsorption mechanism

3 Application research on CO2/H2O co-adsorption mechanism

3.1 Adsorbents for CO2 adsorption capture in wet gas

3.2 Technology for CO2 adsorption capture in wet gas

3.3 Performance evaluation of CO2 adsorption capture in wet gas

4 Conclusion and outlook

()
图1 CO2与H2O成分比例及气源文献总结[20⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~60]
Fig.1 Summary of relevant literature on composition ratio of CO2 and H2O in industrial gas source[20⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~60]
图2 313K条件下,燃煤电厂湿烟气混合组分吸附平衡时的H2O和CO2吸附量[14]
Fig.2 A summary of the H2O and CO2 adsorption performed for multicomponent at 313 K and equilibrium conditions representative of a coal-fired power plant flue gas[14]
表1 燃烧后烟气中主要混合物组分的参数[21]
Table 1 Parameters of the post-combustion flue gas mixtures[21]
图3 CO2与H2O竞争吸附过程:(a)阳离子Na+在沸石Z13X上的径向分布函数[21], (b) H2O-Na与H2O-H2O之间的距离随水含量变化直方图[22], (c) 模拟轨迹图[23], (d) CO2吸附等温线, (e) CO2能量分布图[23]
Fig.3 CO2/H2O Competitive adsorption. (a) Cation RDFs[21]. (b) Histogram of the distance between H2O-Na and H2O-H2O with water content[22]. (c) Simulated trajectory[23]. (d) CO2 Adsorption isotherms[23]. (e) CO2 energy contours[23]. Reprinted with permission from [21⇓~23], Copyright 2017, Elsevier and 2013, 2016, American Chemical Society
表2 CO2/H2O竞争吸附机制总结
Table 2 summary of CO2/H2O competitive adsorption mechanism
Year Author Adsorbent Method Performance index Mechanism ref
2019 Peter et al. MOFs GCMC Working capacity, Selectivity Pore shape frustrates the formation of hydrogen bonds for H2O 33
2019 Gabriel et al. calcite MD Density distribution, Self-diffusion coefficient,
Adsorption energy
CO2 is arranged on the wall plane, while H2O molecules are arranged in the direction; The adsorption energy of H2O is greater than that of CO2 34
2018 Roussanaly et al. Membrane Experiment CO2 Capture ratio, Energy consumption, Selectivity The pore size of the membrane limits CO2 and H2O respectively 35
2016 Marta et al. Microporous Biochar TSA Adsorption isotherms,
Breakthrough curve
High porosity has low adsorption capacity to H2O at low pressure 36
2015 Joos et al. Zeolites GCMC Selectivity, Gibbs free adsorption energy Gibbs free adsorption energy difference between CO2 and H2O 32
2015 Xian et al MOFs Experiment Adsorption isotherms,
Breakthrough curve,
TPD curve
The H2O on MIL-100(Fe) surface promoted the formation of new alkaline active adsorption sites for CO2 37
2012 Rege et al. Zeolites PSA Adsorption isotherms - 38
2012 Yu et al. MOFs DFT Adsorption energy The Gibbs free adsorption energy of H2O is always greater than that of CO2 39
2011 Kwon et al. Bao (100) DFT Bond, Adsorption energy, The amount of charge transfer BaO (100) has strong adsorption on CO2 with high charge transfer. The adsorption energy of H2O is less than that of CO2 40
2004 Federico et al. Zeolites MD Adsorption isotherms,
Henry constant
H2O is strongly adsorbed species; CO2 is a less-strongly adsorbed species 41
图4 基于季铵基离子型聚合物的变湿吸附过程原理图[44]
Fig.4 Reaction path of CO2 adsorption and desorption during a moisture swing based on anion exchange resin[44]. [44]- Reproduced by permission of the Royal Society of Chemistry
图5 (a)“CO2-H2O-吸附剂”多组分平衡模型示意图; (b)变湿吸附过程自由能变化与相对湿度的关系[43]
Fig.5 (a) “CO2-H2O-adsorbent” multi-component equilibrium model; (b) The relationship between the Gibbs free energy and relative humidity in moisture swing adsorption[43].Copyright 2013, the Royal Society of Chemistry
图6 (a) P[VBTEA][ CO 3 2 -]重复单元化学结构示意图[45]; (b) PILs对CO2吸附过程两种反应路径示意图[45]
Fig.6 (a) Chemical structures of the repeat unit of P[VBTEA][ CO 3 2 -][45]; (b) Schematic diagram of the CO2 adsorption process of PILs with carbonate anions[45].Copyright 2016, the Royal Society of Chemistry
图7 (a) LIFM-WZ-1材料水化后的“呼吸行为”[51]; (b) 柔性沸石MER的“呼吸行为”[52]
Fig.7 (a) the “breathing behavior” of LiMM-WZ-1 after hydration[51]; (b) the "breathing behavior" of flexible MER[52].Copyright 2019, 2020, American Chemical Society
