English
新闻公告
More
化学进展 2021, Vol. 33 Issue (6): 1010-1025 DOI: 10.7536/PC200691 前一篇   后一篇

• 综述 •

双网络凝胶吸附剂的构建及其去除水中污染物的应用

李立清1, 吴盼旺1, 马杰2,3,*()   

  1. 1 江西理工大学 材料冶金化学学部 赣州 341000
    2 同济大学长江水环境教育部重点实验室 上海 200092
    3 上海污染控制与生态安全研究院 上海 200092
  • 收稿日期:2020-06-30 修回日期:2020-08-10 出版日期:2021-06-20 发布日期:2020-09-30
  • 通讯作者: 马杰

Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution

Liqing Li1, Panwang Wu1, Jie Ma2,3,*()   

  1. 1 Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology,Ganzhou 341000, China
    2 Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
    3 Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
  • Received:2020-06-30 Revised:2020-08-10 Online:2021-06-20 Published:2020-09-30
  • Contact: Jie Ma
  • About author:
    * Corresponding author e-mail:

近年来,随着工业的迅速发展,水污染危机是世界面临的主要威胁之一,开发新型环境功能材料和技术,实现水体污染物的高效去除是目前研究热点。双网络水凝胶(Double Network hydrogels)是具有三维网络结构的高分子聚合物,其机械性能优越,具备较高的强度,可以承受高水平的拉伸和压缩变形。低溶胀率使水凝胶可以容纳大量水并保持稳定的形态和网络结构。此外,由于其独特的交联方式,它还具有快速的自修复性能和显著的抗疲劳性能。具备众多优点的双网络水凝胶是一种有着巨大潜力的吸附材料,在水处理领域引起广泛关注。本文综述了双网络凝胶吸附剂的物化特性及其分类,以及近年来双网络凝胶吸附剂去除水体中重金属、抗生素和染料等污染物的应用进展。通过该综述,为双网络凝胶吸附剂的深入开发以及在水质净化中的工程应用提供新思路、新方法和新技术。

In recent years, with the rapid development of industry, the water pollution crisis is one of the major threats facing the world. The development of new environmentally functional materials and technologies to achieve efficient removal of water pollutants is a hot topic in the current research. Double network hydrogels are high molecular polymers with a three-dimensional network structure. They have superior mechanical properties with high strength, can withstand high levels of tensile and compression deformation. The low swelling rate allows the hydrogels to hold a large amount of water, but still maintains the stable morphological and network structures. In addition, due to their unique cross-linking, the hydrogels also have fast self-healing property and significant fatigue performance. The application effect of double network hydrogels as an adsorbent in the removal of heavy metal ions and other pollutants is significantly effective. Therefore, they are adsorption materials with great potential and have attracted widespread attention in the field of water treatment. This paper reviews the physicochemical properties and classifications of the double network hydrogels adsorbents, and their latest application progress to remove heavy metals, antibiotics, dyes and other pollutants from water. Through this review, new ideas, new methods and new technologies are provided for the in-depth development of double network hydrogels adsorbents and engineering applications in water purification.

