English
新闻公告
More
化学进展 2022, Vol. 34 Issue (5): 1229-1244 DOI: 10.7536/PC210614 前一篇   

• 综述 •

MXene二维无机材料在环境修复中的应用

韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁*()   

  1. 华北电力大学环境科学与工程学院 北京 102206
  • 收稿日期:2021-06-18 修回日期:2021-07-19 出版日期:2022-05-24 发布日期:2021-12-02
  • 通讯作者: 艾玥洁

A Review on MXene and Its Applications in Environmental Remediation

Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai()   

  1. College of Environmental Science and Engineering, North China Electric Power University,Beijing 102206, China
  • Received:2021-06-18 Revised:2021-07-19 Online:2022-05-24 Published:2021-12-02
  • Contact: Yuejie Ai

MXenes是一类结构新颖的无机层状纳米材料,它是由几个原子层厚度的过渡金属碳化物、氮化物或碳氮化物构成,目前被广泛应用于能源、光学、催化和吸附等领域。由于其具有高亲水性、比表面积大、表面带负电和高离子交换力等特性,被作为一种优异的吸附剂材料。MXenes材料会通过静电吸引、配位螯合等相互作用去除环境中的重金属离子与放射性元素,有望成为吸附重金属离子与放射性元素的理想载体。本文介绍了MXene材料的结构与制备方法,其去除重金属离子(如铬(Cr)、汞(Hg)、铅(Pb)、镍(Ni))与放射性元素(如铀(U)、铯(Cs)、铕(Eu)、钡(Ba)、锶(Sr))的研究进展,并对其相关的吸附行为与相互作用机理进行了重点阐述。此外,还对MXene材料在该领域所面对的挑战和未来发展进行了展望。

MXenes is advanced two-dimensional inorganic compound materials that consist of transition metal carbides, nitrides or carbonitrides at a few atomic thicknesses, which are widely used in energy, optics, catalysis, adsorption and other fields. Due to the high hydrophilicity, large specific surface area, negative surface charge and strong ion exchange capability, it is considered an excellent adsorption material. Based on the excellent adsorption performance of MXene, this material has significant potential for environmental remediation. MXene is expected to become an ideal carrier for heavy metal ions and radionuclides through electrostatic attraction and ligand chelation. The full text mainly reviews the application of MXene as an adsorbent in the field of environmental remediation. The structure and synthesis method of MXene, and the application of MXene for extracting heavy metal ions (such as chromium (Cr), mercury (Hg), lead (Pb), nickel (Ni)) and radionuclides (such as uranium (U), cesium (Cs), europium (Eu), barium (Ba) and strontium (Sr)), etc. are reviewed systematically. In particular, the interactive mechanism of different MXene systems is discussed and highlighted. In addition, the existing challenges of MXene materials for environmental remediation and its future development are presented for a prospect.

