化学进展 2021, Vol. 33 Issue (6): 1010-1025 DOI: 10.7536/PC200691 前一篇   后一篇

• 综述 •


李立清1, 吴盼旺1, 马杰2,3,*()   

  1. 1 江西理工大学 材料冶金化学学部 赣州 341000
    2 同济大学长江水环境教育部重点实验室 上海 200092
    3 上海污染控制与生态安全研究院 上海 200092
  • 收稿日期:2020-06-30 修回日期:2020-08-10 出版日期:2021-06-20 发布日期:2020-09-30
  • 通讯作者: 马杰

Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution

Liqing Li1, Panwang Wu1, Jie Ma2,3,*()   

  1. 1 Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology,Ganzhou 341000, China
    2 Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
    3 Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
  • Received:2020-06-30 Revised:2020-08-10 Online:2021-06-20 Published:2020-09-30
  • Contact: Jie Ma
  • About author:
    * Corresponding author e-mail:

近年来,随着工业的迅速发展,水污染危机是世界面临的主要威胁之一,开发新型环境功能材料和技术,实现水体污染物的高效去除是目前研究热点。双网络水凝胶(Double Network hydrogels)是具有三维网络结构的高分子聚合物,其机械性能优越,具备较高的强度,可以承受高水平的拉伸和压缩变形。低溶胀率使水凝胶可以容纳大量水并保持稳定的形态和网络结构。此外,由于其独特的交联方式,它还具有快速的自修复性能和显著的抗疲劳性能。具备众多优点的双网络水凝胶是一种有着巨大潜力的吸附材料,在水处理领域引起广泛关注。本文综述了双网络凝胶吸附剂的物化特性及其分类,以及近年来双网络凝胶吸附剂去除水体中重金属、抗生素和染料等污染物的应用进展。通过该综述,为双网络凝胶吸附剂的深入开发以及在水质净化中的工程应用提供新思路、新方法和新技术。

In recent years, with the rapid development of industry, the water pollution crisis is one of the major threats facing the world. The development of new environmentally functional materials and technologies to achieve efficient removal of water pollutants is a hot topic in the current research. Double network hydrogels are high molecular polymers with a three-dimensional network structure. They have superior mechanical properties with high strength, can withstand high levels of tensile and compression deformation. The low swelling rate allows the hydrogels to hold a large amount of water, but still maintains the stable morphological and network structures. In addition, due to their unique cross-linking, the hydrogels also have fast self-healing property and significant fatigue performance. The application effect of double network hydrogels as an adsorbent in the removal of heavy metal ions and other pollutants is significantly effective. Therefore, they are adsorption materials with great potential and have attracted widespread attention in the field of water treatment. This paper reviews the physicochemical properties and classifications of the double network hydrogels adsorbents, and their latest application progress to remove heavy metals, antibiotics, dyes and other pollutants from water. Through this review, new ideas, new methods and new technologies are provided for the in-depth development of double network hydrogels adsorbents and engineering applications in water purification.