Contents

1 Introduction

2 Properties

2.1 Mechanical properties

2.2 Swelling properties

2.3 Self-healing properties

3 Classifications

3.1 Organic-organic double network gel

3.2 Organic-inorganic double network gel

3.3 Modified double network gel

4 Removal of pollutants in water

4.1 Heavy metals

4.2 Dyes

4.3 Antibiotics

4.4 Other pollutants

5 Conclusion and outlook

()
图1 典型双网络水凝胶结构示意图[40]
Fig.1 Schematic diagram of standard Double Network hydrogels structure[40]. Copyright 2015, Royal Society of Chemistry
图2 双网络凝胶的分类
Fig.2 Classification of double network gels
图3 (a) CA/PAM双网水凝胶方案[92];(b)通过离子配位相互作用制备力学性能可调的gelatin/PAMAAc-Fe3+水凝胶的原理图和本研究中所用单体的化学结构[66];(c)使用中性聚合物作为第一个网络合成具有对比双网络结构的坚韧PHEA/PAMPS双网络凝胶的示意图[50];(d)温度敏感性且可回收Agar/PAM DN凝胶的制备[42]
Fig.3 (a) Scheme of CA/PAM double-network hydrogel[92]. Copyright 2015, Springer;(b) Schematics of preparation of gelatin/PAMAAc-Fe3+ hydrogel with tunable mechanical properties by ionic coordination interactions and the chemical structures of monomers used in this work[66]. Copyright 2019, Wiley Online Library;(c) Schematic illustration of the synthesis of tough PHEA/PAMPS DN gels with a contrast double-network structure using a neutral polymer as the first network[50]. Copyright 2012, Wiley Online Library;(d) Preparation of thermoresponsive and recoverable Agar/PAM DN gels[42]. Copyright 2013, Wiley Online Library
图4 (a) GO/PAA双网络凝胶的混凝-絮凝-沉降过程的方案和机理,以及氧化石墨烯与染料、重金属离子和纳米颗粒相互作用的机理[100];(b) 3D GO/PAA双网络形成机理示意图[105];(c) HAp自组装引入BC网络的示意图及BC-gel/HAp DN水凝胶的制备过程[106];(d) PSA/GO凝胶合成示意图[107]
Fig.4 (a) The scheme and mechanism of the coagulation-flocculation-sedimentation process form GO/PAA double network and the mechanism of the interaction of GO with dyes, heavy metal ions, and nanoparticles[100]. Copyright 2020, Wiley Online Library;(b) Schematic diagram of formation mechanism of 3D GO/PAA double network[105]. Copyright 2019, Taylor & Francis Group;(c) Schematic diagrams of the self-assembly of HAp into the BC network and the preparation process of the BC-GEL/HAp DN hydrogel [106]. Copyright 2017, Elsevier;(d) Schematic illustration of the synthesis of PSA/GO gel[107]. Copyright 2015, Elsevier
图5 (a) 一锅法制备agar-PAM/GO双网络水凝胶原理图[101];(b) Gelatin/PAA/GO 纳米复合双网络凝胶的制备和网络结构[57];(c) SA/PVA/GO水凝胶的制备[114];(d) CA/PAA/GO双网络凝胶制备示意图[33]
Fig.5 (a) Schematic of one-pot fabrication of agar-PAM/GO DN hydrogels[101]. Copyright 2016, Wiley Online Library;(b) Illustration of preparation and network structure of the Gelatin/PAM/GO NC-DN gel[57]. Copyright 2018, Elsevier;(c) Preparation route of the SA/PVA/GO hydrogels[114]. Copyright 2017, Royal Society of Chemistry;(d) Schematic illustration of CA/PAA/GO DNC gel preparation[33]. Copyright 2020, Elsevier
表1 各种双网络凝胶吸附剂对重金属离子的吸附比较
Table 1 The Comparison of Adsorption for heavy metal ions by various double network gel adsorbents
Year Double Network hydrogels Adsorbed pollutant Maximum adsorption capacity(mg/g) Regenerability Kinetic model Adsorption isotherm Adsorption thermodynamics adsorption mechanism ref
2012 PAA/SiO2 Cu(Ⅱ)
Cr2 O 7 2 -
690.00
19.10
- - Freundlich - Electrostatic interactions 31
2015 PVA/PAA Cd(Ⅱ)
Pb(Ⅱ)
194.99
115.88
After 5 adsorption-desorption cycles, the removal rate remained nearly 100% P2 Langmuir Spontaneous and endothermic Ion exchange 82
2015 PSA/GO Cd(Ⅱ)
Mn(Ⅱ)
238.30
165.50
After 4 cycles, the removal efficiency was maintained at about 85% P2 Langmuir Spontaneous and endothermic Electrostatic interactions and ion exchange 107
2016 Alginate/RGO Cu(Ⅱ)
Cr2 O 7 2 -
169.50
72.46
After 10 cycles, the adsorption capacities of Cu2+and Cr2 O 7 2 - were maintained at 92.12 mg/g and 48.23 mg/g, respectively - Langmuir Spontaneous and endothermic Electrostatic interactions 17
2016 N H 2 a -
Starch/PAA
Cd(Ⅱ) 256.40 After 5 cycles, the removal efficiency decreased slightly to 97.7% P2 Langmuir Spontaneous and endothermic Chemisorption 90
2017 CTSb/PAM Cd(Ⅱ)
Cu(Ⅱ)
Pb(Ⅱ)
86.00
99.44
138.41
After 5 cycles, the removal efficiency decreases by less than 3% P2 Langmuir Spontaneous and endothermic Ion exchange 87
2018 Cellulose/PAM Cd(Ⅱ)
Cu(Ⅱ)
Pb(Ⅱ)
198.48
138.90
382.80
After 10 cycles, the observed adsorption difference was negligible P2 Langmuir Spontaneous and endothermic Electrostatic interactions and ion exchange 88
2018 Jute/PAA Pb(Ⅱ)
Cd(Ⅱ)
542.9
401.7
After 5 cycles, the removal efficiency remained 81% and 94% respectively P2 Langmuir Spontaneous and endothermic Chemisorption 81
2018 PAA/HSc Pb(Ⅱ)
Cu(Ⅱ)
Cd(Ⅱ)
360.5
151.00
412.76
After 5 cycles, the adsorption capacity of the three decreased by only 7%, 3% and 1% respectively Elovich Langmuir-Freundlich Spontaneous and endothermic Coordination interaction and
electrostatic interactions
27
2018 PVA/PAMPS Pb(Ⅱ)
Cd(Ⅱ)
340.00
155.10
After 5 cycles, the removal efficiency remained 94% and 93%, respectively P2 Langmuir Spontaneous and endothermic Ion exchange
and complexation
129
2018 GO/PAA aerogeld Cu(Ⅱ) 390.34 After 7 cycles, the removal efficiency was still over 95% P2 Langmuir - - 130
2018 GO/SA Mn(Ⅱ) 56.49 After 7 cycles, the adsorption capacity remained unchanged at 18.11 mg/g P2 Freundlich Spontaneous and endothermic - 29
2019 RH-CTSe/ PAM Pb(Ⅱ)
Cu(Ⅱ)
Cd(Ⅱ)
374.32
196.68
268.98
After 5 cycles, the adsorption rate decreased by only 2.3%, 1.8% and 3.1%, respectively P2 Freundlich Spontaneous and endothermic Chelation or coordination interaction 32
2019 CMC/PEI Cr(Ⅵ) 312.46 After four cycles, the removal rate decreased by 8.70% P2 Freundlich Spontaneous and endothermic Electrostatic attraction, redox, coordination and sediment 28
2020 GO-CA/PAA Cd(Ⅱ) 119.98 After 5 cycles, the adsorption capacity of the adsorbent is almost not reduced P2 Langmuir Spontaneous and endothermic Ion exchange 33
2020 TR f /PAA Cr(Ⅲ)
Pb(Ⅱ)
Fe(Ⅲ)
206.19
253.16
94.88
After 7 cycles, the adsorption efficiency of Cr(Ⅲ), Fe(Ⅲ) and Pb(Ⅱ) decreased by 9.9%, 5.0% and 16.7% respectively P2 Freundlich - Chelation, coordination, ion
exchange and
electrostatic
interactions
30
Year Double Network hydrogels Adsorbed pollutant Maximum adsorption capacity(mg/g) Regenerability Kinetic model Adsorption isotherm Adsorption thermodynamics adsorption mechanism ref
2020 N H 2 g -GR/Alginate Cu(Ⅱ) 153.91 - P2 Langmuir - Chemisorption 76
2020 CTS/SA Pb(Ⅱ)
Cu(Ⅱ)
Cd(Ⅱ)
400.90
71.10
99.46
- P1,P2 Freundlich Spontaneous and endothermic Electrostatic interactions, coordination interaction 131
2020 SA/PAA/nZnh Pb(Ⅱ) 200.00 - P2 Freundlich Spontaneous and exothermic Chemisorption 109
表2 各种双网络凝胶吸附剂对染料的吸附比较
Table 2 The Comparison of Adsorption for dyes by various double network gel adsorbents
Year Double Network hydrogels Adsorbed pollutant Maximum adsorption capacity(mg/g) Regenerability Kinetic model Adsorption isotherm Adsorption thermodynamics adsorption mechanism ref
2013 GO-SA/PAM Cationic dyes and anionic dyes - - - - - - 14
2014 SA/SAPa RB4 245 After 5 sorption-desorption cycles, the adsorption capacity remained almost unchanged P1 Langmuir Spontaneous and endothermic - 137
2016 Alginate/GO MB 2300 After 10 cycles, the removal rate was reduced to 60.2% P2 Langmuir - Electrostatic interactions, hydrogen bond, hydrophobic interactions 93
2018 Alginate/PVAb MB 313.09 - P2 Langmuir Spontaneous and endothermic - 49
2018 Alginate/
PAMc
MB 1124 After 5 cycles, the adsorption removal rate was slightly reduced P2 Langmuir - Electrostatic interactions 138
2018 PNIPAM@
PS/CS/PAA
Cationic dyes - - P2 Langmuir - Electrostatic interactions 122
2019 CA/PVA MB 1437.48 - P2 Langmuir Spontaneous and endothermic Electrostatic interactions 22
2019 starch/PVA/borax MB 144.68 - - - - Electrostatic interactions 121
2019 GO/PAA CV
MB
851.31
771.14
- P2 Langmuir,
D-R
- Electrostatic interactions, π-π
interactions
105
2019 Alginate/PAM/OA-POSS MB 75.41 - P2 Redlich-Peterson Spontaneous and endothermic - 21
2020 GO/PAA MB - - - - - Electrostatic interactions, π-π
interactions
100
2020 GO/AAMd MB
Rh B
- After 10~14 cycles, the
adsorption efficiency remained almost unchanged
P2 - - Electrostatic interactions, π-π
interactions
23
2020 Starch/PAA MB
CR
133.65
64.73
- P2 Freundlich - Electrostatic interactions 75
表3 各种双网络凝胶吸附剂对抗生素的吸附比较
Table 3 The Comparison of Adsorption for antibiotics by various double network gel adsorbents
[1]
Godiya C B, Cheng X, Li D W, Chen Z, Lu X L. J. Hazard. Mater., 2019, 364:28.