Contents

1 Introduction

2 Structure and synthesis method of MXenes

2.1 Structure of MXenes

2.2 Synthesis of MXenes

3 Removal of heavy metal ions with MXenes

3.1 Pb(Ⅱ)

3.2 Hg(Ⅱ)

3.3 Cr(Ⅵ)

3.4 Ni(Ⅱ)

4 Radionuclide removal with MXenes

4.1 U(Ⅵ)

4.2 Eu(Ⅲ)

4.3 Cs(Ⅰ)

4.4 Ba(Ⅱ) and Sr(Ⅱ)

5 Conclusion and outlook

()
图1 MXene和MAX中M、A、X、T所代表的元素分布图(M:过渡金属元素;A:选择性刻蚀层;X:C或N元素;T:官能团)
Fig. 1 Distribution diagrams of elements represented by M, A, X, and T in MXene and MAX (M: transition metal element; A: selective etching layer; X: C or N elements; T: functional group)
图2 MAX相(Ti3AlC2)的六方晶体结构示意图[16](晶胞参数为:a=3.081,b=3.081,c=18.679)
Fig. 2 Hexagonal crystal structure of MAX phase (Ti3AlC2)[16] (Lattice parameters: a=3.081,b=3.081,c=18.679)
图3 M2AX,M3AX2和M4AX3及其对应的M2X、M3X2和M4X3相的结构图
Fig. 3 Structure diagram of M2AX, M3AX2 and M4AX3, and their corresponding M2X, M3X2, and M4X3 phases
图4 (a)Ⅰ-Ti3C2(OH)2;(b)Ⅱ-Ti3C2(OH)2;(c)Ⅲ-Ti3C2(OH)2的构型[20]
Fig. 4 (a)Ⅰ-Ti3C2(OH)2;(b)Ⅱ-Ti3C2(OH)2;(c)Ⅲ-Ti3C2(OH)2 configuration[20]
图5 HF酸刻蚀法过程示意图:MAX通过HF酸刻蚀后超声波分层出MXene材料
Fig. 5 Schematic diagram of HF acid etching process: MXene material was layered by ultrasonic after MAX was etched with HF acid
图6 水热法刻蚀前后的Ti3AlC2的TEM图[60]
Fig.6 TEM images of Ti3AlC2 before and after hydrothermal treatment[60]
图7 原始Ti3C2(OH)2的ELF截面图,分别为(100)平面(a)和 (-110)平面(b)。Ti3C2(O2 H 2 - 2 mPbm)的ELF截面图,分别为(100)平面(c)和(-110)平面(d)[34]
Fig. 7 (a) and (b) are (110) planar ELF sections and (-110) planar ELF sections of pristine Ti3C2(OH)2, respectively. (c) and (d) are (110) and (-110) planar ELF sections of Ti3C2(O2 H 2 - 2 mPbm), respectively[34]
图8 Pb(Ⅱ)在Ti3AlC2上吸附结构,键长单位为Å[61]
Fig. 8 The optimized structures for Pb(Ⅱ) adsorbed on etched Ti3AlC2; the bond length unit is in Å[61]
图9 Ti2CTx-EHL对Pb(Ⅱ)离子的吸附机理示意图[72]
Fig. 9 The adsorption mechanism of Pb(Ⅱ) ions by Ti2CTx-EHL[72]
图10 (a) MGMX纳米复合材料MPMS分析的VSM磁化曲线;(b) Ti3C2Tx MXene和MGMX纳米复合材料的PXRD衍射图[75]
Fig. 10 (a) VSM magnetization curves for MPMS analysis of MGMX nanocomposites; (b) PXRD diffraction patterns of Ti3C2Tx MXene and MGMX nanocomposites[75]
图11 MX-SA4∶20微球去除水相中Hg2+前后的XPS谱峰拟合:(a)吸附Hg(Ⅱ)之前Ti 2p;(b)吸附Hg(Ⅱ)之后Ti 2p[68]
Fig. 11 XPS spectra before and after adsorption of Hg2+ from aqueous phase by MX-SA4∶20 microspheres: (a) Ti 2p before adsorption of Hg(Ⅱ). (b) Ti 2p after adsorption of Hg(Ⅱ)[68]
图12 Ti3C2Tx MXene去除Cr(Ⅵ)的机理图:Ti3C2Tx将Cr(Ⅵ)还原成Cr(Ⅲ)后,再对Cr(Ⅲ)进行吸附[82]
Fig. 12 Mechanism diagram of Cr(Ⅵ) removal by Ti3C2Tx Mxene: Ti3C2Tx reduces Cr(Ⅵ) to Cr(Ⅲ), and then adsorbs Cr(Ⅲ)[82]
图13 (a) 制备的MXene-CS的SEM图像;(b) MXene-CS吸附Cr(Ⅵ)前后的XPS谱图;(c)吸附后Cr 2p的XPS谱图[86]
Fig. 13 (a) SEM images of prepared MXene-Cs; (b) XPS spectra before and after Cr(Ⅵ) adsorption by MXene-CS; (c) XPS spectra of Cr 2p after adsorption[86]
图14 (a) u-RTC复合材料的SEM图像;(b)制备u-RTC的过程示意图[83]
Fig. 14 (a) SEM images of u-RTC composites; (b) scheme of the fabrication of u-RTC[83]
图15 alk-MXene/LDH材料在弱酸条件下对Ni2+的吸附过程示意图[88]
Fig. 15 Schematic representation of the adsorption process of alk-MXene/LDH material on Ni2+ under weak acid conditions[88]
图16 Ti3C2Tx MXene的合成(水化插层法),以及Ti3C2Tx MXene吸附U(Ⅵ)的示意图[65]
Fig. 16 Synthesis of Ti3C2Tx MXene (hydration intercalation method), and schematic diagram of Ti3C2Tx MXene adsorption U(Ⅵ)[65]
图17 不同类型表面装饰的Ti2C、V2C和Cr2C MXenes对铀的最大吸附量[96]
Fig. 17 Maximum adsorption of uranium by Ti2C, V2C and Cr2C MXenes decorated with different types of surfaces[96]
图18 分层钛酸盐纳米结构(HTNs)的合成及其对放射性元素吸附示意图[99]
Fig. 18 Synthesis of layered titanate nanostructures (HTNs) and their adsorption of radioactive elements[99]
图19 Ti3C2Tx和Ti3C2Tx-Cs的全扫描XPS光谱[103]
Fig. 19 Full-scan XPS spectra of Ti3C2Tx and Ti3C2Tx-Cs[103]
图20 Ba2+在Ti3C2Tx MXene表面的吸附机理:Ba2+分别与Ti3C2Tx MXene表面的—OH和—F官能团结合生成Ba(OH)2和Ba(F)2[67]
Fig. 20 Adsorption mechanism of Ba2+ on Ti3C2Tx MXene: Ba2+ combines with —OH and —F functional groups on the surface of Ti3C2Tx MXene to form Ba(OH)2 and Ba(F)2, respectively[67]
图21 对Ti3C2Tx进行氢氧化钠活化处理后形成Alk-Ti3C2Tx以及其对放射性Ba2+的吸附示意图[105]
Fig. 21 Ti3C2Tx was activated by NaOH to form Alk-Ti3C2Tx for the adsorption of radioactive Ba2+[105]
图22 Ti3C2Tx MXene对Ba2+ (a)和Sr2+ (b)的去除率[106]
Fig. 22 The removal rates of Ti3C2Tx MXene for Ba2+ (a) and Sr2+ (b), respectively[106]
[1]
Hwang S K, Kang S M, Rethinasabapathy M, Roh C, Huh Y S. Chem. Eng. J., 2020, 397: 125428.