图8 (a) 298 K, 不同含水量下CO2在CuBTC中的吸附等温线; (b) 298 K, 不同含水量条件下的CO2/CH4与CO2/N2吸附选择性[53]
Fig.8 (a) Simulated and experimental adsorption isotherms for CO2 at 298 K in CuBTC with different water contents; (b) CO2 selectivity from the simulations of equimolar mixtures of CO2/CH4 and CO2/N2 at 298 K[53]. Copyright 2009, American Chemical Society
表3 CO2/H2O共吸附热力学过程研究汇总
Table 3 The summary of thermodynamic process of CO2/H2O co-adsorption
图9 CO2/H2O竞争吸附热力学碳泵模型
Fig.9 TCP model for CO2/H2O competitive adsorption
表4 混合组分CO2/H2O在沸石、金属有机骨架中的吸附焓变(ΔHads)与吸附吉布斯自由能变(ΔGads), 单位为kJ/mol
Table 4 Adsorption enthalpy (ΔHads, kJ/mol) and Gibbs free adsorption energy (ΔGads, kJ/mol) of CO2/H2O mixture in materials
图10 CO2/H2O吸附选择性随温度的变化
Fig.10 CO2/H2O adsorption selectivity varies with temperature
图11 CO2/H2O吸附选择性随ΔG3的变化
Fig.11 The relationship between the CO2/H2O adsorption selectivity and ΔG3
图12 CO2/H2O共吸附机制总结
Fig.12 The summary of mechanism of CO2/H2O co-adsorption
图13 基于湿气源下CO2捕集的多孔纳米固体材料 (包括MOFs、沸石、共聚物、功能化基团等)[77,113,114]
Fig.13 Porous materials based on CO2 capture in wet gas source (Including MOFs, zeolites, polymer and functionalized materials)[77,113,114]
图14 CO2在干燥和不同含水量条件下的吸附量变化情况[21,23,59,102,113],温度298~323 K, 压力为1 bar
Fig.14 CO2 loadings under dry and different RH% conditions, T=298~323 K, P=1 bar. the adsorption data from[21,23,59,102,113]
图15 湿度条件下CO2吸附机制示意图[71]: (a) 预平衡H2O在介孔MIL-100(Fe)形成微孔袋; (b) 微孔充满CO2
Fig.15 Schematic representation of possible mechanisms of CO2 adsorption in the presence of humidity[71]. (a) Pre-equilibrated water in the mesoporous MIL-100(Fe) forms microporous pockets; (b) these microporous pockets are filled with CO2.Copyright 2016, the Royal Society of Chemistry
图16 各种吸附材料的CO2吸附性能[77]: (a) 干燥条件下CO2吸附等温线; (b) CO2吸附量在干燥与潮湿条件下的比值
Fig.16 CO2 adsorption performance of various adsorbents[77]. (a) CO2 adsorption isotherms; (b) Plot of U C O 2 ( h u m i d )/ U C O 2 ( d r y ) with respect to various materials as indicated
图17 以炭黑为载体的CO2变湿吸附分离材料合成图[85]
Fig.17 Synthetic protocols for the polymer-grafted carbon blacks (top), colloidal crystal templated material (middle), and HIPE based material (bottom)[85].Copyright 2013, the Royal Society of Chemistry
表5 改性和未改性材料有水存在下的CO2捕集性能汇总
Table 5 Summary of CO2 capture performance of modified materials and unmodified materials in the presence of H2O
图18 CO2/H2O多层变压吸附三步循环过程[100]:(1)吸附; (2)逆流抽真空; (3)复压
Fig.18 Three step cycle design for CO2/H2O VSA with double/multilayered layered column[100]: step (1), adsorption; step (2), countercurrent evacuation; step (3), repressurization. Reproduced with permission. Copyright 2014, Progress in Chemistry
图19 低温解吸高温吸附(HALD)碳捕集系统[32]
Fig.19 Carbon capture system of high temperature adsorption and low-temperature (HALD) Desorption[32]. Copyright 2015, the Royal Society of Chemistry
图20 变湿吸附技术示意图
Fig.20 Schematic diagram of moisture swing adsorption
表6 变湿吸附材料吸附容量与半吸附时间关系
Table 6 The relationship between adsorption capacity and half adsorption time of moisture swing adsorption materials
图21 分离模型示意图
Fig.21 Schematic diagram of separation model
图22 CO2分离最小功随H2O的初始浓度的变化
Fig.22 The relationship between the minimum work of CO2 separation and the initial concentration of H2O
图23 不同含水量条件下吸附温度对TSA能耗的影响
Fig.23 Energy consumption with adsorption temperature under different water content conditions during TSA process
图24 能耗与CO2和H2O之间吉布斯自由能差值之间的关系
Fig.24 Energy consumption as a function of difference between Gibbs free adsorption energy of CO2 and H2O
[1]
Intergovernmental panel on climate change (IPCC). IPCC special report on carbon dioxide capture and storage. Japan: Inchon, 2018.
[2]
The 75th Congress of the United Nations. Special report on carbon neutral. US: New York, 2020.
[3]
International Energy Agency (IEA), Special Report on Carbon Capture, Utilization and Storage (CCUS) - World Energy Technology Outlook, 2020.
[4]
Meisen A, Shuai X S. Energy Convers. Manag., 1997, 38: S37.