doi: 10.1016/j.jhazmat.2018.09.076     URL    
[2]
Fu F L, Wang Q. J. Environ. Manag., 2011, 92(3):407.

doi: 10.1016/j.jenvman.2010.11.011     URL    
[3]
Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Mariñas B J, Mayes A M. Nature, 2008, 452:301.

doi: 10.1038/nature06599     URL    
[4]
Ali I. Chem. Rev., 2012, 112:5073.

doi: 10.1021/cr300133d     URL    
[5]
Uddin M K. Chem. Eng. J., 2017, 308:438.

doi: 10.1016/j.cej.2016.09.029     URL    
[6]
Wang Y M, Peng C S, Padilla-Ortega E, Robledo-Cabrera A, López-Valdivieso A. J. Environ. Chem. Eng., 2020, 8:104031.

doi: 10.1016/j.jece.2020.104031     URL    
[7]
Siyal A A, Shamsuddin M R, Low A, Rabat N E. J. Environ. Manag., 2020, 254:109797.

doi: 10.1016/j.jenvman.2019.109797     URL    
[8]
Myung D, Waters D, Wiseman M, Duhamel P E, Noolandi J, Ta C N, Frank C W. Polym. Adv. Technol., 2008, 19:647.

doi: 10.1002/(ISSN)1099-1581     URL    
[9]
Zhu H, Yang X, Cranston E D, Zhu S P. Adv. Mater., 2016, 28:7652.

doi: 10.1002/adma.201601351    
[10]
Lei C S, Zhu X F, Zhu B C, Jiang C J, Le Y, Yu J G. J. Hazard. Mater., 2017, 321:801.

doi: 10.1016/j.jhazmat.2016.09.070     URL    
[11]
Brandl F, Sommer F, Goepferich A. Biomaterials, 2007, 28:134.

doi: 10.1016/j.biomaterials.2006.09.017     URL    
[12]
Vashist A, Vashist A, Gupta Y K, Ahmad S. J. Mater. Chem. B, 2014, 2:147.

doi: 10.1039/c3tb21016b     pmid: 32261602
[13]
Malda J, Visser J, Melchels F P, Jüngst T, Hennink W E, Dhert W J A, Groll J, Hutmacher D W. Adv. Mater., 2013, 25:5011.

doi: 10.1002/adma.201302042     URL    
[14]
Fan J C, Shi Z X, Lian M, Li H, Yin J. J. Mater. Chem. A, 2013, 1:7433.

doi: 10.1039/c3ta10639j     URL    
[15]
Tanaka Y, Gong J P, Osada Y. Prog. Polym. Sci., 2005, 30:1.

