English
新闻公告
More
化学进展 2022, Vol. 34 Issue (7): 1600-1609 DOI: 10.7536/PC220304 前一篇   后一篇

• 综述 •

液态凝聚态调控的分散质组装及功能

李豹, 吴立新*()   

  1. 吉林大学超分子结构与材料国家重点实验室 化学学院 长春 130012
  • 收稿日期:2022-03-02 修回日期:2022-04-21 出版日期:2022-07-24 发布日期:2022-06-22
  • 通讯作者: 吴立新
  • 基金资助:
    国家自然科学基金项目(22172060)

Liquid Condensed Matter Mediated Assembly and Functionality of Dispersoid

Bao Li, Lixin Wu()   

  1. State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University,Changchun 130012, China
  • Received:2022-03-02 Revised:2022-04-21 Online:2022-07-24 Published:2022-06-22
  • Contact: Lixin Wu
  • Supported by:
    National Natural Science Foundation of China(22172060)

凝聚态化学是研究利用分子间作用力构筑凝聚态物质多层次结构实现物质功能和化学反应的新研究领域。相比于固态凝聚态化学,液态凝聚态化学研究涉及多相态,如液态凝聚态如何影响分散质的存在状态和功能特性等重要课题。从凝聚态化学的角度认识分散质在其中的聚集行为不但有利于获得预期的分子存在结构状态,而且可以探索环境条件对组装结构形成的过程认识。本文在对液态凝聚态的物理化学性质,尤其是与溶质分散和聚集相关方面进行简要概述的基础上,选取典型示例分别阐述了液态凝聚态在分散质组装过程、组装与解组装以及组装体结构转变等方面的作用。在液态凝聚态对物质性质影响方面,从其对染料分子的紫外-可见吸收、电子转移、手性调控以及催化等几个方面进行了讨论。在这些过程中,作为连续相的液态凝聚态的介电常数、极性以及黏度等性质对于分散相的存在状态和性质起到了关键作用。然而,受现有仪器检测范围的限制,液态凝聚态与分散质之间的快速、多变且细微的作用力很难在时间和空间上进行准确测定,而从实验和理论两个方面进行相互拟合来说明液态凝聚态的作用是一个重要且行之有效的策略。

Condensed matter chemistry is a new research field that studies the multi-level structures of condensed matter constructed by intermolecular interactions for realizing functionalities and chemical reactions. Compared with solid-state condensed matter chemistry, the study of liquid condensed matter chemistry involves multiphase states, such as how liquid condensed matter affects the state and functional properties of dispersoids. It is important to understand the aggregation behaviors of dispersoids from the perspective of condensed matter chemistry, which is not only beneficial to the preparation of the expected structures, but also can deepen the understanding of the formation process of the assembled structure. In this paper, based on a brief overview of the physical and chemical properties of liquid condensed matter, especially those related to dispersion and dissolution, typical examples are selected to illustrate the assembly process, assembly and disassembly, and structural transformation of dispersoids in the liquid condensed matter. In terms of the influence of the liquid condensed state on properties of dispersoids, the UV-vis absorption, electron transfer, chirality regulation and catalysis are discussed. In these processes, as the continuous phase, the properties of the liquid condensed state, such as dielectric constant, polarity and viscosity, play key roles in the existing states and properties of the dispersoids. However, due to the limitation of the detection range of the present instruments, it is difficult to accurately measure the fast, variable and subtle forces between liquid condensed matter and dispersoids in time and space. Therefore, it is an important and effective strategy to perform mutual fitting from both experimental and theoretical aspects to illustrate the role of liquid condensed matter.

