液态凝聚态调控的分散质组装及功能
Liquid Condensed Matter Mediated Assembly and Functionality of Dispersoid
凝聚态化学是研究利用分子间作用力构筑凝聚态物质多层次结构实现物质功能和化学反应的新研究领域。相比于固态凝聚态化学,液态凝聚态化学研究涉及多相态,如液态凝聚态如何影响分散质的存在状态和功能特性等重要课题。从凝聚态化学的角度认识分散质在其中的聚集行为不但有利于获得预期的分子存在结构状态,而且可以探索环境条件对组装结构形成的过程认识。本文在对液态凝聚态的物理化学性质,尤其是与溶质分散和聚集相关方面进行简要概述的基础上,选取典型示例分别阐述了液态凝聚态在分散质组装过程、组装与解组装以及组装体结构转变等方面的作用。在液态凝聚态对物质性质影响方面,从其对染料分子的紫外-可见吸收、电子转移、手性调控以及催化等几个方面进行了讨论。在这些过程中,作为连续相的液态凝聚态的介电常数、极性以及黏度等性质对于分散相的存在状态和性质起到了关键作用。然而,受现有仪器检测范围的限制,液态凝聚态与分散质之间的快速、多变且细微的作用力很难在时间和空间上进行准确测定,而从实验和理论两个方面进行相互拟合来说明液态凝聚态的作用是一个重要且行之有效的策略。
Condensed matter chemistry is a new research field that studies the multi-level structures of condensed matter constructed by intermolecular interactions for realizing functionalities and chemical reactions. Compared with solid-state condensed matter chemistry, the study of liquid condensed matter chemistry involves multiphase states, such as how liquid condensed matter affects the state and functional properties of dispersoids. It is important to understand the aggregation behaviors of dispersoids from the perspective of condensed matter chemistry, which is not only beneficial to the preparation of the expected structures, but also can deepen the understanding of the formation process of the assembled structure. In this paper, based on a brief overview of the physical and chemical properties of liquid condensed matter, especially those related to dispersion and dissolution, typical examples are selected to illustrate the assembly process, assembly and disassembly, and structural transformation of dispersoids in the liquid condensed matter. In terms of the influence of the liquid condensed state on properties of dispersoids, the UV-vis absorption, electron transfer, chirality regulation and catalysis are discussed. In these processes, as the continuous phase, the properties of the liquid condensed state, such as dielectric constant, polarity and viscosity, play key roles in the existing states and properties of the dispersoids. However, due to the limitation of the detection range of the present instruments, it is difficult to accurately measure the fast, variable and subtle forces between liquid condensed matter and dispersoids in time and space. Therefore, it is an important and effective strategy to perform mutual fitting from both experimental and theoretical aspects to illustrate the role of liquid condensed matter.
1 Introduction
2 Properties of liquid condensed matter and its relationship with a dispersoid
3 Influence of liquid condensed state on aggregation behaviors of dispersoid
3.1 Regulation of dispersoid assembly processes by liquid condensed matter
3.2 Regulation of aggregation states of dispersoid by liquid condensed matte
3.3 Regulation of assembly structures of dispersoid by liquid condensed matter
4 Influence of liquid condensed state on the properties of dispersoid
4.1 Liquid condensed state reduced solvatochromism
4.2 Photoinduced electron transfer controlled by liquid condensed matter
4.3 Modulation of dispersoid chirality by liquid condensed matter
4.4 Effects of liquid condensed matter on catalytic reactions of dispersoid
5 Conclusion
液态凝聚态 / 分散质 / 组装 / 功能化 {{custom_keyword}} /
liquid condensed matter / dispersoid / assembly / functionality {{custom_keyword}} /
图2 (a)两亲性多肽S30L12的分子结构图;(b)S30L12在水相中的组装及受热后的形态转变和不同乙醇含量的组装结构转变示意图;(c)不同形貌多肽组装体的可能堆积结构[ |
图3 阳离子表面活性剂、多金属氧簇阴离子和超分子复合物的结构示意图以及反式和顺式复合物在不同极性溶剂中的组装和解组装[ |
图4 (a)苯乙炔基/苝双酰亚胺寡聚体PBI的分子结构图;(b)液态凝聚态调节的寡聚体PBI非折叠结构和折叠结构的可逆转变;(c)寡聚体PBI在CHCl3和MCH中的荧光发射光谱[ |
图6 (a)NPT的分子结构示意图;(b)NPT在乙二醇、甲苯、乙酸乙酯和N,N-二甲基乙酰胺中的溶液照片(从左到右);(c)NPT在不同液态凝聚态中的紫外-可见吸收光谱,黑色、绿色、蓝色和红色曲线分别为乙二醇溶液、甲苯溶液、乙酸乙酯溶液和N,N-二甲基乙酰胺溶液[ |