doi: 10.1016/j.progpolymsci.2004.11.003     URL    
[16]
Gong J P, Katsuyama Y, Kurokawa T, Osada Y. Adv. Mater., 2003, 15:1155.

doi: 10.1002/adma.200304907     URL    
[17]
Zhuang Y, Yu F, Chen H, Zheng J, Ma J, Chen J H. J. Mater. Chem. A, 2016, 4:10885.

doi: 10.1039/C6TA02738E     URL    
[18]
Tanaka Y, Kuwabara R, Na Y H, Kurokawa T, Gong J P, Osada Y. J. Phys. Chem. B, 2005, 109:11559.

doi: 10.1021/jp0500790     URL    
[19]
Na Y H, Tanaka Y, Kawauchi Y, Furukawa H, Sumiyoshi T, Gong J P, Osada Y. Macromolecules, 2006, 39:4641.

doi: 10.1021/ma060568d     URL    
[20]
Gong J P. Soft Matter, 2010, 6:2583.

doi: 10.1039/b924290b     URL    
[21]
Bahrami Z, Akbari A, Eftekhari-Sis B. Int. J. Biol. Macromol., 2019, 129:187.

doi: S0141-8130(18)34906-7     pmid: 30742927
[22]
Kong Y, Zhuang Y, Han Z Y, Yu J W, Shi B Y, Han K, Hao H T. J. Environ. Sci., 2019, 78:81.

doi: 10.1016/j.jes.2018.07.006     URL    
[23]
Sahoo S D, Prasad E. Soft Matter, 2020, 16:2075.

doi: 10.1039/C9SM02525A     URL    
[24]
Lei K, Li Z, Zhu D D, Sun C Y, Sun Y L, Yang C C, Zheng Z, Wang X L. J. Mater. Chem. B, 2020, 8:794.

doi: 10.1039/C9TB01679A     URL    
[25]
Tarashi S, Nazockdast H, Sodeifian G. Polymer, 2020, 188:122138.

doi: 10.1016/j.polymer.2019.122138     URL    
[26]
Bi S C, Wang P J, Hu S H, Li S K, Pang J H, Zhou Z Z, Sun G H, Huang L, Cheng X J, Xing S C, Chen X G. Carbohydr. Polym., 2019, 224:115176.

doi: 10.1016/j.carbpol.2019.115176     URL    
[27]
Ma J H, Luo J M, Liu Y T, Wei Y F, Cai T, Yu X W, Liu H, Liu C B, Crittenden J C. J. Mater. Chem. A, 2018, 6:20110.

doi: 10.1039/C8TA07250G     URL    
[28]
Song L, Liu F Q, Zhu C Q, Li A M. Chem. Eng. J., 2019, 369:641.

doi: 10.1016/j.cej.2019.03.126    
[29]
Yang X Z, Zhou T Z, Ren B Z, Hursthouse A, Zhang Y Z. Sci. Rep., 2018, 8:10717.

doi: 10.1038/s41598-018-29133-y     URL    
[30]
Zhang S Z, Liu C Z, Yuan Y K, Fan M H, Zhang D D, Wang D F, Xu Y. Bioresour. Technol., 2020, 311:123520.

doi: 10.1016/j.biortech.2020.123520     URL    
[31]
Fei C L, Huang D Q, Feng S. J. Polym. Res., 2012, 19:9929.

doi: 10.1007/s10965-012-9929-y     URL    
[32]
Ma J H, Li T, Liu Y T, Cai T, Wei Y F, Dong W Y, Chen H. Bioresour. Technol., 2019,290.
[33]
Tang J X, Huang J M, Zhou G Y, Liu S H. J. Chem. Thermodyn., 2020, 141:105918.

doi: 10.1016/j.jct.2019.105918     URL    
[34]
Chen Q, Zhu L, Chen H, Yan H L, Huang L N, Yang J, Zheng J. Adv. Funct. Mater., 2015, 25:1598.

doi: 10.1002/adfm.201404357     URL    
[35]
Yan X Q, Chen Q, Zhu L, Chen H, Wei D D, Chen F, Tang Z Q, Yang J, Zheng J. J. Mater. Chem. B, 2017, 5:7683.

doi: 10.1039/C7TB01780D     URL    
[36]
Wei D D, Yang J, Zhu L, Chen F, Tang Z Q, Qin G, Chen Q. Polym. Test., 2018, 69:167.

doi: 10.1016/j.polymertesting.2018.05.025     URL    
[37]
Zhou L J, Pei X J, Fang K, Zhang R, Fu J. Polymer, 2020, 192:122319.

doi: 10.1016/j.polymer.2020.122319     URL    
[38]
Zheng Q F, Zhao L Y, Wang J, Wang S, Liu Y X, Liu X F. Colloids Surfaces A: Physicochem. Eng. Aspects, 2020, 589:124402.

doi: 10.1016/j.colsurfa.2019.124402     URL    
[39]
Zhao L Y, Zheng Q F, Liu Y X, Wang S, Wang J, Liu X F. Eur. Polym. J., 2020, 124:109474.

doi: 10.1016/j.eurpolymj.2020.109474     URL    
[40]
Chen Q, Chen H, Zhu L, Zheng J. Macromol. Chem. Phys., 2016, 217:1017.

doi: 10.1002/macp.v217.9     URL    
[41]
Sun T L, Kurokawa T, Kuroda S, Ihsan A B, Akasaki T, Sato K, Haque M A, Nakajima T, Gong J P. Nat. Mater., 2013, 12:932.

doi: 10.1038/nmat3713     URL    
[42]
Chen Q, Zhu L, Zhao C, Wang Q M, Zheng J. Adv. Mater., 2013, 25:4171.