doi: 10.1016/j.cej.2020.125428     URL    
[2]
Fan M, Wang L, Zhang Y J, Pei C X, Chai Z F, Shi W Q. Science China Chemistry, 2019, 49: 27.
(樊懋, 王琳, 张玉娟, 裴承新, 柴之芳, 石伟群. 中国科学:化学, 2019, 49: 27.).
[3]
Yu S J, Wang X X, Tan X L, Wang X K. Inorg. Chem. Front., 2015, 2(7): 593.

doi: 10.1039/C4QI00221K     URL    
[4]
Tofighy M A, Mohammadi T. Chem. Eng. J., 2020, 388: 124192.

doi: 10.1016/j.cej.2020.124192     URL    
[5]
Mojiri A, Ohashi A, Ozaki N, Aoi Y, Kindaichi T. J. Clean. Prod., 2020, 243: 118638.

doi: 10.1016/j.jclepro.2019.118638     URL    
[6]
Gholizadeh A M, Zarei M, Ebratkhahan M, Hasanzadeh A, Vafaei F. J. Environ. Manag., 2020, 254: 109802.

doi: 10.1016/j.jenvman.2019.109802     URL    
[7]
Yuan J, Zhang W N, Xiao Z H, Zhou X H, Zeng Q R. Chem. Eng. J., 2020, 388: 124298.

doi: 10.1016/j.cej.2020.124298     URL    
[8]
Xu C H, Shi S Y, Wang X Q, Zhou H F, Wang L, Zhu L Y, Zhang G H, Xu D. J. Hazard. Mater., 2020, 381: 120974.

doi: 10.1016/j.jhazmat.2019.120974     URL    
[9]
Sun Y B, Yang S B, Chen Y, Ding C C, Cheng W C, Wang X K. Environ. Sci. Technol., 2015, 49(7): 4255.

doi: 10.1021/es505590j     URL    
[10]
Wang Y, Chen X C, Hu X W, Wu P, Lan T, Li Y, Tu H, Liu Y, Yuan D Z, Wu Z Y, Liu Z R, Chew J W. Appl. Surf. Sci., 2021, 536: 147829.

doi: 10.1016/j.apsusc.2020.147829     URL    
[11]
Feng M B, Zhang P, Zhou H C, Sharma V K. Chemosphere, 2018, 209: 783.