图7 (a)化合物[Ru(bpy)2(bpy-cc-AQ)]2+的分子结构示意图及其在不同介电常数液态凝聚态中的电子转移情况;(b)荧光寿命与液态凝聚态介电常数的关系图[ |
图8 两亲性手性分子L-PyG和L-PyPhG的分子结构和其在EtOH和DMSO中的组装结构示意图以及在染料分子存在时的能量转移情况[ |
图10 阳离子β-环糊精(CDC)和多金属氧簇{Mo154}的静电复合物{Mo154}@CDC作为催化剂在水中催化氧化环己烯示意图[ |
[1] |
Xu R R. Natl. Sci. Rev., 2018, 5: 1.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
Xu R R, Wang K, Chen G, Yan W F. Natl. Sci. Rev., 2019, 6: 191.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
Chen Z, Shang Y S, Zhang H B, Jiang Z H. Prog. Chem., 2020, 32: 1115.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
Shi J L, Hua Z L. Prog. Chem., 2020, 32: 1060.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
Cohen M L. Phys. Rev. Lett., 2008, 101: 250001.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
Mu D, Li J Q, Cong X S, Mi Y W, Zhang H. Polymers, 2019, 11: 261.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
Gibb B C. Isr. J. Chem., 2011, 51: 798.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
Prince E, Narayanan P, Chekini M, Pace-Tonna C, Roberts M G, Zhulina E, Kumacheva E. Macromolecules, 2020, 53: 4533.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
Zhang R, Deng L, Guo J, Yang H, Zhang L, Cao X, Yu A, Duan B. ACS Nano, 2021, 15: 17790.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
Yuan P, Zhang R, Selenius E, Ruan P, Yao Y, Zhou Y, Malola S, Hakkinen H, Teo B K, Cao Y, Zheng N. Nat. Commun., 2020, 11: 2229.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
Han A D, Yan X H, Chen J R, Cheng X J, Zhang J L. Acta Phys.-Chim. Sin., 2022, 38: 1912052.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
Bo Z, Kong J, Yang H C, Zheng Z W, Chen P P, Yan J H, Cen K F. Acta Phys.-Chim. Sin., 2022, 38: 2005054.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
Wells P R. Chem. Rev., 2002, 63: 171.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
Kamlet M J, Abboud J L M, Abraham M H, Taft R W. J. Org. Chem., 2002, 48: 2877.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
Dyson P J, Jessop P G. Catal. Sci. Technol., 2016, 6: 3302.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
Ab Rani M A, Brant A, Crowhurst L, Dolan A, Lui M, Hassan N H, Hallett J P, Hunt P A, Niedermeyer H, Perez-Arlandis J M, Schrems M, Welton T, Wilding R. Phys. Chem. Chem. Phys., 2011, 13: 16831.
The polarities of a wide range of ionic liquids have been determined using the Kamlet-Taft empirical polarity scales α, β and π*, with the dye set Reichardt's Dye, N,N-diethyl-4-nitroaniline and 4-nitroaniline. These have been compared to measurements of these parameters with different dye sets and to different polarity scales. The results emphasise the importance of recognising the role that the nature of the solute plays in determining these scales. It is particularly noted that polarity scales based upon charged solutes can give very different values for the polarity of ionic liquids compared to those based upon neutral probes. Finally, the effects of commonplace impurities in ionic liquids are reported.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
Reichardt C. Org. Process Res. Dev., 2006, 11: 105.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
Lam J, Lutsko J F. J. Chem. Phys., 2018, 149: 134703.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
Rekharsky M, Inoue Y, in Supramolecular Chemistry: From Molecules to Nanomaterials (Eds.: P. A. Gale, J. W. Steed), John Wiley & Sons, Ltd., 2012, pp. 117.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
Zhang J, Chen X F, Li W, Li B, Wu L X. Langmuir, 2017, 33: 12750.