doi: 10.1016/S0196-8904(96)00242-7     URL    
[5]
Fan Q S, You L S, Lang X M, Wang Y H, Li W T, Liu Y Z, Zhou Z. Chemical Industry and Engineering Progress, 2020, 39 (4): 1211.
(樊栓狮, 尤莎莉, 郎雪梅, 王燕鸿, 李文涛, 刘元直, 周政. 化工进展, 2020, 39 (4): 1211.).
[6]
Zhu X Q, Liu Y S, Yang X, Liu W H. Chemical Industry and Engineering Progress, 2015, 34(1): 19.
(祝显强, 刘应书, 杨雄, 刘文海. 化工进展, 2015, 34(1): 19.).
[7]
Elfving J, Kauppinen J, Jegoroff M, Ruuskanen V, Järvinen L, Sainio T. Chem. Eng. J., 2021, 404: 126337.

doi: 10.1016/j.cej.2020.126337     URL    
[8]
Deem M W, Pophale R, Cheeseman P A, Earl D J. J. Phys. Chem. C, 2009, 113(51): 21353.

doi: 10.1021/jp906984z     URL    
[9]
Yazaydın A Ö, Snurr R Q, Park T H, Koh K, Liu J, LeVan M D, Benin A I, Jakubczak P, Lanuza M, Galloway D B, Low J J, Willis R R. J. Am. Chem. Soc., 2009, 131(51): 18198.

doi: 10.1021/ja9057234     URL    
[10]
Drage T C, Snape C E, Stevens L A, Wood J, Wang J W, Cooper A I, Dawson R, Guo X, Satterley C, Irons R. J. Mater. Chem., 2012, 22(7): 2815.

doi: 10.1039/C2JM12592G     URL    
[11]
Kizzie A C, Wong-Foy A G, Matzger A J. Langmuir, 2011, 27(10): 6368.

doi: 10.1021/la200547k     URL    
[12]
Huang H L, Zhang W J, Liu D H, Zhong C L. Ind. Eng. Chem. Res., 2012, 51(30): 10031.

doi: 10.1021/ie202699r     URL    
[13]
Kandy M M. Sustain. Energy Fuels, 2020, 4(2): 469.

doi: 10.1039/C9SE00827F     URL    
[14]
Mason J A, McDonald T M, Bae T H, Bachman J E, Sumida K, Dutton J J, Kaye S S, Long J R. J. Am. Chem. Soc., 2015, 137(14): 4787.