doi: 10.1016/j.chemosphere.2018.06.114     URL    
[12]
Park C W, Kim B H, Yang H M, Seo B K, Moon J K, Lee K W. Chemosphere, 2017, 168: 1068.

doi: 10.1016/j.chemosphere.2016.10.102     URL    
[13]
Miensah E D, Khan M M, Chen J Y, Zhang X M, Wang P, Zhang Z X, Jiao Y, Liu Y, Yang Y. Crit. Rev. Environ. Sci. Technol., 2020, 50(18): 1874.

doi: 10.1080/10643389.2019.1686946     URL    
[14]
Cui W W, Zhang X, Pearce C I, Chen Y, Zhang S, Liu W, Engelhard M H, Kovarik L, Zong M R, Zhang H L, Walter E D, Zhu Z H, Heald S M, Prange M P, de Yoreo J J, Zheng S L, Zhang Y, Clark S B, Li P, Wang Z M, Rosso K M. Environ. Sci. Technol., 2019, 53(18): 11043.

doi: 10.1021/acs.est.9b02693     URL    
[15]
Xie Y. Master’s thesis of University of Science and Technology of China, 2020.
(谢忆. 中国科学技术大学硕士论文, 2020.).
[16]
Barsoum M W, Radovic M. Annu. Rev. Mater. Res., 2011, 41: 195.

doi: 10.1146/annurev-matsci-062910-100448     URL    
[17]
Zhang J F, Cao H Y, Wang H B. J. Inorg. Mater., 2017, 32(6): 561.

doi: 10.15541/jim20160479     URL    
(张建峰, 曹惠杨, 王红兵. 无机材料学报, 2017, 32(6): 561.)
[18]
Sun Z M. Int. Mater. Rev., 2011, 56(3): 143.

doi: 10.1179/1743280410Y.0000000001     URL    
[19]
Gao Y P, Wang L B, Li Z Y, Zhou A G, Hu Q K, Cao X X. Solid State Sci., 2014, 35: 62.

doi: 10.1016/j.solidstatesciences.2014.06.014     URL    
[20]
Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. Adv. Mater., 2014, 26(7): 992.

doi: 10.1002/adma.201304138     URL    
[21]
Mashtalir O, Cook K M, Mochalin V N, Crowe M, Barsoum M W, Gogotsi Y. J. Mater. Chem. A, 2014, 2(35): 14334.

doi: 10.1039/C4TA02638A     URL    
[22]
Zhang X, Zhang Z H, Zhou Z. J. Energy Chem., 2018, 27(1): 73.

doi: 10.1016/j.jechem.2017.08.004     URL    
[23]
Naguib M, Come J, Dyatkin B, Presser V, Taberna P L, Simon P, Barsoum M W, Gogotsi Y. Electrochem. Commun., 2012, 16(1): 61.

doi: 10.1016/j.elecom.2012.01.002     URL    
[24]
Huang H Y, Jiang R M, Feng Y L, Ouyang H, Zhou N G, Zhang X Y, Wei Y. Nanoscale, 2020, 12(3): 1325.

doi: 10.1039/C9NR07616F     URL    
[25]
Xie X Q, Zhang N, Tang Z R, Anpo M, Xu Y J. Appl. Catal. B Environ., 2018, 237: 43.

doi: 10.1016/j.apcatb.2018.05.070     URL    
[26]
Li Z, Wu Y. Small, 2019, 15:10.
[27]
Shahzad F, Alhabeb M, Hatter C B, Anasori B, Man Hong S, Koo C M, Gogotsi Y. Science, 2016, 353(6304): 1137.

doi: 10.1126/science.aag2421     pmid: 27609888
[28]
Han M K, Yin X W, Wu H, Hou Z X, Song C Q, Li X L, Zhang L T, Cheng L F. ACS Appl. Mater. Interfaces, 2016, 8(32): 21011.

doi: 10.1021/acsami.6b06455     URL    
[29]
Xie Y, Dall’Agnese Y, Naguib M, Gogotsi Y, Barsoum M W, Zhuang H L, Kent P R C. ACS Nano, 2014, 8(9): 9606.

doi: 10.1021/nn503921j     pmid: 25157692
[30]
Rasool K, Pandey R P, Rasheed P A, Buczek S, Gogotsi Y, Mahmoud K A. Mater. Today, 2019, 30: 80.