Contents

1 Introduction

2 Properties of liquid condensed matter and its relationship with a dispersoid

3 Influence of liquid condensed state on aggregation behaviors of dispersoid

3.1 Regulation of dispersoid assembly processes by liquid condensed matter

3.2 Regulation of aggregation states of dispersoid by liquid condensed matte

3.3 Regulation of assembly structures of dispersoid by liquid condensed matter

4 Influence of liquid condensed state on the properties of dispersoid

4.1 Liquid condensed state reduced solvatochromism

4.2 Photoinduced electron transfer controlled by liquid condensed matter

4.3 Modulation of dispersoid chirality by liquid condensed matter

4.4 Effects of liquid condensed matter on catalytic reactions of dispersoid

5 Conclusion

()
图1 分散相在液态凝聚态中溶解、识别和组装过程示意图。红色虚线表示液态凝聚态粒子间的作用力
Fig. 1 Schematic illustration of the dissolution, recognition and assembly of the dispersoid in the liquid condensed state. The red dotted line represents the force between liquid condensed particles
图2 (a)两亲性多肽S30L12的分子结构图;(b)S30L12在水相中的组装及受热后的形态转变和不同乙醇含量的组装结构转变示意图;(c)不同形貌多肽组装体的可能堆积结构[37]
Fig. 2 (a) Molecular structure of the amphiphilic polypeptide S30L12; (b) schematic illustration of the assembly structure of S30L12 and its transformation under heating, and the assembly structure transformation with different ethanol contents; (c) proposed packing models of polypeptide assemblies with different morphologies[37]. Copyright 2020, American Chemical Society
图3 阳离子表面活性剂、多金属氧簇阴离子和超分子复合物的结构示意图以及反式和顺式复合物在不同极性溶剂中的组装和解组装[39]
Fig. 3 Chemical structures of cationic surfactant, polyanion, and supramolecular complex, and schematic diagram of reversible assembly and disassembly of trans-/cis-complexes in solutions with different polarities[39]. Copyright 2012, Wiley
图4 (a)苯乙炔基/苝双酰亚胺寡聚体PBI的分子结构图;(b)液态凝聚态调节的寡聚体PBI非折叠结构和折叠结构的可逆转变;(c)寡聚体PBI在CHCl3和MCH中的荧光发射光谱[41]
Fig. 4 (a) Molecular structure of PBI; (b) liquid condensed matter modulated reversible transformation between unfolded and folded state of PBI; (c) fluorescence spectra of PBI in CHCl3 (solid line) and MCH solution (dashed line)[41]. Copyright 2011, the Authors
图5 (a)TTA的分子结构示意图;TTA钠盐的甲醇溶液在水的体积含量为(b)0,(c)10%和(d)20%的扫描电镜照片[44]
Fig. 5 (a) Molecular structure of TTA; SEM images of methanol solutions of TTA sodium salt with water volume contents of (b) 0, (c) 10% and (d) 20%[44]. Copyright 2019, The Royal Society of Chemistry
图6 (a)NPT的分子结构示意图;(b)NPT在乙二醇、甲苯、乙酸乙酯和N,N-二甲基乙酰胺中的溶液照片(从左到右);(c)NPT在不同液态凝聚态中的紫外-可见吸收光谱,黑色、绿色、蓝色和红色曲线分别为乙二醇溶液、甲苯溶液、乙酸乙酯溶液和N,N-二甲基乙酰胺溶液[47]
Fig. 6 (a) Molecular structure of NPT; (b) solution pictures of NPT in ethane-1,2-diol, toluene, ethyl acetate, and DMA (from left to right); (c) UV-vis spectra of NPT in different liquid condensed matters. The black, green, blue and red lines represent NPT in thane-1,2-diol, toluene, ethyl acetate, and DMA, respectively[47]. Copyright 2016, The Royal Society of Chemistry
图7 (a)化合物[Ru(bpy)2(bpy-cc-AQ)]2+的分子结构示意图及其在不同介电常数液态凝聚态中的电子转移情况;(b)荧光寿命与液态凝聚态介电常数的关系图[49]
Fig. 7 (a) Molecular structure of the compound [Ru(bpy)2(bpy-cc-AQ)]2+ and its electron transfer in liquid condensed states with different dielectric constants; (b) the diagram of relationship between fluorescence lifetime and dielectric constant of liquid condensed state[49]
图8 两亲性手性分子L-PyG和L-PyPhG的分子结构和其在EtOH和DMSO中的组装结构示意图以及在染料分子存在时的能量转移情况[53]
Fig. 8 Schematic diagram of the molecular structures of the amphiphilic chiral molecules L-PyG and L-PyPhG and their assemblies in EtOH and DMSO and the energy transfer in the presence of dye molecule[53]. Copyright 2022, American Chemical Society
图9 在1,4-二氧六环和水中H-ZSM-5催化呋喃-2-基甲醇反应位点示意图[56]
Fig. 9 Schematic diagram of the reaction site of furan-2-ylmethanol catalyzed by H-ZSM-5 in 1,4-dioxane and water[56]
图10 阳离子β-环糊精(CDC)和多金属氧簇{Mo154}的静电复合物{Mo154}@CDC作为催化剂在水中催化氧化环己烯示意图[57]
Fig. 10 Schematic illustration of the electrostatic complex {Mo154}@CDC comprising of cationic β-CD (CDC) and {Mo154} cluster as catalyst for the catalytic oxidation of cyclohexene in water[57]. Reproduced under terms of the CC-BY license. Copyright 2021, the Authors. Published by AAAS
[1]
Xu R R. Natl. Sci. Rev., 2018, 5: 1.