doi: 10.1002/adma.201300817     URL    
[43]
Sun J Y, Zhao X H, Illeperuma W R K, Chaudhuri O, Oh K H, Mooney D J, Vlassak J J, Suo Z G.. Nature, 2012, 489:133.

doi: 10.1038/nature11409     URL    
[44]
Yu H C, Li C Y, Du M, Song Y H, Wu Z L, Zheng Q. Macromolecules, 2019, 52:629.

doi: 10.1021/acs.macromol.8b02269     URL    
[45]
Gong J P. Science, 2014, 344:161.

doi: 10.1126/science.1252389     URL    
[46]
Chen Q, Zhu L, Huang L N, Chen H, Xu K, Tan Y, Wang P X, Zheng J. Macromolecules, 2014, 47:2140.

doi: 10.1021/ma402542r     URL    
[47]
Webber R E, Creton C, Brown H R, Gong J P. Macromolecules, 2007, 40:2919.

doi: 10.1021/ma062924y     URL    
[48]
Zhuang Y, Yu F, Ma J, Chen J H. J. Colloid Interface Sci., 2017, 507:250.

doi: 10.1016/j.jcis.2017.07.033     URL    
[49]
Liu C Y, Liu H Y, Xiong T H, Xu A R, Pan B L, Tang K Y. Polymers, 2018, 10:835.

doi: 10.3390/polym10080835     URL    
[50]
Nakajima T, Sato H, Zhao Y, Kawahara S, Kurokawa T, Sugahara K, Gong J P. Adv. Funct. Mater., 2012, 22:4426.

doi: 10.1002/adfm.v22.21     URL    
[51]
Nakajima T, Fukuda Y, Kurokawa T, Sakai T, Chung U I, Gong J P. ACS Macro Lett., 2013, 2:518.

doi: 10.1021/mz4002047     URL    
[52]
Zhang Y, Liu Y, Wang X, Sun Z, Ma J, Wu T, Xing F, Gao J. Carbohydr. Polym., 2014, 101:392.

doi: 10.1016/j.carbpol.2013.09.066     URL    
[53]
Yuan N X, Xu L, Wang H L, Fu Y P, Zhang Z, Liu L, Wang C L, Zhao J H, Rong J H. ACS Appl. Mater. Interfaces, 2016, 8:34034.

doi: 10.1021/acsami.6b12243     URL    
[54]
Zhang H J, Sun T L, Zhang A K, Ikura Y, Nakajima T, Nonoyama T, Kurokawa T, Ito O, Ishitobi H, Gong J P. Adv. Mater., 2016, 28:4884.

doi: 10.1002/adma.v28.24     URL    
[55]
Chen H, Liu Y L, Ren B P, Zhang Y X, Ma J, Xu L J, Chen Q, Zheng J. Adv. Funct. Mater., 2017, 27:1703086.

doi: 10.1002/adfm.v27.44     URL    
[56]
Chen W P, Hao D Z, Hao W J, Guo X L, Jiang L. ACS Appl. Mater. Interfaces, 2018, 10(1):1258.

doi: 10.1021/acsami.7b17118     URL    
[57]
Yan X Q, Yang J, Chen F, Zhu L, Tang Z Q, Qin G, Chen Q, Chen G M. Compos. Sci. Technol., 2018, 163:81.

doi: 10.1016/j.compscitech.2018.05.011     URL    
[58]
Li Z Q, Shen J F, Ma H W, Lu X, Shi M, Li N, Ye M X. Mater. Sci. Eng.: C, 2013, 33:1951.

doi: 10.1016/j.msec.2013.01.004     URL    
[59]
Huang W S, Shen J F, Li N, Ye M X. Polym. Eng. Sci., 2015, 55:1361.

doi: 10.1002/pen.24076     URL    
[60]
Mohammadi S, Keshvari H, Eskandari M, Faghihi S. React. Funct. Polym., 2016, 106:120.

doi: 10.1016/j.reactfunctpolym.2016.07.015     URL    
[61]
Dai X Y, Zhang Y Y, Gao L N, Bai T, Wang W, Cui Y L, Liu W G. Adv. Mater., 2015, 27:3566.

doi: 10.1002/adma.v27.23     URL    
[62]
Kamata H, Akagi Y, Kayasuga-Kariya Y, Chung U I, Sakai T. Science, 2014, 343:873.

doi: 10.1126/science.1247811     URL    
[63]
Ducrot E, Chen Y, Bulters M, Sijbesma R P, Creton C. Science, 2014, 344:186.

doi: 10.1126/science.1248494     URL    
[64]
Cong H P, Wang P, Yu S H. Chem. Mater., 2013, 25:3357.

doi: 10.1021/cm401919c     URL    
[65]
Zhang H J, Zhai D D, He Y. RSC Adv., 2014, 4:44600.

doi: 10.1039/C4RA07576E     URL    
[66]
Fan X L, Liu H, Wang J R, Tang K Y. J. Appl. Polym. Sci., 2020, 137:48805.

doi: 10.1002/app.v137.24     URL    
[67]
Nakajima T, Furukawa H, Tanaka Y, Kurokawa T, Osada Y, Gong J P. Macromolecules, 2009, 42:2184.

doi: 10.1021/ma802148p     URL    
[68]
Zhao Y, Nakajima T, Yang J J, Kurokawa T, Liu J, Lu J S, Mizumoto S, Sugahara K, Kitamura N, Yasuda K, Daniels A U D, Gong J P. Adv. Mater., 2014, 26:436.