doi: 10.1021/jacs.5b00838     URL    
[15]
Xu D, Zhang J, Li G, Webley P, Zhai Y C. Journal of Inorganic Materials, 2012, 27: 139.

doi: 10.3724/SP.J.1077.2012.00139     URL    
(徐冬, 张军, 李刚, Webley P, 翟玉春. 无机材料学报, 2012, 27: 139. ).

doi: 10.3724/SP.J.1077.2012.00139    
[16]
Cheeseman C R, Virdi G S. Resour. Conserv. Recycl., 2005, 45(1): 18.

doi: 10.1016/j.resconrec.2004.12.006     URL    
[17]
Stampi-Bombelli V, Spek M, Mazzotti M. Adsorption, 2020, 26(7): 1183.

doi: 10.1007/s10450-020-00249-w     URL    
[18]
Drechsler C, Agar D W. Appl. Energy, 2020, 273: 115076.

doi: 10.1016/j.apenergy.2020.115076     URL    
[19]
Jiang J W. AIChE J., 2009, 55(9): 2422.

doi: 10.1002/aic.11865     URL    
[20]
Zhao J, Deng S, Zhao L, Yuan X Z, Du Z Y, Li S J, Chen L J, Wu K L. Sustain. Energy Fuels, 2020, 4(12): 5970.

doi: 10.1039/D0SE01179G     URL    
[21]
Purdue M J, Qiao Z W. Microporous Mesoporous Mater., 2018, 261: 181.

doi: 10.1016/j.micromeso.2017.10.059     URL    
[22]
Joos L, Swisher J A, Smit B. Langmuir, 2013, 29(51): 15936.

doi: 10.1021/la403824g     URL    
[23]
Jeong W, Kim J. J. Phys. Chem. C, 2016, 120(41): 23500.

doi: 10.1021/acs.jpcc.6b06571     URL    
[24]
Brunauer S, Emmett P H, Teller E. J. Am. Chem. Soc., 1938, 60(2): 309.

doi: 10.1021/ja01269a023     URL    
[25]
Oschatz M, Antonietti M. Energy Environ. Sci., 2018, 11(1): 57.

doi: 10.1039/C7EE02110K     URL    
[26]
Du Z Y, Nie X H, Deng S, Zhao L, Li S J, Zhang Y, Zhao J. Microporous Mesoporous Mater., 2020, 298: 110053.

doi: 10.1016/j.micromeso.2020.110053     URL    
[27]
Li G, Xiao P, Webley P. Langmuir, 2009, 25(18): 10666.

doi: 10.1021/la901107s     URL    
[28]
Bolis V, Busco C, Ugliengo P. J. Phys. Chem. B, 2006, 110(30): 14849.

doi: 10.1021/jp061078q     URL    
[29]
Ruthven D M. Principles of Adsorption and Adsorption Processes, first ed., Wiley Interscience, 1984.
[30]
Yu L. J. Chem. Eng. Data, 2009, 54(7): 1981.

doi: 10.1021/je800661q     URL    
[31]
Wang X X, Liu X, Zhang Q, Chen H S. Acta Phys. Sin. 2017, 66: 103601.

doi: 10.7498/aps.66.103601     URL    
(王小霞, 刘鑫, 张琼, 陈宏善. 物理学报. 2017, 66: 103601.).
[32]
Joos L, Lejaeghere K, Huck J M, van Speybroeck V, Smit B. Energy Environ. Sci., 2015, 8(8): 2480.

doi: 10.1039/C5EE01690H     URL    
[33]
Boyd P G, Chidambaram A, García-Díez E, Ireland C P, Smit B. Nature, 2019, 576: 12.

doi: 10.1038/d41586-019-03697-9     URL    
[34]
Berghe G, Kline S, Burket S, Bivens L, Johnson D, Singh R. J. Mol. Modeling, 2019, 25(9): 1.

doi: 10.1007/s00894-018-3878-2     URL    
[35]
Roussanaly S, Anantharaman R, Lindqvist K, Hagen B. Sustain. Energy Fuels, 2018, 2(6): 1225.