doi: 10.1093/nsr/nwx155     URL    
[2]
Xu R R, Wang K, Chen G, Yan W F. Natl. Sci. Rev., 2019, 6: 191.

doi: 10.1093/nsr/nwy128     URL    
[3]
Chen Z, Shang Y S, Zhang H B, Jiang Z H. Prog. Chem., 2020, 32: 1115.
[4]
Shi J L, Hua Z L. Prog. Chem., 2020, 32: 1060.
[5]
Cohen M L. Phys. Rev. Lett., 2008, 101: 250001.

doi: 10.1103/PhysRevLett.101.250001     URL    
[6]
Mu D, Li J Q, Cong X S, Mi Y W, Zhang H. Polymers, 2019, 11: 261.

doi: 10.3390/polym11020261     URL    
[7]
Gibb B C. Isr. J. Chem., 2011, 51: 798.

doi: 10.1002/ijch.201100058     URL    
[8]
Prince E, Narayanan P, Chekini M, Pace-Tonna C, Roberts M G, Zhulina E, Kumacheva E. Macromolecules, 2020, 53: 4533.

doi: 10.1021/acs.macromol.0c00643     URL    
[9]
Zhang R, Deng L, Guo J, Yang H, Zhang L, Cao X, Yu A, Duan B. ACS Nano, 2021, 15: 17790.

doi: 10.1021/acsnano.1c05956     URL    
[10]
Yuan P, Zhang R, Selenius E, Ruan P, Yao Y, Zhou Y, Malola S, Hakkinen H, Teo B K, Cao Y, Zheng N. Nat. Commun., 2020, 11: 2229.

doi: 10.1038/s41467-020-16062-6     URL    
[11]
Han A D, Yan X H, Chen J R, Cheng X J, Zhang J L. Acta Phys.-Chim. Sin., 2022, 38: 1912052.
[12]
Bo Z, Kong J, Yang H C, Zheng Z W, Chen P P, Yan J H, Cen K F. Acta Phys.-Chim. Sin., 2022, 38: 2005054.
[13]
Wells P R. Chem. Rev., 2002, 63: 171.

doi: 10.1021/cr60222a005     URL    
[14]
Kamlet M J, Abboud J L M, Abraham M H, Taft R W. J. Org. Chem., 2002, 48: 2877.

doi: 10.1021/jo00165a018     URL    
[15]
Dyson P J, Jessop P G. Catal. Sci. Technol., 2016, 6: 3302.

doi: 10.1039/C5CY02197A     URL    
[16]
Ab Rani M A, Brant A, Crowhurst L, Dolan A, Lui M, Hassan N H, Hallett J P, Hunt P A, Niedermeyer H, Perez-Arlandis J M, Schrems M, Welton T, Wilding R. Phys. Chem. Chem. Phys., 2011, 13: 16831.

doi: 10.1039/c1cp21262a     pmid: 21858359
[17]
Reichardt C. Org. Process Res. Dev., 2006, 11: 105.

doi: 10.1021/op0680082     URL    
[18]
Lam J, Lutsko J F. J. Chem. Phys., 2018, 149: 134703.