doi: 10.1002/adma.201303387     URL    
[69]
Chen Q, Wei D D, Chen H, Zhu L, Jiao C C, Liu G, Huang L N, Yang J, Wang L B, Zheng J. Macromolecules, 2015, 48:8003.

doi: 10.1021/acs.macromol.5b01938     URL    
[70]
Chen Q, Chen H, Zhu L, Zheng J. J. Mater. Chem. B, 2015, 3:3654.

doi: 10.1039/C5TB00123D     URL    
[71]
Haque M A, Kurokawa T, Kamita G, Gong J P. Macromolecules, 2011, 44:8916.

doi: 10.1021/ma201653t     URL    
[72]
Wu D B, Xu J Y, Chen Y, Yi M R, Wang Q G. Carbohydr. Polym., 2018, 181:167.

doi: 10.1016/j.carbpol.2017.10.076     URL    
[73]
Lin P, Ma S H, Wang X L, Zhou F. Adv. Mater., 2015, 27:2054.

doi: 10.1002/adma.v27.12     URL    
[74]
Kang M M, Liu S L, Oderinde O, Yao F, Fu G D, Zhang Z H. Mater. Des., 2018, 148:96.

doi: 10.1016/j.matdes.2018.03.047     URL    
[75]
Sarmah D, Karak N. Carbohydr. Polym., 2020, 242:116320.

doi: 10.1016/j.carbpol.2020.116320     URL    
[76]
Sun Y R, Zhou T, Li W Y, Yu F, Ma J. Chemosphere, 2020, 241:125110.

doi: 10.1016/j.chemosphere.2019.125110     URL    
[77]
Gong Z Y, Zhang G P, Zeng X L, Li J H, Li G, Huang W P, Sun R, Wong C. ACS Appl. Mater. Interfaces, 2016, 8:24030.

doi: 10.1021/acsami.6b05627     URL    
[78]
Zhang H J, Xia H S, Zhao Y. ACS Macro Lett., 2012, 1:1233.

doi: 10.1021/mz300451r     URL    
[79]
Tuncaboylu D C, Sari M, Oppermann W, Okay O. Macromolecules, 2011, 44:4997.

doi: 10.1021/ma200579v     URL    
[80]
Taylor D L, in het Panhuis M. Adv. Mater., 2016, 28:9060.

doi: 10.1002/adma.v28.41     URL    
[81]
Zhou G Y, Luo J M, Liu C B, Chu L, Crittenden J. Water Res., 2018, 131:246.

doi: 10.1016/j.watres.2017.12.067     URL    
[82]
Chu L, Liu C B, Zhou G Y, Xu R, Tang Y H, Zeng Z B, Luo S L. J. Hazard. Mater., 2015, 300:153.

doi: 10.1016/j.jhazmat.2015.06.070     URL    
[83]
Yue Y Y, Wang X H, Han J Q, Yu L, Chen J Q, Wu Q L, Jiang J C. Carbohydr. Polym., 2019, 206:289.

doi: 10.1016/j.carbpol.2018.10.105     URL    
[84]
Peak C W, Wilker J J, Schmidt G. Colloid Polym. Sci., 2013, 291:2031.

doi: 10.1007/s00396-013-3021-y     URL    
[85]
Gao G R, Du G L, Cheng Y J, Fu J. J. Mater. Chem. B, 2014, 2:1539.

doi: 10.1039/c3tb21554g     URL    
[86]
Nakayama A, Kakugo A, Gong J P, Osada Y, Takai M, Erata T, Kawano S. Adv. Funct. Mater., 2004, 14:1124.

doi: 10.1002/(ISSN)1616-3028     URL    
[87]
Ma J H, Zhou G Y, Chu L, Liu Y T, Liu C B, Luo S L, Wei Y F. ACS Sustainable Chem. Eng., 2017, 5:843.

doi: 10.1021/acssuschemeng.6b02181     URL    
[88]
Ma J H, Liu Y T, Ali O, Wei Y F, Zhang S Q, Zhang Y M, Cai T, Liu C B, Luo S L. J. Hazard. Mater., 2018, 344:1034.

doi: 10.1016/j.jhazmat.2017.11.041     URL    
[89]
Yu F, Cui T R, Yang C F, Dai X H, Ma J. Chemosphere, 2019, 237:124417.

doi: 10.1016/j.chemosphere.2019.124417     URL    
[90]
Zhou G Y, Liu C B, Chu L, Tang Y H, Luo S L. Bioresour. Technol., 2016, 219:451.

doi: 10.1016/j.biortech.2016.07.038     URL    
[91]
Li L Q, Zhao J H, Sun Y R, Yu F, Ma J. Chem. Eng. J., 2019, 372:1091.

doi: 10.1016/j.cej.2019.05.007     URL    
[92]
Wang J L, Wei J H, Su S H, Qiu J J, Wang S R. J. Mater. Sci., 2015, 50:5458.

doi: 10.1007/s10853-015-9091-0     URL    
[93]
Zhuang Y, Yu F, Chen J H, Ma J. J. Environ. Chem. Eng., 2016, 4:147.

doi: 10.1016/j.jece.2015.11.014     URL    
[94]
Yasui T, Kamio E, Matsuyama H. Langmuir, 2018, 34:10622.

doi: 10.1021/acs.langmuir.8b01930     URL    
[95]
Liang X Q, Wu X, Hu J, Zhao J J, Zeng X C. Commun. Phys., 2018, 1:74.

doi: 10.1038/s42005-018-0078-4     URL    
[96]
Yu F, Sun S N, Han S, Zheng J, Ma J. Chem. Eng. J., 2016, 285:588.

doi: 10.1016/j.cej.2015.10.039     URL    
[97]
Yusuf M, Elfghi F M, Zaidi S A, Abdullah E C, Khan M A. RSC Adv., 2015, 5:50392.