doi: 10.1039/C8SE00039E     URL    
[36]
Plaza M G, Durán I, Querejeta N, Rubiera F, Pevida C. Ind. Eng. Chem. Res., 2016, 55(24): 6854.

doi: 10.1021/acs.iecr.6b01720     URL    
[37]
Xian S K, Peng J J, Zhang Z J, Xia Q B, Wang H H, Li Z. Chem. Eng. J., 2015, 270: 385.

doi: 10.1016/j.cej.2015.02.041     URL    
[38]
Rege S U, Ralph T Y, Qian K Y, Mark A B. Chem. Eng. Sci., 2001, 56: 27.
[39]
Yu K, Kiesling K, Schmidt J R. J. Phys. Chem. C, 2012, 116(38): 20480.

doi: 10.1021/jp307894e     URL    
[40]
Kwon S C, Lee W R, Lee H N, Kim J H, Lee H L. Bull. Korean Chem. Soc., 2011, 32(3): 988.

doi: 10.5012/bkcs.2011.32.3.988     URL    
[41]
Brandani F, Ruthven D M. Ind. Eng. Chem. Res., 2004, 43(26): 8339.

doi: 10.1021/ie040183o     URL    
[42]
Lackner K S. Eur. Phys. J. Spec. Top., 2009, 176(1): 93.

doi: 10.1140/epjst/e2009-01150-3     URL    
[43]
Wang T, Lackner K S, Wright A B. Phys. Chem. Chem. Phys., 2013, 15(2): 504.

doi: 10.1039/c2cp43124f     pmid: 23172123
[44]
Ge K. Doctoral Dissertation of ZheJiang University, 2016.
(葛坤. 浙江大学博士论文, 2016.).
[45]
Wang T, Ge K, Chen K X, Hou C L, Fang M X. Phys. Chem. Chem. Phys., 2016, 18(18): 13084.

doi: 10.1039/c5cp07229h     pmid: 27115032
[46]
Ma M, Guo L, Anderson D G, Langer R. Science, 2013, 339(6116): 186.

doi: 10.1126/science.1230262     URL    
[47]
Chen X, Goodnight D, Gao Z H. Nat. Commun., 2015, 6: 7346.

doi: 10.1038/ncomms8346     pmid: 26079632
[48]
Zhang X H, Wang M Y, Chen Y L, Li D. Abstracts of the 30th Annual Conference of the Chinese Chemical Society. 2016. 1.
(张兴华, 王铭扬, 陈云琳, 李丹. 中国化学会第30届学术年会摘要集. 2016. 1.).
[49]
Uemura K, Matsuda R, Kitagawa S. J. Solid State Chem., 2005, 178(8): 2420.

doi: 10.1016/j.jssc.2005.05.036     URL    
[50]
Alhamami M, Doan H, Cheng C H. Materials, 2014, 7(4): 3198.

doi: 10.3390/ma7043198     pmid: 28788614
[51]
Wang Z, Zhu C Y, Wei Z W, Fan Y N, Pan M. Chem. Mater., 2020, 32(2): 841.

doi: 10.1021/acs.chemmater.9b04440     URL    
[52]
Georgieva V M, Bruce E L, Verbraeken M C, Scott A R, Casteel W J, Brandani S, Wright P A. J. Am. Chem. Soc., 2019, 141(32): 12744.

doi: 10.1021/jacs.9b05539     pmid: 31373800
[53]
Yazaydın A Ö, Benin A I, Faheem S A, Jakubczak P, Low J J, Willis R R, Snurr R Q. Chem. Mater., 2009, 21(8): 1425.

doi: 10.1021/cm900049x     URL    
[54]
Llewellyn P L, Bourrelly S, Serre C, Filinchuk Y, Férey G. Angew. Chem. Int. Ed., 2006, 45(46): 7751.

doi: 10.1002/anie.200602278     URL    
[55]
Abdelnaby M M, Qasem N A A, Bassem A. ACS Sustain. Chem. Eng., 2019, 7: 13941.

doi: 10.1021/acssuschemeng.9b02334    
[56]
Chen H Y, Wang W L, Ding J, Wei X L, Lu J F. Energy Procedia, 2017, 105: 4370.