1 Introduction

2 Properties

2.1 Mechanical properties

2.2 Swelling properties

2.3 Self-healing properties

3 Classifications

3.1 Organic-organic double network gel

3.2 Organic-inorganic double network gel

3.3 Modified double network gel

4 Removal of pollutants in water

4.1 Heavy metals

4.2 Dyes

4.3 Antibiotics

4.4 Other pollutants

5 Conclusion and outlook

图1 典型双网络水凝胶结构示意图[40]
Fig.1 Schematic diagram of standard Double Network hydrogels structure[40]. Copyright 2015, Royal Society of Chemistry
图2 双网络凝胶的分类
Fig.2 Classification of double network gels
图3 (a) CA/PAM双网水凝胶方案[92];(b)通过离子配位相互作用制备力学性能可调的gelatin/PAMAAc-Fe3+水凝胶的原理图和本研究中所用单体的化学结构[66];(c)使用中性聚合物作为第一个网络合成具有对比双网络结构的坚韧PHEA/PAMPS双网络凝胶的示意图[50];(d)温度敏感性且可回收Agar/PAM DN凝胶的制备[42]
Fig.3 (a) Scheme of CA/PAM double-network hydrogel[92]. Copyright 2015, Springer;(b) Schematics of preparation of gelatin/PAMAAc-Fe3+ hydrogel with tunable mechanical properties by ionic coordination interactions and the chemical structures of monomers used in this work[66]. Copyright 2019, Wiley Online Library;(c) Schematic illustration of the synthesis of tough PHEA/PAMPS DN gels with a contrast double-network structure using a neutral polymer as the first network[50]. Copyright 2012, Wiley Online Library;(d) Preparation of thermoresponsive and recoverable Agar/PAM DN gels[42]. Copyright 2013, Wiley Online Library
图4 (a) GO/PAA双网络凝胶的混凝-絮凝-沉降过程的方案和机理,以及氧化石墨烯与染料、重金属离子和纳米颗粒相互作用的机理[100];(b) 3D GO/PAA双网络形成机理示意图[105];(c) HAp自组装引入BC网络的示意图及BC-gel/HAp DN水凝胶的制备过程[106];(d) PSA/GO凝胶合成示意图[107]
Fig.4 (a) The scheme and mechanism of the coagulation-flocculation-sedimentation process form GO/PAA double network and the mechanism of the interaction of GO with dyes, heavy metal ions, and nanoparticles[100]. Copyright 2020, Wiley Online Library;(b) Schematic diagram of formation mechanism of 3D GO/PAA double network[105]. Copyright 2019, Taylor & Francis Group;(c) Schematic diagrams of the self-assembly of HAp into the BC network and the preparation process of the BC-GEL/HAp DN hydrogel [106]. Copyright 2017, Elsevier;(d) Schematic illustration of the synthesis of PSA/GO gel[107]. Copyright 2015, Elsevier
图5 (a) 一锅法制备agar-PAM/GO双网络水凝胶原理图[101];(b) Gelatin/PAA/GO 纳米复合双网络凝胶的制备和网络结构[57];(c) SA/PVA/GO水凝胶的制备[114];(d) CA/PAA/GO双网络凝胶制备示意图[33]
Fig.5 (a) Schematic of one-pot fabrication of agar-PAM/GO DN hydrogels[101]. Copyright 2016, Wiley Online Library;(b) Illustration of preparation and network structure of the Gelatin/PAM/GO NC-DN gel[57]. Copyright 2018, Elsevier;(c) Preparation route of the SA/PVA/GO hydrogels[114]. Copyright 2017, Royal Society of Chemistry;(d) Schematic illustration of CA/PAA/GO DNC gel preparation[33]. Copyright 2020, Elsevier
表1 各种双网络凝胶吸附剂对重金属离子的吸附比较
Table 1 The Comparison of Adsorption for heavy metal ions by various double network gel adsorbents
Year Double Network hydrogels Adsorbed pollutant Maximum adsorption capacity(mg/g) Regenerability Kinetic model Adsorption isotherm Adsorption thermodynamics adsorption mechanism ref
2012 PAA/SiO2 Cu(Ⅱ)
Cr2 O 7 2 -
- - Freundlich - Electrostatic interactions 31
2015 PVA/PAA Cd(Ⅱ)
After 5 adsorption-desorption cycles, the removal rate remained nearly 100% P2 Langmuir Spontaneous and endothermic Ion exchange 82
2015 PSA/GO Cd(Ⅱ)
After 4 cycles, the removal efficiency was maintained at about 85% P2 Langmuir Spontaneous and endothermic Electrostatic interactions and ion exchange 107
2016 Alginate/RGO Cu(Ⅱ)
Cr2 O 7 2 -
After 10 cycles, the adsorption capacities of Cu2+and Cr2 O 7 2 - were maintained at 92.12 mg/g and 48.23 mg/g, respectively - Langmuir Spontaneous and endothermic Electrostatic interactions 17
2016 N H 2 a -
Cd(Ⅱ) 256.40 After 5 cycles, the removal efficiency decreased slightly to 97.7% P2 Langmuir Spontaneous and endothermic Chemisorption 90
2017 CTSb/PAM Cd(Ⅱ)
After 5 cycles, the removal efficiency decreases by less than 3% P2 Langmuir Spontaneous and endothermic Ion exchange 87
2018 Cellulose/PAM Cd(Ⅱ)
After 10 cycles, the observed adsorption difference was negligible P2 Langmuir Spontaneous and endothermic Electrostatic interactions and ion exchange 88
2018 Jute/PAA Pb(Ⅱ)
After 5 cycles, the removal efficiency remained 81% and 94% respectively P2 Langmuir Spontaneous and endothermic Chemisorption 81
2018 PAA/HSc Pb(Ⅱ)
After 5 cycles, the adsorption capacity of the three decreased by only 7%, 3% and 1% respectively Elovich Langmuir-Freundlich Spontaneous and endothermic Coordination interaction and
electrostatic interactions
2018 PVA/PAMPS Pb(Ⅱ)
After 5 cycles, the removal efficiency remained 94% and 93%, respectively P2 Langmuir Spontaneous and endothermic Ion exchange
and complexation
2018 GO/PAA aerogeld Cu(Ⅱ) 390.34 After 7 cycles, the removal efficiency was still over 95% P2 Langmuir - - 130
2018 GO/SA Mn(Ⅱ) 56.49 After 7 cycles, the adsorption capacity remained unchanged at 18.11 mg/g P2 Freundlich Spontaneous and endothermic - 29
2019 RH-CTSe/ PAM Pb(Ⅱ)
After 5 cycles, the adsorption rate decreased by only 2.3%, 1.8% and 3.1%, respectively P2 Freundlich Spontaneous and endothermic Chelation or coordination interaction 32
2019 CMC/PEI Cr(Ⅵ) 312.46 After four cycles, the removal rate decreased by 8.70% P2 Freundlich Spontaneous and endothermic Electrostatic attraction, redox, coordination and sediment 28
2020 GO-CA/PAA Cd(Ⅱ) 119.98 After 5 cycles, the adsorption capacity of the adsorbent is almost not reduced P2 Langmuir Spontaneous and endothermic Ion exchange 33
2020 TR f /PAA Cr(Ⅲ)
After 7 cycles, the adsorption efficiency of Cr(Ⅲ), Fe(Ⅲ) and Pb(Ⅱ) decreased by 9.9%, 5.0% and 16.7% respectively P2 Freundlich - Chelation, coordination, ion
exchange and
Year Double Network hydrogels Adsorbed pollutant Maximum adsorption capacity(mg/g) Regenerability Kinetic model Adsorption isotherm Adsorption thermodynamics adsorption mechanism ref
2020 N H 2 g -GR/Alginate Cu(Ⅱ) 153.91 - P2 Langmuir - Chemisorption 76
2020 CTS/SA Pb(Ⅱ)
- P1,P2 Freundlich Spontaneous and endothermic Electrostatic interactions, coordination interaction 131
2020 SA/PAA/nZnh Pb(Ⅱ) 200.00 - P2 Freundlich Spontaneous and exothermic Chemisorption 109
表2 各种双网络凝胶吸附剂对染料的吸附比较
Table 2 The Comparison of Adsorption for dyes by various double network gel adsorbents
Year Double Network hydrogels Adsorbed pollutant Maximum adsorption capacity(mg/g) Regenerability Kinetic model Adsorption isotherm Adsorption thermodynamics adsorption mechanism ref
2013 GO-SA/PAM Cationic dyes and anionic dyes - - - - - - 14
2014 SA/SAPa RB4 245 After 5 sorption-desorption cycles, the adsorption capacity remained almost unchanged P1 Langmuir Spontaneous and endothermic - 137
2016 Alginate/GO MB 2300 After 10 cycles, the removal rate was reduced to 60.2% P2 Langmuir - Electrostatic interactions, hydrogen bond, hydrophobic interactions 93
2018 Alginate/PVAb MB 313.09 - P2 Langmuir Spontaneous and endothermic - 49
2018 Alginate/
MB 1124 After 5 cycles, the adsorption removal rate was slightly reduced P2 Langmuir - Electrostatic interactions 138
2018 PNIPAM@
Cationic dyes - - P2 Langmuir - Electrostatic interactions 122
2019 CA/PVA MB 1437.48 - P2 Langmuir Spontaneous and endothermic Electrostatic interactions 22
2019 starch/PVA/borax MB 144.68 - - - - Electrostatic interactions 121
2019 GO/PAA CV
- P2 Langmuir,
- Electrostatic interactions, π-π
2019 Alginate/PAM/OA-POSS MB 75.41 - P2 Redlich-Peterson Spontaneous and endothermic - 21
2020 GO/PAA MB - - - - - Electrostatic interactions, π-π
2020 GO/AAMd MB
Rh B
- After 10~14 cycles, the
adsorption efficiency remained almost unchanged
P2 - - Electrostatic interactions, π-π
2020 Starch/PAA MB
- P2 Freundlich - Electrostatic interactions 75
表3 各种双网络凝胶吸附剂对抗生素的吸附比较
Table 3 The Comparison of Adsorption for antibiotics by various double network gel adsorbents
Godiya C B, Cheng X, Li D W, Chen Z, Lu X L. J. Hazard. Mater., 2019, 364:28.