doi: 10.1016/j.mattod.2019.05.017     URL    
[31]
Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y. Chem. Mater., 2017, 29(18): 7633.

doi: 10.1021/acs.chemmater.7b02847     URL    
[32]
Zhang Y J, Wang L, Zhang N N, Zhou Z J. RSC Adv., 2018, 8(36): 19895.

doi: 10.1039/C8RA03077D     URL    
[33]
Verger L, Xu C, Natu V, Cheng H M, Ren W C, Barsoum M W. Curr. Opin. Solid State Mater. Sci., 2019, 23(3): 149.

doi: 10.1016/j.cossms.2019.02.001     URL    
[34]
Peng Q M, Guo J X, Zhang Q R, Xiang J Y, Liu B Z, Zhou A G, Liu R P, Tian Y J. J. Am. Chem. Soc., 2014, 136(11): 4113.

doi: 10.1021/ja500506k     URL    
[35]
Gu P C, Song S, Zhang S, Wei B B, Wen T, Wang X K. Acta Chim. Sinica, 2018, 76(9): 701.

doi: 10.6023/A18060245     URL    
[36]
Wang L, Song H, Yuan L Y, Li Z J, Zhang Y J, Gibson J K, Zheng L R, Chai Z F, Shi W Q. Environ. Sci. Technol., 2018, 52(18): 10748.

doi: 10.1021/acs.est.8b03711     pmid: 30149698
[37]
Wang L, Song H, Yuan L Y, Li Z J, Zhang P, Gibson J K, Zheng L R, Wang H Q, Chai Z F, Shi W Q. Environ. Sci. Technol., 2019, 53(7): 3739.

doi: 10.1021/acs.est.8b07083     pmid: 30843686
[38]
Yao N Y, Xian C N. Energy Storage Sci. Technol., 2018, 7(4): 631.
(姚乃元, 仙存妮. 储能科学与技术, 2018, 7(4): 631.)
[39]
Anasori B, Lukatskaya M R, Gogotsi Y. Nat. Rev. Mater., 2017, 2(2): 16098.

doi: 10.1038/natrevmats.2016.98     URL    
[40]
Urbankowski P, Anasori B, Hantanasirisakul K, Yang L, Zhang L H, Haines B, May S J, Billinge S J L, Gogotsi Y. Nanoscale, 2017, 9(45): 17722.

doi: 10.1039/c7nr06721f     pmid: 29134998
[41]
Karlsson L H, Birch J, Halim J, Barsoum M W, Persson P O Å. Nano Lett., 2015, 15(8): 4955.

doi: 10.1021/acs.nanolett.5b00737     pmid: 26177010
[42]
Wang X F, Shen X, Gao Y R, Wang Z X, Yu R C, Chen L Q. J. Am. Chem. Soc., 2015, 137(7): 2715.

doi: 10.1021/ja512820k     URL    
[43]
Wang H W, Naguib M, Page K, Wesolowski D J, Gogotsi Y. Chem. Mater., 2016, 28(1): 349.

doi: 10.1021/acs.chemmater.5b04250     URL    
[44]
Halim J, Cook K M, Naguib M, Eklund P, Gogotsi Y, Rosen J, Barsoum M W. Appl. Surf. Sci., 2016, 362: 406.

doi: 10.1016/j.apsusc.2015.11.089     URL    
[45]
Xie Y, Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y, Yu X Q, Nam K W, Yang X Q, Kolesnikov A I, Kent P R C. J. Am. Chem. Soc., 2014, 136(17): 6385.

doi: 10.1021/ja501520b     pmid: 24678996
[46]
Tang Q, Zhou Z, Shen P W. J. Am. Chem. Soc., 2012, 134(40): 16909.

doi: 10.1021/ja308463r     URL    
[47]
Ronchi R M, Arantes J T, Santos S F. Ceram. Int., 2019, 45(15): 18167.

doi: 10.1016/j.ceramint.2019.06.114     URL    
[48]
Salim O, Mahmoud K A, Pant K K, Joshi R K. Mater. Today Chem., 2019, 14: 100191.
[49]
Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W. ACS Nano, 2012, 6(2): 1322.

doi: 10.1021/nn204153h     URL    
[50]
Sinha A, Dhanjai, Zhao H M, Huang Y J, Lu X B, Chen J P, Jain R. Trac Trends Anal. Chem., 2018, 105: 424.