doi: 10.1039/C5RA07223A     URL    
[98]
Liu H Y, Kuila T, Kim N H, Ku B C, Lee J H. J. Mater. Chem. A, 2013, 1:3739.

doi: 10.1039/c3ta01228j     URL    
[99]
Huang P, Chen W F, Yan L F. Nanoscale, 2013, 5:6034.

doi: 10.1039/c3nr00214d     pmid: 23715534
[100]
Lin S Y, Li Q L, Zhong Y J, Li J, Zhao X L, Wang M, Zhao G K, Pan J L, Zhu H W. Glob. Challenges, 2020, 4:1900051.
[101]
Zhu P, Hu M, Deng Y H, Wang C Y. Adv. Eng. Mater., 2016, 18:1799.

doi: 10.1002/adem.201600272     URL    
[102]
Zhang Q, Hou Q X, Huang G X, Fan Q. Environ. Sci. Pollut. Res., 2020, 27:190.

doi: 10.1007/s11356-019-06683-w     URL    
[103]
Kamio E, Yasui T, Iida Y, Gong J P, Matsuyama H. Adv. Mater., 2017, 29:1704118.

doi: 10.1002/adma.v29.47     URL    
[104]
Li Y S, Hu X M, Cheng W M, Shao Z A, Xue D, Zhao Y Y, Lu W. Fuel, 2020, 263:116779.

doi: 10.1016/j.fuel.2019.116779     URL    
[105]
Han Q Q, Li W X, Zhou Z Y, Fang Z, Chen L, Xu Z W, Qian X M. Polym. -Plast. Technol. Mater., 2019, 58:1638.
[106]
Ran J B, Jiang P, Liu S N, Sun G L, Yan P, Shen X Y, Tong H. Mater. Sci. Eng.: C , 2017, 78:130.

doi: 10.1016/j.msec.2017.04.062     URL    
[107]
Xu R, Zhou G Y, Tang Y H, Chu L, Liu C B, Zeng Z B, Luo S L. Chem. Eng. J., 2015, 275:179.

doi: 10.1016/j.cej.2015.04.040     URL    
[108]
Wang J J, Zhang N, Jiang C Y, Zhang C S. J. Mater. Res., 2018, 33:3898.

doi: 10.1557/jmr.2018.385     URL    
[109]
Wang B, Chi H J, Hou Y T, Wang S X, Feng S J, Lv Y, Li Q R, Li M L. Polym. -Plast. Technol. Mater., 2020, 59:1010.
[110]
Nurly H, Yan Q, Song B, Shi Y S. Eur. Polym. J., 2019, 110:114.

doi: 10.1016/j.eurpolymj.2018.11.006     URL    
[111]
Pourhashem S, Saba F, Duan J Z, Rashidi A, Guan F, Nezhad E G, Hou B R. J. Ind. Eng. Chem., 2020, 88:29.

doi: 10.1016/j.jiec.2020.04.029     URL    
[112]
Zhu Y W, Murali S, Cai W W, Li X S, Suk J W, Potts J R, Ruoff R S. Adv. Mater., 2010, 22:3906.

doi: 10.1002/adma.201001068     URL    
[113]
Wang Q, Hou R X, Cheng Y J, Fu J. Soft Matter, 2012, 8:6048.

doi: 10.1039/c2sm07233e     URL    
[114]
Zhuang Y, Kong Y, Han K, Hao H T, Shi B Y. New J. Chem., 2017, 41:15127.

doi: 10.1039/C7NJ03392C     URL    
[115]
Srivastava N K, Majumder C B. J. Hazard. Mater., 2008, 151:1.

pmid: 17997034
[116]
Sud D, Mahajan G, Kaur M. Bioresour. Technol., 2008, 99:6017.

doi: 10.1016/j.biortech.2007.11.064     URL    
[117]
Zare E N, Motahari A, Sillanpää M. Environ. Res., 2018, 162:173.

doi: 10.1016/j.envres.2017.12.025     URL    
[118]
Carolin C F, Kumar P S, Saravanan A, Joshiba G J, Naushad M. J. Environ. Chem. Eng., 2017, 5:2782.

doi: 10.1016/j.jece.2017.05.029     URL    
[119]
Khan M, Lo I M C. Water Res., 2016, 106:259.

doi: 10.1016/j.watres.2016.10.008     URL    
[120]
Peralta Ramos M L, González J A, Albornoz S G, Pérez C J, Villanueva M E, Giorgieri S A, Copello G J. Chem. Eng. J., 2016, 285:581.

doi: 10.1016/j.cej.2015.10.035     URL    
[121]
Qin Y, Wang J P, Qiu C, Xu X M, Jin Z Y. J. Agric. Food Chem., 2019, 67:3966.

doi: 10.1021/acs.jafc.8b05147     URL    
[122]
Zhang R, Peng H W, Zhou T X, Li M, Guo X H, Yao Y. Aust. J. Chem., 2018, 71:846.

doi: 10.1071/CH18228     URL    
[123]
Wang Y Z, Wang W B, Wang A Q. Chem. Eng. J., 2013, 228:132.

doi: 10.1016/j.cej.2013.04.090     URL    
[124]
Yu F, Li Y, Ma J.. New Polymer Nanocomposites for Environmental Remediation. Amsterdam:Elsevier, 2018: 47.
[125]
Zhang M Y, Song L H, Jiang H F, Li S, Shao Y F, Yang J Q, Li J F. J. Mater. Chem. A, 2017, 5:3434.

doi: 10.1039/C6TA10513K     URL    
[126]
Areal M P, Arciniegas M L, Horst F, Lassalle V, Sánchez F H, Alvarez V A, Gonzalez J S. J. Polym. Environ., 2018, 26:3129.