doi: 10.1016/j.jhazmat.2018.09.076     URL    
Fu F L, Wang Q. J. Environ. Manag., 2011, 92(3):407.

doi: 10.1016/j.jenvman.2010.11.011     URL    
Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Mariñas B J, Mayes A M. Nature, 2008, 452:301.

doi: 10.1038/nature06599     URL    
Ali I. Chem. Rev., 2012, 112:5073.

doi: 10.1021/cr300133d     URL    
Uddin M K. Chem. Eng. J., 2017, 308:438.

doi: 10.1016/j.cej.2016.09.029     URL    
Wang Y M, Peng C S, Padilla-Ortega E, Robledo-Cabrera A, López-Valdivieso A. J. Environ. Chem. Eng., 2020, 8:104031.

doi: 10.1016/j.jece.2020.104031     URL    
Siyal A A, Shamsuddin M R, Low A, Rabat N E. J. Environ. Manag., 2020, 254:109797.

doi: 10.1016/j.jenvman.2019.109797     URL    
Myung D, Waters D, Wiseman M, Duhamel P E, Noolandi J, Ta C N, Frank C W. Polym. Adv. Technol., 2008, 19:647.

doi: 10.1002/(ISSN)1099-1581     URL    
Zhu H, Yang X, Cranston E D, Zhu S P. Adv. Mater., 2016, 28:7652.

doi: 10.1002/adma.201601351    
Lei C S, Zhu X F, Zhu B C, Jiang C J, Le Y, Yu J G. J. Hazard. Mater., 2017, 321:801.

doi: 10.1016/j.jhazmat.2016.09.070     URL    
Brandl F, Sommer F, Goepferich A. Biomaterials, 2007, 28:134.

doi: 10.1016/j.biomaterials.2006.09.017     URL    
Vashist A, Vashist A, Gupta Y K, Ahmad S. J. Mater. Chem. B, 2014, 2:147.

doi: 10.1039/c3tb21016b     pmid: 32261602
Malda J, Visser J, Melchels F P, Jüngst T, Hennink W E, Dhert W J A, Groll J, Hutmacher D W. Adv. Mater., 2013, 25:5011.

doi: 10.1002/adma.201302042     URL    
Fan J C, Shi Z X, Lian M, Li H, Yin J. J. Mater. Chem. A, 2013, 1:7433.

doi: 10.1039/c3ta10639j     URL    
Tanaka Y, Gong J P, Osada Y. Prog. Polym. Sci., 2005, 30:1.

doi: 10.1016/j.progpolymsci.2004.11.003     URL    
Gong J P, Katsuyama Y, Kurokawa T, Osada Y. Adv. Mater., 2003, 15:1155.

doi: 10.1002/adma.200304907     URL    
Zhuang Y, Yu F, Chen H, Zheng J, Ma J, Chen J H. J. Mater. Chem. A, 2016, 4:10885.