doi: 10.1016/j.trac.2018.05.021     URL    
[51]
Sun Y J, Chen D S, Liang Z Q. Mater. Today Energy, 2017, 5: 22.
[52]
Halim J, Kota S, Lukatskaya M R, Naguib M, Zhao M Q, Moon E J, Pitock J, Nanda J, May S J, Gogotsi Y, Barsoum M W. Adv. Funct. Mater., 2016, 26(18): 3118.

doi: 10.1002/adfm.201505328     URL    
[53]
Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y, Barsoum M W. ACS Nano, 2015, 9(10): 9507.

doi: 10.1021/acsnano.5b03591     pmid: 26208121
[54]
Alhabeb M, Maleski K, Mathis T S, Sarycheva A, Hatter C B, Uzun S, Levitt A, Gogotsi Y. Angew. Chem. Int. Ed., 2018, 57(19): 5444.

doi: 10.1002/anie.201802232     URL    
[55]
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Nature, 2014, 516(7529): 78.

doi: 10.1038/nature13970     URL    
[56]
Halim J, Lukatskaya M R, Cook K M, Lu J, Smith C R, Näslund L Å, May S J, Hultman L, Gogotsi Y, Eklund P, Barsoum M W. Chem. Mater., 2014, 26(7): 2374.

doi: 10.1021/cm500641a     URL    
[57]
Li M, Huang Q. Journal of Inorganic Materials, 2020, 35:1.
(李勉, 黄庆. 无机材料学报, 2020, 35:1.).
[58]
Li M, Lu J, Luo K, Li Y B, Chang K K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Persson P O Å, Du S Y, Chai Z F, Huang Z R, Huang Q. J. Am. Chem. Soc., 2019, 141(11): 4730.

doi: 10.1021/jacs.9b00574     URL    
[59]
Hantanasirisakul K, Xiao X, Urbankowski P, Anasori B, Tan T L, Frey N, Shenoy V B, Gogotsi Y. Abstr. Pap. Am. Chem. Soc., 2019, 258: 2.
[60]
Xie X H, Xue Y, Li L, Chen S G, Nie Y, Ding W, Wei Z D. Nanoscale, 2014, 6(19): 11035.

doi: 10.1039/C4NR02080D     URL    
[61]
Gu P C, Xing J L, Wen T, Zhang R, Wang J, Zhao G X, Hayat T, Ai Y J, Lin Z, Wang X K. Environ. Sci.: Nano, 2018, 5(4): 946.
[62]
Peng C, Wei P, Chen X, Zhang Y L, Zhu F, Cao Y H, Wang H J, Yu H, Peng F. Ceram. Int., 2018, 44(15): 18886.

doi: 10.1016/j.ceramint.2018.07.124     URL    
[63]
Zheng W, Sun Z M, Zhang P G, Tian W B, Wang Y, Zhang Y M. Material Review, 2017, 31: 1.
(郑伟, 孙正明, 张培根, 田无边, 王英, 张亚梅. 材料导报, 2017, 31: 1.).
[64]
Ihsanullah I. Chem. Eng. J., 2020, 388: 124340.

doi: 10.1016/j.cej.2020.124340     URL    
[65]
Wang L, Tao W Q, Yuan L Y, Liu Z R, Huang Q, Chai Z F, Gibson J K, Shi W Q. Chem. Commun., 2017, 53(89): 12084.

doi: 10.1039/C7CC06740B     URL    
[66]
Li S X, Wang L, Peng J, Zhai M L, Shi W Q. Chem. Eng. J., 2019, 366: 192.

doi: 10.1016/j.cej.2019.02.056     URL    
[67]
Fard A K, Mckay G, Chamoun R, Rhadfi T, Preud’Homme H, Atieh M A. Chem. Eng. J., 2017, 317: 331.

doi: 10.1016/j.cej.2017.02.090     URL    
[68]
Shahzad A, Nawaz M, Moztahida M, Jang J, Tahir K, Kim J, Lim Y, Vassiliadis V S, Woo S H, Lee D S. Chem. Eng. J., 2019, 368: 400.

doi: 10.1016/j.cej.2019.02.160    
[69]
Zhang Q R, Du Q, Jiao T F, Zhang Z X, Wang S F, Sun Q N, Gao F M. Sci. Rep., 2013, 3: 2551.