doi: 10.1007/s10924-018-1197-4     URL    
[127]
Zhang S J, Shi Q T, Christodoulatos C, Meng X G. Chemosphere, 2019, 233:405.

doi: 10.1016/j.chemosphere.2019.05.190     URL    
[128]
Hadi P, Barford J, McKay G. Environ. Sci. Technol., 2013, 47(15):8248.
[129]
Ma J H, Zhang Y M, Tang Y H, Wei Y F, Liu Y T, Liu C B. Water Sci. Technol., 2018, 78:982.

doi: 10.2166/wst.2018.380     URL    
[130]
Han Q Q, Chen L, Li W X, Zhou Z Y, Fang Z, Xu Z W, Qian X M. Environ. Sci. Pollut. Res., 2018, 25:34438.

doi: 10.1007/s11356-018-3409-9     URL    
[131]
Tang S X, Yang J Y, Lin L Z, Peng K L, Chen Y, Jin S H, Yao W S. Chem. Eng. J., 2020, 393:124728.

doi: 10.1016/j.cej.2020.124728     URL    
[132]
Forgacs E, Cserháti T, Oros G. Environ. Int., 2004, 30:953.

pmid: 15196844
[133]
Attia A A, Rashwan W E, Khedr S A. Dye. Pigment., 2006, 69:128.

doi: 10.1016/j.dyepig.2004.07.009     URL    
[134]
Hameed B H, Ahmad A A, Aziz N. Chem. Eng. J., 2007, 133:195.

doi: 10.1016/j.cej.2007.01.032     URL    
[135]
Mall I D, Srivastava V C, Agarwal N K. Dye. Pigment., 2006, 69:210.

doi: 10.1016/j.dyepig.2005.03.013     URL    
[136]
Srivastava S, Sinha R, Roy D. Aquat. Toxicol., 2004, 66:319.

pmid: 15129773
[137]
Dhanapal V, Subramanian K. Carbohydr. Polym., 2014, 108:65.

doi: 10.1016/j.carbpol.2014.03.013     URL    
[138]
Zhang P B, Tang A Q, Wang Z H, Lu J Y, Zhu B K, Zhu L P. Chin. J. Polym. Sci., 2018, 36:1251.

doi: 10.1007/s10118-018-2163-2     URL    
[139]
Li W X, Cao J, Xiong W P, Yang Z H, Sun S W, Jia M Y, Xu Z Y. Chem. Eng. J., 2020, 392:124844.

doi: 10.1016/j.cej.2020.124844     URL    
[140]
Michael I, Rizzo L, McArdell C S, Manaia C M, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D. Water Res., 2013, 47:957.

doi: 10.1016/j.watres.2012.11.027     pmid: 23266388
[141]
Luo Y, Mao D Q, Rysz M, Zhou Q X, Zhang H J, Xu L, Alvarez P J J. Environ. Sci. Technol., 2010, 44:7220.

doi: 10.1021/es100233w     pmid: 20509603
[142]
Homem V, Santos L. J. Environ. Manag., 2011, 92:2304.

doi: 10.1016/j.jenvman.2011.05.023     URL    
[143]
Gao Y, Li Y, Zhang L, Huang H, Hu J J, Shah S M, Su X G. J. Colloid Interface Sci., 2012, 368:540.

doi: 10.1016/j.jcis.2011.11.015     URL    
[144]
Rivera-Utrilla J, Sánchez-Polo M, Ferro-García M Á, Prados-Joya G, Ocampo-Pérez R. Chemosphere, 2013, 93:1268.

doi: 10.1016/j.chemosphere.2013.07.059     pmid: 24025536
[145]
Ma J, Sun Y R, Zhang M Z, Yang M X, Gong X, Yu F, Zheng J. Environ. Sci. Technol., 2017, 51:12283.

doi: 10.1021/acs.est.7b02227     URL    
[146]
Fares M M, Al-Rub F A A, Mohammad A R. ACS Omega, 2020, 5:4457.

doi: 10.1021/acsomega.9b03636     pmid: 32175493
[147]
Busca G, Berardinelli S, Resini C, Arrighi L. J. Hazard. Mater., 2008, 160:265.

doi: 10.1016/j.jhazmat.2008.03.045     URL    
[148]
Öztürk H, Barşçı S, Turkay O, Veli S. J. Environ. Eng., 2019, 145:04019014.

doi: 10.1061/(ASCE)EE.1943-7870.0001514     URL    
[149]
Sun Y B, Shao D D, Chen C L, Yang S B, Wang X K. Environ. Sci. Technol., 2013, 47:9904.

doi: 10.1021/es401174n     URL    
[150]
Özkahraman B, Özbaş Z. J. Polym. Environ., 2020, 28:689.

doi: 10.1007/s10924-019-01636-3     URL    
[151]
Zhao P, Zhang W, Kaneti Y V, Azhar A, Alshehri A A, Yamauchi Y, Hu M. Bull. Chem. Soc. Jpn., 2018, 91:1357.

doi: 10.1246/bcsj.20180083     URL    
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 刘振东, 潘嘉杰, 刘全兵. 机器学习在设计高性能锂电池正极材料与电解质中的应用[J]. 化学进展, 2023, 35(4): 577-592.
[3] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[4] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[5] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[6] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[7] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[8] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[9] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[10] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[11] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[12] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[13] 职怡缤, 于兰, 李欢欢, 陶冶, 陈润锋, 黄维. 芳基硅磷光主体材料在有机电致发光器件中的应用[J]. 化学进展, 2022, 34(5): 1109-1123.
[14] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[15] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.