Ionic complexes comprising single/double chain cationic surfactant and Lindqvist-type polyoxomolybdate anionic cluster were used for controlled self-assembly in organic solutions. In the solvent with low dielectric constant the complexes self-assembled into flat ribbon like lamellar aggregations with an inverse bilayer substructure where the cluster located at the middle. Under the condition of increased dielectric constant, the solvent triggered the formation of helical self-assemblies, which finally transformed from helical ribbons to the flower-like assemblies due to the bilayer becoming excessively twisted. The self-assembled morphology and the substructure were characterized by SEM, TEM, and XRD. The solvent dielectricity-controlled morphologic transformations modulated by the variation of electrostatic interactions between organic cations and inorganic polyanions were demonstrated by H NMR and IR spectra. The strategy in this work represents an effective route in targeting the chirality-directed functionalization of inorganic clusters by combining controllable and helical assemblies of achiral polyoxometalate complexes in one system.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
Nador F, Wnuk K, Roscini C, Solorzano R, Faraudo J, Ruiz-Molina D, Novio F. Chem. Eur. J., 2018, 24: 14724.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
Moreno-Alcantar G, Aliprandi A, Rouquette R, Pesce L, Wurst K, Perego C, Bruggeller P, Pavan G M, De Cola L, Angew. Chem. Int. Ed., 2021, 60: 5407.
Self-assembly relies on the ability of smaller and discrete entities to spontaneously arrange into more organized systems by means of the structure-encoded information. Herein, we show that the design of the media can play a role even more important than the chemical design. The media not only determines the self-assembly pathway at a single-component level, but in a very narrow solvent composition, a supramolecular homo-aggregate can be non-covalently wrapped by a second component that possesses a different crystal lattice. Such a process has been followed in real time by confocal microscopy thanks to the different emission colors of the aggregates formed by two isolated Pt complexes. This coating is reversible and controlled by the media composition. Single-crystal X-ray diffraction and molecular simulations based on coarse-grained (CG) models allowed the understanding of the properties displayed by the different aggregates. Such findings could result in a new method to construct hierarchical supramolecular structures.© 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
Yang X, Xu X, Ji H F. J. Phys. Chem. B, 2008, 112: 7196.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
Maeda H, Terashima Y. Chem. Commun., 2011, 47: 7620.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
Yin P, Li D, Liu T. Chem. Soc. Rev., 2012, 41: 7368.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
Baar C, Buchner R, Kunz W. J. Phy. Chem. B, 2001, 105: 2906.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
Kim J, Choi C H, Yeom S J, Eom N, Kang K K, Lee C S. Langmuir, 2017, 33: 7503.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
Zhang F, Wang L, Fang W, Liu Y, Shi P, Liang P, Gao Z, Bao Y. Cryst. Growth Des., 2020, 20: 3650.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
Gutmann V. Coord. Chem. Rev., 1976, 18: 225.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
Taft R W, Kamlet M J. J. Am. Chem. Soc., 1976, 98: 2886.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
Kamlet M J, Taft R W. J. Am. Chem. Soc., 1976, 98: 377.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
Aratsu K, Shimizu N, Takagi H, Haruki R, Adachi S-i, Yagai S. Chem. Lett., 2020, 49: 178.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
Li C P, Du M. Chem. Commun., 2011, 47: 5958.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
Davies R P, Less R J, Lickiss P D, White A J. Dalton Trans., 2007: 2528.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
Lehn J M. Angew. Chem. Int. Ed., 2015, 54: 3276.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
Jeon H-J, Kim C, Song H H. Macromol. Res., 2012, 20: 954.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
Nandakumar A, Ito Y, Ueda M. J. Am. Chem. Soc., 2020, 142: 20994.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
Li B, Li W, Li H L, Wu L X. Acc. Chem. Res., 2017, 50: 1391.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
Yang Y, Yue L, Li H, Maher E, Li Y, Wang Y, Wu L, Yam V W-W. Small, 2012, 8: 3105.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
Yang Y, Zhang B, Wang Y Z, Yue L, Li W, Wu L X. J. Am. Chem. Soc., 2013, 135: 14500.