doi: 10.1039/C6TA02738E     URL    
Tanaka Y, Kuwabara R, Na Y H, Kurokawa T, Gong J P, Osada Y. J. Phys. Chem. B, 2005, 109:11559.

doi: 10.1021/jp0500790     URL    
Na Y H, Tanaka Y, Kawauchi Y, Furukawa H, Sumiyoshi T, Gong J P, Osada Y. Macromolecules, 2006, 39:4641.

doi: 10.1021/ma060568d     URL    
Gong J P. Soft Matter, 2010, 6:2583.

doi: 10.1039/b924290b     URL    
Bahrami Z, Akbari A, Eftekhari-Sis B. Int. J. Biol. Macromol., 2019, 129:187.

doi: S0141-8130(18)34906-7     pmid: 30742927
Kong Y, Zhuang Y, Han Z Y, Yu J W, Shi B Y, Han K, Hao H T. J. Environ. Sci., 2019, 78:81.

doi: 10.1016/j.jes.2018.07.006     URL    
Sahoo S D, Prasad E. Soft Matter, 2020, 16:2075.

doi: 10.1039/C9SM02525A     URL    
Lei K, Li Z, Zhu D D, Sun C Y, Sun Y L, Yang C C, Zheng Z, Wang X L. J. Mater. Chem. B, 2020, 8:794.

doi: 10.1039/C9TB01679A     URL    
Tarashi S, Nazockdast H, Sodeifian G. Polymer, 2020, 188:122138.

doi: 10.1016/j.polymer.2019.122138     URL    
Bi S C, Wang P J, Hu S H, Li S K, Pang J H, Zhou Z Z, Sun G H, Huang L, Cheng X J, Xing S C, Chen X G. Carbohydr. Polym., 2019, 224:115176.

doi: 10.1016/j.carbpol.2019.115176     URL    
Ma J H, Luo J M, Liu Y T, Wei Y F, Cai T, Yu X W, Liu H, Liu C B, Crittenden J C. J. Mater. Chem. A, 2018, 6:20110.

doi: 10.1039/C8TA07250G     URL    
Song L, Liu F Q, Zhu C Q, Li A M. Chem. Eng. J., 2019, 369:641.

doi: 10.1016/j.cej.2019.03.126    
Yang X Z, Zhou T Z, Ren B Z, Hursthouse A, Zhang Y Z. Sci. Rep., 2018, 8:10717.

doi: 10.1038/s41598-018-29133-y     URL    
Zhang S Z, Liu C Z, Yuan Y K, Fan M H, Zhang D D, Wang D F, Xu Y. Bioresour. Technol., 2020, 311:123520.

doi: 10.1016/j.biortech.2020.123520     URL    
Fei C L, Huang D Q, Feng S. J. Polym. Res., 2012, 19:9929.

doi: 10.1007/s10965-012-9929-y     URL    
Ma J H, Li T, Liu Y T, Cai T, Wei Y F, Dong W Y, Chen H. Bioresour. Technol., 2019,290.
Tang J X, Huang J M, Zhou G Y, Liu S H. J. Chem. Thermodyn., 2020, 141:105918.

doi: 10.1016/j.jct.2019.105918     URL    
Chen Q, Zhu L, Chen H, Yan H L, Huang L N, Yang J, Zheng J. Adv. Funct. Mater., 2015, 25:1598.

doi: 10.1002/adfm.201404357     URL    
Yan X Q, Chen Q, Zhu L, Chen H, Wei D D, Chen F, Tang Z Q, Yang J, Zheng J. J. Mater. Chem. B, 2017, 5:7683.

doi: 10.1039/C7TB01780D     URL    
Wei D D, Yang J, Zhu L, Chen F, Tang Z Q, Qin G, Chen Q. Polym. Test., 2018, 69:167.

doi: 10.1016/j.polymertesting.2018.05.025     URL    
Zhou L J, Pei X J, Fang K, Zhang R, Fu J. Polymer, 2020, 192:122319.

doi: 10.1016/j.polymer.2020.122319     URL    
Zheng Q F, Zhao L Y, Wang J, Wang S, Liu Y X, Liu X F. Colloids Surfaces A: Physicochem. Eng. Aspects, 2020, 589:124402.

doi: 10.1016/j.colsurfa.2019.124402     URL    
Zhao L Y, Zheng Q F, Liu Y X, Wang S, Wang J, Liu X F. Eur. Polym. J., 2020, 124:109474.

doi: 10.1016/j.eurpolymj.2020.109474     URL    
Chen Q, Chen H, Zhu L, Zheng J. Macromol. Chem. Phys., 2016, 217:1017.

doi: 10.1002/macp.v217.9     URL    
Sun T L, Kurokawa T, Kuroda S, Ihsan A B, Akasaki T, Sato K, Haque M A, Nakajima T, Gong J P. Nat. Mater., 2013, 12:932.

doi: 10.1038/nmat3713     URL    
Chen Q, Zhu L, Zhao C, Wang Q M, Zheng J. Adv. Mater., 2013, 25:4171.

doi: 10.1002/adma.201300817     URL    
Sun J Y, Zhao X H, Illeperuma W R K, Chaudhuri O, Oh K H, Mooney D J, Vlassak J J, Suo Z G.. Nature, 2012, 489:133.

doi: 10.1038/nature11409     URL    
Yu H C, Li C Y, Du M, Song Y H, Wu Z L, Zheng Q. Macromolecules, 2019, 52:629.