doi: 10.1038/srep02551     URL    
[70]
Guo J X, Peng Q M, Fu H, Zou G D, Zhang Q R. J. Phys. Chem. C, 2015, 119(36): 20923.

doi: 10.1021/acs.jpcc.5b05426     URL    
[71]
Wang C, Wang Y, Ge R L, Song X D, Xing X Q, Jiang Q K, Lu H, Hao C, Guo X W, Gao Y N, Jiang D L. Chem. Eur. J., 2018, 24(3): 585.

doi: 10.1002/chem.201705405     URL    
[72]
Wang S H, Liu Y L, Lu Q F, Zhuang H P. J. Mol. Liq., 2020, 297: 7.
[73]
Ling L X, Fan M H, Wang B J, Zhang R G. Energy Environ. Sci., 2015, 8(11): 3109.

doi: 10.1039/C5EE02255J     URL    
[74]
Kim K H, Kabir E, Jahan S A. J. Hazard. Mater., 2016, 306: 376.

doi: S0304-3894(15)30231-4     pmid: 26826963
[75]
Shahzad A, Rasool K, Miran W, Nawaz M, Jang J, Mahmoud K A, Lee D S. J. Hazard. Mater., 2018, 344: 811.

doi: S0304-3894(17)30848-8     pmid: 29172167
[76]
Padak B, Wilcox J. Carbon, 2009, 47(12): 2855.

doi: 10.1016/j.carbon.2009.06.029     URL    
[77]
Xu H M, Jia J P, Guo Y F, Qu Z, Liao Y, Xie J K, Shangguan W F, Yan N Q. J. Hazard. Mater., 2018, 342: 69.

doi: 10.1016/j.jhazmat.2017.08.011     URL    
[78]
Ji W C, Shen Z M, Tang Q L, Yang B W, Fan M H. Chem. Eng. J., 2016, 289: 349.

doi: 10.1016/j.cej.2015.12.090     URL    
[79]
Zhang B K, Liu J, Yang Y J, Chang M. Chem. Eng. J., 2015, 280: 354.

doi: 10.1016/j.cej.2015.06.056     URL    
[80]
Chen M, Li F G, Hu L W, Yang T, Yang Q, Tao M X, Deng Y W. Environ. Eng. Sci., 2019, 36(10): 1307.

doi: 10.1089/ees.2019.0013     URL    
[81]
Guo X, Fei G T, Su H, Zhang L D. J. Phys. Chem. C, 2011, 115(5): 1608.

doi: 10.1021/jp1091653     URL    
[82]
Ying Y L, Liu Y, Wang X Y, Mao Y Y, Cao W, Hu P, Peng X S. ACS Appl. Mater. Interfaces, 2015, 7(3): 1795.

doi: 10.1021/am5074722     URL    
[83]
Zou G D, Guo J X, Peng Q M, Zhou A G, Zhang Q R, Liu B Z. J. Mater. Chem. A, 2016, 4(2): 489.

doi: 10.1039/C5TA07343J     URL    
[84]
Tang Y, Yang C H, Que W X. J. Adv. Dielect., 2018, 8(5): 1850035.

doi: 10.1142/S2010135X18500352     URL    
[85]
Xie X Q, Chen C, Zhang N, Tang Z R, Jiang J J, Xu Y J. Nat. Sustain., 2019, 2(9): 856.

doi: 10.1038/s41893-019-0373-4     URL    
[86]
Wan H Y, Nan L, Geng H K, Zhang W, Shi H H. Processes, 2021, 9(3): 524.

doi: 10.3390/pr9030524     URL    
[87]
Lei T, Sun C M. Proceedings of the 4th National Conference on Applied Geochemistry, 2012, 359.
(雷婷, 孙传敏. 第四届全国应用地球化学学术会议论文集, 2012, 359.).
[88]
Feng X F, Yu Z X, Long R X, Li X H, Shao L Y, Zeng H J, Zeng G Y, Zuo Y H. Sep. Purif. Technol., 2020, 253: 117525.

doi: 10.1016/j.seppur.2020.117525     URL    
[89]
Jiang D M, Yang Y H, Huang C T, Huang M Y, Chen J J, Rao T D, Ran X Y. J. Hazard. Mater., 2019, 373: 131.