A "smart" core-shell complex is designed to combine a catalytic reaction and automatic separation through remote light control. Here, we present the induced amphiphilic behavior of a surfactant-encapsulated polyoxometalate complex with photoresponsive azobenzene units on the periphery. The reversible phase transfer of the complex shuttle between two incompatible phase termini, driven by a photoisomerization-induced polarity change, further facilitates the separation and recycle of the catalyst.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
Dehm V, Büchner M, Seibt J, Engel V, Würthner F. Chem. Sci., 2011, 2: 2094.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
Morozumi T, Matsuoka R, Nakamura T, Nabeshima T. Chem. Sci., 2021, 12: 7720.
Tris-chelate metal complexes of unsymmetrical bidentate ligands can form two geometric stereoisomers, () and () isomers. Due to the small difference in their properties, the highly-selective synthesis of one of the isomers is challenging. We now designed a series of tripodal ligands with a tris(3-(2-(methyleneoxy)ethoxy)phenyl)methane pivot. Surprisingly, the ratio of the / isomers of the triply helical Fe complexes significantly changed depending on the solvents. To the best of our knowledge, this is the first example of / isomerism of a labile tris(2,2'-bipyridine) Fe complex governed by the solvent. Furthermore, well-defined self-assemblies were quantitatively produced by imine bond formation with a suitable diamine. The supramolecular assemblies contained only the isomer even though a mixture of the two isomers existed in solution before the condensation reaction. Namely, the self-assembly formation effectively adjusted the geometries of the building unit that results in the suitable supramolecular structure.This journal is © The Royal Society of Chemistry.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
Du D, Ren G-B, Qi M-H, Li Z, Xu X-Y. Crystals, 2019, 9: 161.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
Liu D J K, Zhang G H, Gao B, Li B, Wu L X. Dalton Trans., 2019, 48: 11623.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[45] |
Kitahama Y, Takazawa K. Bull. Chem. Soc. Jpn., 2008, 81: 1282.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[46] |
Reichardt C. Chem. Rev., 1994, 94: 2319.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[47] |
Stock R I, Schramm A D, Rezende M C, Machado V G. Phys. Chem. Chem. Phys., 2016, 18: 20266.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[48] |
Brennaman M K, Meyer T J, Papanikolas J M. J. Phy. Chem. A, 2004, 108: 9938.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[49] |
Larsen C B, Farrow G A, Smith L D, Appleby M V, Chekulaev D, Weinstein J A, Wenger O S. Inorg. Chem., 2020, 59: 10430.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[50] |
Veling N, van Hameren R, van Buul A M, Rowan A E, Nolte R J, Elemans J A. Chem. Commun., 2012, 48: 4371.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[51] |
Ma Z, Gao G, Luo Z, Tang X, Sun T. J. Phy. Chem. C, 2019, 123: 24973.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[52] |
Li C-J, Zeng Q-D, Wang C, Wan L-J, Xu S-L, Wang C-R, Bai C-L. J. Phy. Chem. B, 2002, 107: 747.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[53] |
Xu L F, Zhang M M, Zhu X F, Xue C L, Wang H X, Liu M H. ACS Appl. Mater. Interfaces, 2022, 14: 1765.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[54] |
Bruehwiler A, Semagina N, Grasemann M, Renken A, Kiwi-Minsker L, Saaler A, Lehmann H, Bonrath W, Roessler F. Ind. Eng. Chem. Res., 2008, 47: 6862.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[55] |
Moret S, Dyson P J, Laurenczy G. Dalton Trans., 2013, 42: 4353.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[56] |
Kubarev A V, Breynaert E, Van Loon J, Layek A, Fleury G, Radhakrishnan S, Martens J, Roeffaers M B J. ACS Catal., 2017, 7: 4248.
Molecular-sized micropores of ZSM-5 zeolite catalysts provide spatial restrictions around catalytic sites that allow for shape-selective catalysis. However, the fact that ZSM-5 has two main pore systems with different geometries is relatively unexploited as a potential source of additional shape selectivity. Here, we use confocal laser-scanning microscopy to show that by changing the polarity of the solvent, the acid-catalyzed furfuryl alcohol oligomerization can be directed to selectively occur within either of two locations in the microporous network. This finding is confirmed for H-ZSM-5 particles with different Si/Al ratios and indicates a general trend for shape-selective catalytic reactions.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[57] |
Chen X F, Zhang G H, Li B, Wu L X. Sci. Adv., 2021, 7: eabf8413.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 | 〉 |