doi: 10.1063/1.5037571     URL    
[19]
Rekharsky M, Inoue Y, in Supramolecular Chemistry: From Molecules to Nanomaterials (Eds.: P. A. Gale, J. W. Steed), John Wiley & Sons, Ltd., 2012, pp. 117.
[20]
Zhang J, Chen X F, Li W, Li B, Wu L X. Langmuir, 2017, 33: 12750.

doi: 10.1021/acs.langmuir.7b01259     pmid: 29048910
[21]
Nador F, Wnuk K, Roscini C, Solorzano R, Faraudo J, Ruiz-Molina D, Novio F. Chem. Eur. J., 2018, 24: 14724.

doi: 10.1002/chem.201802249     URL    
[22]
Moreno-Alcantar G, Aliprandi A, Rouquette R, Pesce L, Wurst K, Perego C, Bruggeller P, Pavan G M, De Cola L, Angew. Chem. Int. Ed., 2021, 60: 5407.

doi: 10.1002/anie.202013474     pmid: 33247479
[23]
Yang X, Xu X, Ji H F. J. Phys. Chem. B, 2008, 112: 7196.

doi: 10.1021/jp801413k     URL    
[24]
Maeda H, Terashima Y. Chem. Commun., 2011, 47: 7620.

doi: 10.1039/c1cc12827b     URL    
[25]
Yin P, Li D, Liu T. Chem. Soc. Rev., 2012, 41: 7368.

doi: 10.1039/c2cs35176e     URL    
[26]
Baar C, Buchner R, Kunz W. J. Phy. Chem. B, 2001, 105: 2906.

doi: 10.1021/jp002884e     URL    
[27]
Kim J, Choi C H, Yeom S J, Eom N, Kang K K, Lee C S. Langmuir, 2017, 33: 7503.

doi: 10.1021/acs.langmuir.7b01252     URL    
[28]
Zhang F, Wang L, Fang W, Liu Y, Shi P, Liang P, Gao Z, Bao Y. Cryst. Growth Des., 2020, 20: 3650.

doi: 10.1021/acs.cgd.9b01399     URL    
[29]
Gutmann V. Coord. Chem. Rev., 1976, 18: 225.

doi: 10.1016/S0010-8545(00)82045-7     URL    
[30]
Taft R W, Kamlet M J. J. Am. Chem. Soc., 1976, 98: 2886.

doi: 10.1021/ja00426a036     URL    
[31]
Kamlet M J, Taft R W. J. Am. Chem. Soc., 1976, 98: 377.

doi: 10.1021/ja00418a009     URL    
[32]
Aratsu K, Shimizu N, Takagi H, Haruki R, Adachi S-i, Yagai S. Chem. Lett., 2020, 49: 178.

doi: 10.1246/cl.190789     URL    
[33]
Li C P, Du M. Chem. Commun., 2011, 47: 5958.

doi: 10.1039/c1cc10935a     URL    
[34]
Davies R P, Less R J, Lickiss P D, White A J. Dalton Trans., 2007: 2528.
[35]
Lehn J M. Angew. Chem. Int. Ed., 2015, 54: 3276.

doi: 10.1002/anie.201409399     URL    
[36]
Jeon H-J, Kim C, Song H H. Macromol. Res., 2012, 20: 954.

doi: 10.1007/s13233-012-0142-y     URL    
[37]
Nandakumar A, Ito Y, Ueda M. J. Am. Chem. Soc., 2020, 142: 20994.

doi: 10.1021/jacs.0c03425     URL    
[38]
Li B, Li W, Li H L, Wu L X. Acc. Chem. Res., 2017, 50: 1391.

doi: 10.1021/acs.accounts.7b00055     URL    
[39]
Yang Y, Yue L, Li H, Maher E, Li Y, Wang Y, Wu L, Yam V W-W. Small, 2012, 8: 3105.

doi: 10.1002/smll.201200768     pmid: 22777901
[40]
Yang Y, Zhang B, Wang Y Z, Yue L, Li W, Wu L X. J. Am. Chem. Soc., 2013, 135: 14500.