doi: 10.1016/j.jhazmat.2019.01.096     URL    
[90]
Zhou J, Zhou H J, Zhang Y Z, Wu J, Zhang H M, Wang G Z, Li J X. Chem. Eng. J., 2020, 398: 125460.

doi: 10.1016/j.cej.2020.125460     URL    
[91]
Huang Y J, Yang L T, Zhao F, Guo G Y, Wu L S. J. Radioanal. Nucl. Chem., 2021, 327(2): 789.

doi: 10.1007/s10967-020-07562-2     URL    
[92]
Abojassim A A, Neama H H. Water Supply, 2020, 20(8): 3194.

doi: 10.2166/ws.2020.207     URL    
[93]
Haakonde T, Yabe J, Choongo K, Chongwe G, Islam M S. Mine Water Environ., 2020, 39(4): 735.

doi: 10.1007/s10230-020-00731-5     URL    
[94]
Wang L, Yuan L Y, Chen K, Zhang Y J, Deng Q H, Du S Y, Huang Q, Zheng L R, Zhang J, Chai Z F, Barsoum M W, Wang X K, Shi W Q. ACS Appl. Mater. Interfaces, 2016, 8(25): 16396.

doi: 10.1021/acsami.6b02989     URL    
[95]
Zhang Y J, Zhou Z J, Lan J H, Ge C C, Chai Z F, Zhang P H, Shi W Q. Appl. Surf. Sci., 2017, 426: 572.

doi: 10.1016/j.apsusc.2017.07.227     URL    
[96]
Wang Y H, Xue J M, Nie G, Guo X. Chem. Phys. Lett., 2020, 750: 137444.

doi: 10.1016/j.cplett.2020.137444     URL    
[97]
Attia L A, Youssef M A, Abdel Moamen O A. Sep. Sci. Technol., 2021, 56(2): 217.

doi: 10.1080/01496395.2019.1708111     URL    
[98]
Lu Z H, Hao Z Q, Wang J, Chen L. J. Ind. Eng. Chem., 2016, 34: 374.
[99]
Zhang P, Wang L, Yuan L Y, Lan J H, Chai Z F, Shi W Q. Chem. Eng. J., 2019, 370: 1200.

doi: 10.1016/j.cej.2019.03.286    
[100]
Zhang P C, Wang L, Du K, Wang S Y, Huang Z W, Yuan L Y, Li Z J, Wang H Q, Zheng L R, Chai Z F, Shi W Q. J. Hazard. Mater., 2020, 396: 122731.

doi: 10.1016/j.jhazmat.2020.122731     URL    
[101]
Zheng J M, Song L. Hangzhou Agricultural Science and Technology, 2006, 33.
(郑洁敏, 宋亮. 杭州农业科技, 2006, 33.).
[102]
Jun B M, Jang M, Park C M, Han J, Yoon Y. Nucl. Eng. Technol., 2020, 52(6): 1201.

doi: 10.1016/j.net.2019.11.020     URL    
[103]
Khan A R, Husnain S M, Shahzad F, Mujtaba-ul-Hassan S, Mehmood M, Ahmad J, Mehran M T, Rahman S. Dalton Trans., 2019, 48(31): 11803.

doi: 10.1039/C9DT01965K     URL    
[104]
Hassan M U, Lee S, Mehran M T, Shahzad F, Husnain S M, Ryu H J. J. Nucl. Mater., 2021, 543: 152566.

doi: 10.1016/j.jnucmat.2020.152566     URL    
[105]
Mu W J, Du S Z, Yu Q H, Li X L, Wei H Y, Yang Y C. Dalton Trans., 2018, 47(25): 8375.

doi: 10.1039/C8DT00917A     URL    
[106]
Jun B M, Park C M, Heo J, Yoon Y. J. Environ. Manag., 2020, 256: 109940.

doi: 10.1016/j.jenvman.2019.109940     URL    
[107]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23:4248.

doi: 10.1002/adma.201102306     URL    
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[3] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[4] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[5] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[6] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[7] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[8] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[9] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[10] 何安恩, 解姣姣, 苑春刚. 大气颗粒物重金属形态分析[J]. 化学进展, 2021, 33(9): 1627-1647.
[11] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[12] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[13] 陈冠益, 韩克旋, 刘彩霞, 旦增, 布多. 污泥中重金属处理方法[J]. 化学进展, 2021, 33(6): 998-1009.
[14] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[15] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.