doi: 10.1016/j.egypro.2017.03.929     URL    
[57]
Coelho J A, Lima A E O, Rodrigues A E, Azevedo D C S, Lucena S M P. Adsorption, 2017, 23(2/3): 423.

doi: 10.1007/s10450-017-9872-7     URL    
[58]
Walczak R, Savateev A, Heske J, Tarakina N V, Sahoo S, Epping J D, Kühne T D, Kurpil B, Antonietti M, Oschatz M. Sustain. Energy Fuels, 2019, 3(10): 2819.

doi: 10.1039/C9SE00486F     URL    
[59]
Querejeta N, Plaza M G, Rubiera F, Pevida C, Avery T, Tennisson S R. Energy Procedia, 2017, 114: 2341.

doi: 10.1016/j.egypro.2017.03.1366     URL    
[60]
Gebald C, Wurzbacher J A, Borgschulte A, Zimmermann T, Steinfeld A. Environ. Sci. Technol., 2014, 48(4): 2497.

doi: 10.1021/es404430g     URL    
[61]
Zhang J F, Burke N, Zhang S C, Liu K Y, Pervukhina M. Chem. Eng. Sci., 2014, 113: 54.

doi: 10.1016/j.ces.2014.04.001     URL    
[62]
Wang T, Lackner K S, Wright A. Environ. Sci. Technol., 2011, 45(15): 6670.

doi: 10.1021/es201180v     pmid: 21688825
[63]
Chen H F, Wang G Z, Zhou S M, Feng L N, Wang D D, Hu L. Modern Chemical Industry, 2020, 40: 59.
(陈红芳, 王广智, 周思敏, 冯丽娜, 王东东, 胡磊. 现代化工, 2020, 40: 59. ).
[64]
Hu Y K. Master's Dissertation of South China University of Science, 2007.
(胡玉坤. 华南理工大学硕士论文. 2007).
[65]
Wang Y, LeVan M D. J. Chem. Eng. Data, 2010, 55(9): 3189.

doi: 10.1021/je100053g     URL    
[66]
Rege S U, Yang R T. Chem. Eng. Sci., 2001, 56(12): 3781.

doi: 10.1016/S0009-2509(01)00095-1     URL    
[67]
Zeng Y Y, Zhang B J. Acta Physico-Chimica Sinica, 2008, 24: 1493.

doi: 10.3866/PKU.WHXB20080828     URL    
(曾余瑶, 张秉坚. 物理化学学报, 2008, 24: 1493.).
[68]
Millward A R, Yaghi O M. J. Am. Chem. Soc., 2005, 127(51): 17998.

pmid: 16366539
[69]
Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O'Keeffe M, Yaghi O M. Science, 2008, 319(5865): 939.

doi: 10.1126/science.1152516     pmid: 18276887
[70]
Li S, Chung Y G, Snurr R Q. Langmuir, 2016, 32(40): 10368.

doi: 10.1021/acs.langmuir.6b02803     URL    
[71]
Eduardo G Z, Ilich A L. Mater. Chem. Front., 2017, 1: 1471.

doi: 10.1039/C6QM00301J     URL    
[72]
Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Nature, 1992, 359(6397): 710.

doi: 10.1038/359710a0     URL    
[73]
Beck J S, Vartuli J C. Curr. Opin. Solid State Mater. Sci., 1996, 1(1): 76.

doi: 10.1016/S1359-0286(96)80014-3     URL    
[74]
Anderson M W, Terasaki O, Ohsuna T, Philippou A, MacKay S P, Ferreira A, Rocha J, Lidin S. Nature, 1994, 367(6461): 347.

doi: 10.1038/367347a0     URL    
[75]
Chen C Y, Burkett S L, Li H X, Davis M E. Microporous Mater., 1993, 2(1): 27.

doi: 10.1016/0927-6513(93)80059-4     URL    
[76]
Zhang Z R, Suo J Q, Zhang X M, Li S B. Progress in Chemistry, 1999, 11: 1.
(张兆荣, 索继栓, 张小明, 李树本. 化学进展, 1999, 11: 1.).
[77]
Datta S J, Khumnoon C, Lee Z H, Moon W K, Docao S, Nguyen T H, Hwang I C, Moon D, Oleynikov P, Terasaki O, Yoon K B. Science, 2015, 350(6258): 302.