doi: 10.1021/acs.macromol.8b02269     URL    
Gong J P. Science, 2014, 344:161.

doi: 10.1126/science.1252389     URL    
Chen Q, Zhu L, Huang L N, Chen H, Xu K, Tan Y, Wang P X, Zheng J. Macromolecules, 2014, 47:2140.

doi: 10.1021/ma402542r     URL    
Webber R E, Creton C, Brown H R, Gong J P. Macromolecules, 2007, 40:2919.

doi: 10.1021/ma062924y     URL    
Zhuang Y, Yu F, Ma J, Chen J H. J. Colloid Interface Sci., 2017, 507:250.

doi: 10.1016/j.jcis.2017.07.033     URL    
Liu C Y, Liu H Y, Xiong T H, Xu A R, Pan B L, Tang K Y. Polymers, 2018, 10:835.

doi: 10.3390/polym10080835     URL    
Nakajima T, Sato H, Zhao Y, Kawahara S, Kurokawa T, Sugahara K, Gong J P. Adv. Funct. Mater., 2012, 22:4426.

doi: 10.1002/adfm.v22.21     URL    
Nakajima T, Fukuda Y, Kurokawa T, Sakai T, Chung U I, Gong J P. ACS Macro Lett., 2013, 2:518.

doi: 10.1021/mz4002047     URL    
Zhang Y, Liu Y, Wang X, Sun Z, Ma J, Wu T, Xing F, Gao J. Carbohydr. Polym., 2014, 101:392.

doi: 10.1016/j.carbpol.2013.09.066     URL    
Yuan N X, Xu L, Wang H L, Fu Y P, Zhang Z, Liu L, Wang C L, Zhao J H, Rong J H. ACS Appl. Mater. Interfaces, 2016, 8:34034.

doi: 10.1021/acsami.6b12243     URL    
Zhang H J, Sun T L, Zhang A K, Ikura Y, Nakajima T, Nonoyama T, Kurokawa T, Ito O, Ishitobi H, Gong J P. Adv. Mater., 2016, 28:4884.

doi: 10.1002/adma.v28.24     URL    
Chen H, Liu Y L, Ren B P, Zhang Y X, Ma J, Xu L J, Chen Q, Zheng J. Adv. Funct. Mater., 2017, 27:1703086.

doi: 10.1002/adfm.v27.44     URL    
Chen W P, Hao D Z, Hao W J, Guo X L, Jiang L. ACS Appl. Mater. Interfaces, 2018, 10(1):1258.

doi: 10.1021/acsami.7b17118     URL    
Yan X Q, Yang J, Chen F, Zhu L, Tang Z Q, Qin G, Chen Q, Chen G M. Compos. Sci. Technol., 2018, 163:81.

doi: 10.1016/j.compscitech.2018.05.011     URL    
Li Z Q, Shen J F, Ma H W, Lu X, Shi M, Li N, Ye M X. Mater. Sci. Eng.: C, 2013, 33:1951.

doi: 10.1016/j.msec.2013.01.004     URL    
Huang W S, Shen J F, Li N, Ye M X. Polym. Eng. Sci., 2015, 55:1361.

doi: 10.1002/pen.24076     URL    
Mohammadi S, Keshvari H, Eskandari M, Faghihi S. React. Funct. Polym., 2016, 106:120.

doi: 10.1016/j.reactfunctpolym.2016.07.015     URL    
Dai X Y, Zhang Y Y, Gao L N, Bai T, Wang W, Cui Y L, Liu W G. Adv. Mater., 2015, 27:3566.

doi: 10.1002/adma.v27.23     URL    
Kamata H, Akagi Y, Kayasuga-Kariya Y, Chung U I, Sakai T. Science, 2014, 343:873.

doi: 10.1126/science.1247811     URL    
Ducrot E, Chen Y, Bulters M, Sijbesma R P, Creton C. Science, 2014, 344:186.

doi: 10.1126/science.1248494     URL    
Cong H P, Wang P, Yu S H. Chem. Mater., 2013, 25:3357.

doi: 10.1021/cm401919c     URL    
Zhang H J, Zhai D D, He Y. RSC Adv., 2014, 4:44600.

doi: 10.1039/C4RA07576E     URL    
Fan X L, Liu H, Wang J R, Tang K Y. J. Appl. Polym. Sci., 2020, 137:48805.

doi: 10.1002/app.v137.24     URL    
Nakajima T, Furukawa H, Tanaka Y, Kurokawa T, Osada Y, Gong J P. Macromolecules, 2009, 42:2184.

doi: 10.1021/ma802148p     URL    
Zhao Y, Nakajima T, Yang J J, Kurokawa T, Liu J, Lu J S, Mizumoto S, Sugahara K, Kitamura N, Yasuda K, Daniels A U D, Gong J P. Adv. Mater., 2014, 26:436.

doi: 10.1002/adma.201303387     URL    
Chen Q, Wei D D, Chen H, Zhu L, Jiao C C, Liu G, Huang L N, Yang J, Wang L B, Zheng J. Macromolecules, 2015, 48:8003.

doi: 10.1021/acs.macromol.5b01938     URL    
Chen Q, Chen H, Zhu L, Zheng J. J. Mater. Chem. B, 2015, 3:3654.

doi: 10.1039/C5TB00123D     URL    
Haque M A, Kurokawa T, Kamita G, Gong J P. Macromolecules, 2011, 44:8916.