doi: 10.1021/ja4057882     pmid: 24041266
[41]
Dehm V, Büchner M, Seibt J, Engel V, Würthner F. Chem. Sci., 2011, 2: 2094.

doi: 10.1039/c1sc00435b     URL    
[42]
Morozumi T, Matsuoka R, Nakamura T, Nabeshima T. Chem. Sci., 2021, 12: 7720.

doi: 10.1039/d1sc01529j     pmid: 34168824
[43]
Du D, Ren G-B, Qi M-H, Li Z, Xu X-Y. Crystals, 2019, 9: 161.

doi: 10.3390/cryst9030161     URL    
[44]
Liu D J K, Zhang G H, Gao B, Li B, Wu L X. Dalton Trans., 2019, 48: 11623.

doi: 10.1039/C9DT01780A     URL    
[45]
Kitahama Y, Takazawa K. Bull. Chem. Soc. Jpn., 2008, 81: 1282.

doi: 10.1246/bcsj.81.1282     URL    
[46]
Reichardt C. Chem. Rev., 1994, 94: 2319.

doi: 10.1021/cr00032a005     URL    
[47]
Stock R I, Schramm A D, Rezende M C, Machado V G. Phys. Chem. Chem. Phys., 2016, 18: 20266.

doi: 10.1039/C6CP03875A     URL    
[48]
Brennaman M K, Meyer T J, Papanikolas J M. J. Phy. Chem. A, 2004, 108: 9938.

doi: 10.1021/jp0479670     URL    
[49]
Larsen C B, Farrow G A, Smith L D, Appleby M V, Chekulaev D, Weinstein J A, Wenger O S. Inorg. Chem., 2020, 59: 10430.

doi: 10.1021/acs.inorgchem.0c00679     URL    
[50]
Veling N, van Hameren R, van Buul A M, Rowan A E, Nolte R J, Elemans J A. Chem. Commun., 2012, 48: 4371.

doi: 10.1039/c2cc31156a     URL    
[51]
Ma Z, Gao G, Luo Z, Tang X, Sun T. J. Phy. Chem. C, 2019, 123: 24973.

doi: 10.1021/acs.jpcc.9b08063     URL    
[52]
Li C-J, Zeng Q-D, Wang C, Wan L-J, Xu S-L, Wang C-R, Bai C-L. J. Phy. Chem. B, 2002, 107: 747.

doi: 10.1021/jp0267858     URL    
[53]
Xu L F, Zhang M M, Zhu X F, Xue C L, Wang H X, Liu M H. ACS Appl. Mater. Interfaces, 2022, 14: 1765.

doi: 10.1021/acsami.1c20969     URL    
[54]
Bruehwiler A, Semagina N, Grasemann M, Renken A, Kiwi-Minsker L, Saaler A, Lehmann H, Bonrath W, Roessler F. Ind. Eng. Chem. Res., 2008, 47: 6862.

doi: 10.1021/ie800070w     URL    
[55]
Moret S, Dyson P J, Laurenczy G. Dalton Trans., 2013, 42: 4353.

doi: 10.1039/c3dt00081h     URL    
[56]
Kubarev A V, Breynaert E, Van Loon J, Layek A, Fleury G, Radhakrishnan S, Martens J, Roeffaers M B J. ACS Catal., 2017, 7: 4248.

doi: 10.1021/acscatal.7b00782     pmid: 28713643
[57]
Chen X F, Zhang G H, Li B, Wu L X. Sci. Adv., 2021, 7: eabf8413.
[1] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[2] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[3] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[4] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[5] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[6] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[7] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[8] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[9] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[10] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[11] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[12] 衡婷婷, 张慧, 陈明学, 胡欣, 方亮, 陆春华. 接枝改性PVDF基含氟聚合物[J]. 化学进展, 2021, 33(4): 596-609.
[13] 陈曦, 李喆垚, 陈亚运, 陈志华, 胡艳, 刘传祥. C—H氰烷基化:导向基控制的萘酰亚胺C—H氰烷基化[J]. 化学进展, 2021, 33(11): 1947-1952.
[14] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[15] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.