doi: 10.1126/science.aab1680    
[78]
Xu Q. Doctoral Dissertation of Beijing University of Chemical Technology, 2010.
(许青. 北京化工大学博士论文, 2010).
[79]
Zhong X F. Master's Dissertation of Beijing University of Chemical Technology, 2010.
(钟旭峰. 北京化工大学硕士论文, 2010).
[80]
Rosi N L, Eckert J, Eddaoudi M, Vodak D T. Science, 2003, 300: 1127.

doi: 10.1126/science.1083440     URL    
[81]
Zárate A, Peralta R A, Bayliss P A, Howie R, Sánchez-Serratos M, Carmona-Monroy P, Solis-Ibarra D, González-Zamora E, Ibarra I A. RSC Adv., 2016, 6(12): 9978.

doi: 10.1039/C5RA26517G     URL    
[82]
Li G, Singh R K, Liu L Y, Webley P A. The 5th Pacific Basin Conference on Adsorption Science and Technology, Singapore, 2009.
[83]
Zapata P A, Faria J, Ruiz M P, Jentoft R E, Resasco D E. J. Am. Chem. Soc., 2012, 134(20): 8570.

doi: 10.1021/ja3015082     pmid: 22548687
[84]
Liu L Y, Singh R, Li G, Xiao G K, Webley P A, Zhai Y C. Mater. Chem. Phys., 2012, 133(2/3): 1144.

doi: 10.1016/j.matchemphys.2012.02.028     URL    
[85]
He H K, Zhong M J, Konkolewicz D, Yacatto K, Rappold T, Sugar G, David N E, Matyjaszewski K. J. Mater. Chem. A, 2013, 1(23): 6810.

doi: 10.1039/c3ta10699c     URL    
[86]
He H K, Zhong M J, Konkolewicz D, Yacatto K, Rappold T. Adv. Funct. Mater., 2013, 23(37):4719.

doi: 10.1002/adfm.201370192     URL    
[87]
Hou C L, Wu Y S, Wang T, Wang X R, Gao X. Energy Fuels, 2019, 33(3): 1745.

doi: 10.1021/acs.energyfuels.8b02821     URL    
[88]
Ma Y X, Li Z J, Wei L, Ding S Y, Zhang Y B, Wang W. J. Am. Chem. Soc., 2017, 139(14): 4995.

doi: 10.1021/jacs.7b01097     URL    
[89]
Nguyen N T T, Lo T N H, Kim J, Nguyen H T D, Le T B, Cordova K E, Furukawa H. Inorg. Chem., 2016, 55(12): 6201.

doi: 10.1021/acs.inorgchem.6b00814     pmid: 27248714
[90]
Sánchez-Serratos M, Bayliss P A, Peralta R A, González-Zamora E, Lima E, Ibarra I A. New J. Chem., 2016, 40(1): 68.

doi: 10.1039/C5NJ02312B     URL    
[91]
Peralta R A, Pineda A C R, Pfeiffer H, Álvarez J R, Antonio Zárate J A, Balmaseda J, Zamora E G, Martínez A, Otero D M ancik V, Ibarra I A. Chem. Commun., 2016, 52: 10273.

doi: 10.1039/C6CC04734C     URL    
[92]
Álvarez J R, Peralta R A, Balmaseda J, González-Zamora E, Ibarra I A. Inorg. Chem. Front., 2015, 2(12): 1080.

doi: 10.1039/C5QI00176E     URL    
[93]
Ibarra I A, Zamora E G, Peralta R, Serratos M S, Vázquez B A. Inorg. Chem. Front., 2015, 2: 898.

doi: 10.1039/C5QI00077G     URL    
[94]
Soubeyrand-Lenoir E, Vagner C, Yoon J W, Bazin P, Ragon F, Hwang Y K, Serre C, Chang J S, Llewellyn P L. J. Am. Chem. Soc., 2012, 134(24): 10174.

doi: 10.1021/ja302787x     pmid: 22591198
[95]
Hao G P, Li W C, Qian D, Wang G H, Zhang W P, Zhang T, Wang A Q, Schüth F, Bongard H J, Lu A H. J. Am. Chem. Soc., 2011, 133(29): 11378.