doi: 10.1021/ma201653t     URL    
Wu D B, Xu J Y, Chen Y, Yi M R, Wang Q G. Carbohydr. Polym., 2018, 181:167.

doi: 10.1016/j.carbpol.2017.10.076     URL    
Lin P, Ma S H, Wang X L, Zhou F. Adv. Mater., 2015, 27:2054.

doi: 10.1002/adma.v27.12     URL    
Kang M M, Liu S L, Oderinde O, Yao F, Fu G D, Zhang Z H. Mater. Des., 2018, 148:96.

doi: 10.1016/j.matdes.2018.03.047     URL    
Sarmah D, Karak N. Carbohydr. Polym., 2020, 242:116320.

doi: 10.1016/j.carbpol.2020.116320     URL    
Sun Y R, Zhou T, Li W Y, Yu F, Ma J. Chemosphere, 2020, 241:125110.

doi: 10.1016/j.chemosphere.2019.125110     URL    
Gong Z Y, Zhang G P, Zeng X L, Li J H, Li G, Huang W P, Sun R, Wong C. ACS Appl. Mater. Interfaces, 2016, 8:24030.

doi: 10.1021/acsami.6b05627     URL    
Zhang H J, Xia H S, Zhao Y. ACS Macro Lett., 2012, 1:1233.

doi: 10.1021/mz300451r     URL    
Tuncaboylu D C, Sari M, Oppermann W, Okay O. Macromolecules, 2011, 44:4997.

doi: 10.1021/ma200579v     URL    
Taylor D L, in het Panhuis M. Adv. Mater., 2016, 28:9060.

doi: 10.1002/adma.v28.41     URL    
Zhou G Y, Luo J M, Liu C B, Chu L, Crittenden J. Water Res., 2018, 131:246.

doi: 10.1016/j.watres.2017.12.067     URL    
Chu L, Liu C B, Zhou G Y, Xu R, Tang Y H, Zeng Z B, Luo S L. J. Hazard. Mater., 2015, 300:153.

doi: 10.1016/j.jhazmat.2015.06.070     URL    
Yue Y Y, Wang X H, Han J Q, Yu L, Chen J Q, Wu Q L, Jiang J C. Carbohydr. Polym., 2019, 206:289.

doi: 10.1016/j.carbpol.2018.10.105     URL    
Peak C W, Wilker J J, Schmidt G. Colloid Polym. Sci., 2013, 291:2031.

doi: 10.1007/s00396-013-3021-y     URL    
Gao G R, Du G L, Cheng Y J, Fu J. J. Mater. Chem. B, 2014, 2:1539.

doi: 10.1039/c3tb21554g     URL    
Nakayama A, Kakugo A, Gong J P, Osada Y, Takai M, Erata T, Kawano S. Adv. Funct. Mater., 2004, 14:1124.

doi: 10.1002/(ISSN)1616-3028     URL    
Ma J H, Zhou G Y, Chu L, Liu Y T, Liu C B, Luo S L, Wei Y F. ACS Sustainable Chem. Eng., 2017, 5:843.

doi: 10.1021/acssuschemeng.6b02181     URL    
Ma J H, Liu Y T, Ali O, Wei Y F, Zhang S Q, Zhang Y M, Cai T, Liu C B, Luo S L. J. Hazard. Mater., 2018, 344:1034.

doi: 10.1016/j.jhazmat.2017.11.041     URL    
Yu F, Cui T R, Yang C F, Dai X H, Ma J. Chemosphere, 2019, 237:124417.

doi: 10.1016/j.chemosphere.2019.124417     URL    
Zhou G Y, Liu C B, Chu L, Tang Y H, Luo S L. Bioresour. Technol., 2016, 219:451.

doi: 10.1016/j.biortech.2016.07.038     URL    
Li L Q, Zhao J H, Sun Y R, Yu F, Ma J. Chem. Eng. J., 2019, 372:1091.

doi: 10.1016/j.cej.2019.05.007     URL    
Wang J L, Wei J H, Su S H, Qiu J J, Wang S R. J. Mater. Sci., 2015, 50:5458.

doi: 10.1007/s10853-015-9091-0     URL    
Zhuang Y, Yu F, Chen J H, Ma J. J. Environ. Chem. Eng., 2016, 4:147.

doi: 10.1016/j.jece.2015.11.014     URL    
Yasui T, Kamio E, Matsuyama H. Langmuir, 2018, 34:10622.

doi: 10.1021/acs.langmuir.8b01930     URL    
Liang X Q, Wu X, Hu J, Zhao J J, Zeng X C. Commun. Phys., 2018, 1:74.

doi: 10.1038/s42005-018-0078-4     URL    
Yu F, Sun S N, Han S, Zheng J, Ma J. Chem. Eng. J., 2016, 285:588.

doi: 10.1016/j.cej.2015.10.039     URL    
Yusuf M, Elfghi F M, Zaidi S A, Abdullah E C, Khan M A. RSC Adv., 2015, 5:50392.

doi: 10.1039/C5RA07223A     URL    
Liu H Y, Kuila T, Kim N H, Ku B C, Lee J H. J. Mater. Chem. A, 2013, 1:3739.

doi: 10.1039/c3ta01228j     URL    
Huang P, Chen W F, Yan L F. Nanoscale, 2013, 5:6034.

doi: 10.1039/c3nr00214d     pmid: 23715534
Lin S Y, Li Q L, Zhong Y J, Li J, Zhao X L, Wang M, Zhao G K, Pan J L, Zhu H W. Glob. Challenges, 2020, 4:1900051.
Zhu P, Hu M, Deng Y H, Wang C Y. Adv. Eng. Mater., 2016, 18:1799.