doi: 10.1021/ja203857g     URL    
[96]
Yu K, Kiesling K, Schmidt J R. J. Phys. Chem. C, 2012, 116(38): 20480.

doi: 10.1021/jp307894e     URL    
[97]
Prats H, Bahamon D, Alonso G, Giménez X, Gamallo P, Sayós R. J. CO2 Util., 2017, 19: 100.
[98]
Cavenati S, Grande C A, Rodrigues A E. Adsorption, 2005, 11(1): 549.

doi: 10.1007/s10450-005-5983-7     URL    
[99]
Cavenati S, Grande C A, Rodrigues A E. Chem. Eng. Sci., 2006, 61(12): 3893.

doi: 10.1016/j.ces.2006.01.023     URL    
[100]
Li G, Xiao P, Zhang J, Webley P A, Xu D. AIChE J., 2014, 60(2): 673.

doi: 10.1002/aic.14281     URL    
[101]
Hefti M, Joss L, Bjelobrk Z, Mazzotti M. Faraday Discuss., 2016, 192: 153.

pmid: 27509258
[102]
Wu Y S. Master's Dissertation of Zhejiang University, 2020.
(吴禹松. 浙江大学硕士论文, 2020).
[103]
E Bajamundi C J, Koponen J, Ruuskanen V, Elfving J, Kosonen A, Kauppinen J, Ahola J, J. CO2 Util., 2019, 30: 232.
[104]
Veneman R, Frigka N, Zhao W Y, Li Z S, Kersten S, Brilman W. Int. J. Greenh. Gas Control., 2015, 41: 268.

doi: 10.1016/j.ijggc.2015.07.014     URL    
[105]
He H K, Li W W, Zhong M J, Konkolewicz D, Wu D C, Yaccato K, Rappold T, Sugar G, David N E, Matyjaszewski K. Energy Environ. Sci., 2013, 6(2): 488.

doi: 10.1039/C2EE24139K     URL    
[106]
Wang T, Liu J, Lackner K S, Shi X Y, Fang M X, Luo Z Y. Greenh. Gases: Sci. Technol., 2016, 6(1): 138.
[107]
Wang T, Liu J, Huang H, Fang M X, Luo Z Y. Chem. Eng. J., 2016, 284: 679.

doi: 10.1016/j.cej.2015.09.009     URL    
[108]
Shi X Y, Xiao H, Lackner K S, Chen X. Angew. Chem. Int. Ed., 2016, 55(12): 4026.

doi: 10.1002/anie.201507846     URL    
[109]
Song J Z, Liu J, Zhao W, Chen Y, Xiao H, Shi X Y, Liu Y L, Chen X. Ind. Eng. Chem. Res., 2018, 57(14): 4941.

doi: 10.1021/acs.iecr.8b00064     URL    
[110]
Liu Y N, Deng S, Zhao R K, Zhao L, He J N. Chem. Ind. Eng. Prog., 2016, 35(12): 3848.
(刘一楠, 邓帅, 赵睿恺, 赵力, 何俊南. 化工进展, 2016, 35(12): 3848.).
[111]
House K Z, Harvey C F, Aziz M J, Schrag D P. Energy Environ. Sci., 2009, 2(2): 193.

doi: 10.1039/b811608c     URL    
[112]
Bahamon D, Díaz-Márquez A, Gamallo P, Vega L F. Chem. Eng. J., 2018, 342: 458.

doi: 10.1016/j.cej.2018.02.094     URL    
[113]
Bahamon D, Vega L F. Chem. Eng. J., 2016, 284: 438.

doi: 10.1016/j.cej.2015.08.098     URL    
[114]
Sanz-Pérez E S, Murdock C R, Didas S A, Jones C W. Chem. Rev., 2016, 116(19): 11840.

pmid: 27560307
[115]
American Physical Society. Direct air capture of CO2 with chemicals: A technology assessment for the APS panel on public affairs; APS: 2011.
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[3] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[4] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[5] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[6] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[7] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[8] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[9] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[10] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[11] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[12] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[13] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[14] 何闯, 鄂爽, 闫鸿浩, 李晓杰. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369.
[15] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.