doi: 10.1002/adem.201600272     URL    
Zhang Q, Hou Q X, Huang G X, Fan Q. Environ. Sci. Pollut. Res., 2020, 27:190.

doi: 10.1007/s11356-019-06683-w     URL    
Kamio E, Yasui T, Iida Y, Gong J P, Matsuyama H. Adv. Mater., 2017, 29:1704118.

doi: 10.1002/adma.v29.47     URL    
Li Y S, Hu X M, Cheng W M, Shao Z A, Xue D, Zhao Y Y, Lu W. Fuel, 2020, 263:116779.

doi: 10.1016/j.fuel.2019.116779     URL    
Han Q Q, Li W X, Zhou Z Y, Fang Z, Chen L, Xu Z W, Qian X M. Polym. -Plast. Technol. Mater., 2019, 58:1638.
Ran J B, Jiang P, Liu S N, Sun G L, Yan P, Shen X Y, Tong H. Mater. Sci. Eng.: C , 2017, 78:130.

doi: 10.1016/j.msec.2017.04.062     URL    
Xu R, Zhou G Y, Tang Y H, Chu L, Liu C B, Zeng Z B, Luo S L. Chem. Eng. J., 2015, 275:179.

doi: 10.1016/j.cej.2015.04.040     URL    
Wang J J, Zhang N, Jiang C Y, Zhang C S. J. Mater. Res., 2018, 33:3898.

doi: 10.1557/jmr.2018.385     URL    
Wang B, Chi H J, Hou Y T, Wang S X, Feng S J, Lv Y, Li Q R, Li M L. Polym. -Plast. Technol. Mater., 2020, 59:1010.
Nurly H, Yan Q, Song B, Shi Y S. Eur. Polym. J., 2019, 110:114.

doi: 10.1016/j.eurpolymj.2018.11.006     URL    
Pourhashem S, Saba F, Duan J Z, Rashidi A, Guan F, Nezhad E G, Hou B R. J. Ind. Eng. Chem., 2020, 88:29.

doi: 10.1016/j.jiec.2020.04.029     URL    
Zhu Y W, Murali S, Cai W W, Li X S, Suk J W, Potts J R, Ruoff R S. Adv. Mater., 2010, 22:3906.

doi: 10.1002/adma.201001068     URL    
Wang Q, Hou R X, Cheng Y J, Fu J. Soft Matter, 2012, 8:6048.

doi: 10.1039/c2sm07233e     URL    
Zhuang Y, Kong Y, Han K, Hao H T, Shi B Y. New J. Chem., 2017, 41:15127.

doi: 10.1039/C7NJ03392C     URL    
Srivastava N K, Majumder C B. J. Hazard. Mater., 2008, 151:1.

pmid: 17997034
Sud D, Mahajan G, Kaur M. Bioresour. Technol., 2008, 99:6017.

doi: 10.1016/j.biortech.2007.11.064     URL    
Zare E N, Motahari A, Sillanpää M. Environ. Res., 2018, 162:173.

doi: 10.1016/j.envres.2017.12.025     URL    
Carolin C F, Kumar P S, Saravanan A, Joshiba G J, Naushad M. J. Environ. Chem. Eng., 2017, 5:2782.

doi: 10.1016/j.jece.2017.05.029     URL    
Khan M, Lo I M C. Water Res., 2016, 106:259.

doi: 10.1016/j.watres.2016.10.008     URL    
Peralta Ramos M L, González J A, Albornoz S G, Pérez C J, Villanueva M E, Giorgieri S A, Copello G J. Chem. Eng. J., 2016, 285:581.

doi: 10.1016/j.cej.2015.10.035     URL    
Qin Y, Wang J P, Qiu C, Xu X M, Jin Z Y. J. Agric. Food Chem., 2019, 67:3966.

doi: 10.1021/acs.jafc.8b05147     URL    
Zhang R, Peng H W, Zhou T X, Li M, Guo X H, Yao Y. Aust. J. Chem., 2018, 71:846.

doi: 10.1071/CH18228     URL    
Wang Y Z, Wang W B, Wang A Q. Chem. Eng. J., 2013, 228:132.

doi: 10.1016/j.cej.2013.04.090     URL    
Yu F, Li Y, Ma J.. New Polymer Nanocomposites for Environmental Remediation. Amsterdam:Elsevier, 2018: 47.
Zhang M Y, Song L H, Jiang H F, Li S, Shao Y F, Yang J Q, Li J F. J. Mater. Chem. A, 2017, 5:3434.

doi: 10.1039/C6TA10513K     URL    
Areal M P, Arciniegas M L, Horst F, Lassalle V, Sánchez F H, Alvarez V A, Gonzalez J S. J. Polym. Environ., 2018, 26:3129.

doi: 10.1007/s10924-018-1197-4     URL    
Zhang S J, Shi Q T, Christodoulatos C, Meng X G. Chemosphere, 2019, 233:405.

doi: 10.1016/j.chemosphere.2019.05.190     URL    
Hadi P, Barford J, McKay G. Environ. Sci. Technol., 2013, 47(15):8248.
Ma J H, Zhang Y M, Tang Y H, Wei Y F, Liu Y T, Liu C B. Water Sci. Technol., 2018, 78:982.

doi: 10.2166/wst.2018.380     URL    
Han Q Q, Chen L, Li W X, Zhou Z Y, Fang Z, Xu Z W, Qian X M. Environ. Sci. Pollut. Res., 2018, 25:34438.

doi: 10.1007/s11356-018-3409-9     URL    
Tang S X, Yang J Y, Lin L Z, Peng K L, Chen Y, Jin S H, Yao W S. Chem. Eng. J., 2020, 393:124728.

doi: 10.1016/j.cej.2020.124728     URL    
Forgacs E, Cserháti T, Oros G. Environ. Int., 2004, 30:953.

pmid: 15196844
Attia A A, Rashwan W E, Khedr S A. Dye. Pigment., 2006, 69:128.

doi: 10.1016/j.dyepig.2004.07.009     URL    
Hameed B H, Ahmad A A, Aziz N. Chem. Eng. J., 2007, 133:195.

doi: 10.1016/j.cej.2007.01.032     URL    
Mall I D, Srivastava V C, Agarwal N K. Dye. Pigment., 2006, 69:210.

doi: 10.1016/j.dyepig.2005.03.013     URL    
Srivastava S, Sinha R, Roy D. Aquat. Toxicol., 2004, 66:319.

pmid: 15129773
Dhanapal V, Subramanian K. Carbohydr. Polym., 2014, 108:65.

doi: 10.1016/j.carbpol.2014.03.013     URL    
Zhang P B, Tang A Q, Wang Z H, Lu J Y, Zhu B K, Zhu L P. Chin. J. Polym. Sci., 2018, 36:1251.

doi: 10.1007/s10118-018-2163-2     URL    
Li W X, Cao J, Xiong W P, Yang Z H, Sun S W, Jia M Y, Xu Z Y. Chem. Eng. J., 2020, 392:124844.

doi: 10.1016/j.cej.2020.124844     URL    
Michael I, Rizzo L, McArdell C S, Manaia C M, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D. Water Res., 2013, 47:957.

doi: 10.1016/j.watres.2012.11.027     pmid: 23266388
Luo Y, Mao D Q, Rysz M, Zhou Q X, Zhang H J, Xu L, Alvarez P J J. Environ. Sci. Technol., 2010, 44:7220.

doi: 10.1021/es100233w     pmid: 20509603
Homem V, Santos L. J. Environ. Manag., 2011, 92:2304.

doi: 10.1016/j.jenvman.2011.05.023     URL    
Gao Y, Li Y, Zhang L, Huang H, Hu J J, Shah S M, Su X G. J. Colloid Interface Sci., 2012, 368:540.

doi: 10.1016/j.jcis.2011.11.015     URL    
Rivera-Utrilla J, Sánchez-Polo M, Ferro-García M Á, Prados-Joya G, Ocampo-Pérez R. Chemosphere, 2013, 93:1268.

doi: 10.1016/j.chemosphere.2013.07.059     pmid: 24025536
Ma J, Sun Y R, Zhang M Z, Yang M X, Gong X, Yu F, Zheng J. Environ. Sci. Technol., 2017, 51:12283.

doi: 10.1021/acs.est.7b02227     URL    
Fares M M, Al-Rub F A A, Mohammad A R. ACS Omega, 2020, 5:4457.

doi: 10.1021/acsomega.9b03636     pmid: 32175493
Busca G, Berardinelli S, Resini C, Arrighi L. J. Hazard. Mater., 2008, 160:265.

doi: 10.1016/j.jhazmat.2008.03.045     URL    
Öztürk H, Barşçı S, Turkay O, Veli S. J. Environ. Eng., 2019, 145:04019014.

doi: 10.1061/(ASCE)EE.1943-7870.0001514     URL    
Sun Y B, Shao D D, Chen C L, Yang S B, Wang X K. Environ. Sci. Technol., 2013, 47:9904.

doi: 10.1021/es401174n     URL    
Özkahraman B, Özbaş Z. J. Polym. Environ., 2020, 28:689.

doi: 10.1007/s10924-019-01636-3     URL    
Zhao P, Zhang W, Kaneti Y V, Azhar A, Alshehri A A, Yamauchi Y, Hu M. Bull. Chem. Soc. Jpn., 2018, 91:1357.

doi: 10.1246/bcsj.20180083     URL    
[1] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[2] 胡泽浩, 陈婷, 徐彦乔, 江伟辉, 谢志翔. 表面包覆策略:提高全无机铯铅卤钙钛矿纳米晶的稳定性及其在照明显示领域的应用[J]. 化学进展, 2021, 33(9): 1614-1626.
[3] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[4] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[5] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[6] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[7] 张静, 王定祥, 张宏龙. 高价锰、铁去除水中新兴有机污染物[J]. 化学进展, 2021, 33(7): 1201-1211.
[8] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[9] 胡豪, 何云鹏, 杨水金. 多酸@金属-有机骨架材料的制备及其在废水处理中的应用[J]. 化学进展, 2021, 33(6): 1026-1034.
[10] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[11] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[12] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[13] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[14] 朱继秀, 陈巧芬, 倪梯铜, 陈爱民, 邬建敏. 气敏新材料MXenes在呼出气体传感器中的应用[J]. 化学进展, 2021, 33(2): 232-242.
[15] 朱继秀, 陈巧芬, 倪梯铜, 陈爱民, 邬建敏. 气敏新材料MXenes在呼出气体传感器中的应用[J]. 化学进展, 2021, 33(2): 232-242.