中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (5): 683-698 DOI: 10.7536/PC221112 Previous Articles   Next Articles

• Review •

Synthetic Strategies of Chemically Stable Metal-Organic Frameworks

Mengrui Yang, Yuxin Xie, Dunru Zhu()   

  1. College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: zhudr@njtech.edu.cn
  • Supported by:
    National Natural Science Foundation of China(21476115); Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX23_1472)
Richhtml ( 92 ) PDF ( 1541 ) Cited
Export

EndNote

Ris

BibTeX

Metal-organic frameworks (MOFs) are a new generation of crystalline porous materials with void space structures constructed from metal ions or clusters and organic ligands through coordination bonds, and have been a hot research topic in the field of coordination chemistry over the past two decades. As the novel multifunctional materials, MOFs have been widely used in various fields due to their high porosities, low densities, large surface areas, tunable pore sizes, diverse topological structures and tailorabilities. Although MOFs have many advantages, most of MOFs materials have relatively lower water and chemical stability and cannot maintain their structures under harsh conditions, which greatly restrict their practical applications under moisture-rich conditions. Therefore, chemically stable MOFs materials will have greater application prospects. In recent years, researchers have carried out a lot of exploration in improving the chemical stability of MOFs, and developed some excellent methods to synthesize chemically stable MOFs. This review will mainly focus on the latest research progress in the syntheses of chemically stable MOFs during the past five years.

Contents

1 Introduction

2 Synthetic strategies of chemically stable MOFs

2.1 Increase the strength of coordination bonds

2.2 Attaching hydrophobic groups onto the linker

2.3 Using pore-partioning ligands for the pore space partition

2.4 Post-synthetic exchange method

2.5 Hydrophobic surface treatment

2.6 Other methods

3 Conclusion and Outlook

Table 1 Comparison of some stable MOFs in the early stages
Fig. 1 Strategies to construct stable MOFs guided by HSAB theory[12]. Copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 2 (a) The crystal engineering approach used to design BUT-53~58; (b) PXRD patterns of BUT-53[28]. Copyright 2022, Springer Nature
Fig. 3 (a) Crystal structure of ZnF(daTZ); (b) PXRD patterns of ZnF(daTZ) after treatment with acids and bases at various pH values[29]. Copyright 2020, ACS
Fig. 4 (a) The well-defined channels and cages in Cr-soc-MOF-1; (b) the calculated and the experimental PXRD pattern of the Cr-soc-MOF-1 after multiple water adsorption cycles[36]. Copyright 2020, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
Fig. 5 (a) The structure of Al-MOF-1; (b) PXRD patterns of Al-MOF-1 after treatment with aqueous solutions ranging from pH = 2~12[38]. Copyright 2022, ACS
Fig. 6 (a) The structure of PCN-226; (b) The ztt topological net; (c) PXRD patterns of PCN-226(Cu) after being treated in pH = 1~13 solutions for 7 days[41]. Copyright 2020, ACS
Fig. 7 (a) Construction of PCN-625 using an 8-connected Zr6 cluster and 4-connected BBCPPP ligand; (b) PXRD patterns of soaked PCN-625 in different solutions[43]. Copyright 2021, ACS
Fig. 8 (a) A flu-a network constructed by 4-connected ligands and 8-connected Zr nodes; (b) PXRD patterns of CE-1 under different conditions[47]. Copyright 2021, ACS
Fig. 9 (a) The soc topological net of MIP-201; (b) PXRD patterns of MIP-201 samples treated under various chemical conditions[48]. Copyright 2022, Springer Nature
Fig. 10 (a) 3D structure of IEF-11; (b) PXRD patterns of IEF-11 after treatment with acids and bases at various pH values[49]. Copyright 2021, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.11 (a) 1D rhombus channels in 1 along the c axis; (b) 1D inorganic rod-shaped chain [Eu(-CO2)2]n; (c) the 3D bnn network; (d) PXRD patterns for water-treated LnMOF 1[52]. Copyright 2017, ACS
Fig. 12 3D Ln-MOFs constructed from H3L5 and Ln3+[53]. Copyright 2022, RSC
Fig. 13 (a) Ball-and-stick representation of Fe-HAF-1; (b) PXRD patterns of Fe-HAF-1 after exposure to aqueous solutions at different pH for one week[58]. Copyright 2020, ACS
Fig. 14 (a) 3D structure of FJU-112; (b) PXRD patterns of FJU-112 after treatment with acids and bases at various pH values[60]. Copyright 2023, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 15 Construction of superhydrophobic UiO-67-Rs from Zr6O8 clusters and 3,3'-dialkyloxy-4,4'-biphenyldicarboxylic acids (H2Ln, n = 7~10)[63]. Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 16 (a) The structural components of CPM-243, together with the framework along the c axis; (b) stability comparison of select MOFs. The arrow indicates stability under pH < 0 or pH > 14[68]. Copyright 2021, ACS
Fig. 17 (a) Synthetic approach of Pd-MOF: BUT-33(Pd); (b) PXRD patterns of BUT-33(Pd) after different conditions treatments[69]. Copyright 2021, ACS
Fig. 18 (a) The as-synthesized achiral UiO-68-Me was converted to chiral UiO-68-M via PSE of H2LM; (b) PXRD patterns of UiO-68-Cu after treatment in different solutions for 24 h[71]. Copyright 2018, ACS
Fig. 19 (a) Scheme showing the one-step surface polymerization of HKUST-1 to afford hydrophobic HKUST-1-P composite; (b) PXRD profiles of HKUST-1 and HKUST-1-P before and after treatment in water for 3 days[74]. Copyright 2020, Chinese Chemical Society
Fig. 20 (a, b) The 12-connected Zr6 node and the spirobifluorene-linker H4L in Zr-IAM-4; (c, d) 3D framework of Zr-IAM-4 without and with a two-fold interpenetrating structure; (e) PXRD patterns of Zr-IAM-4 and Eu-IAM-4 upon treatment in boiling water and acidic and basic solutions for 24 h[76]. Copyright 2020, ACS
[1]
Furukawa H, Cordova K E, O’Keeffe M, Yaghi O M. Science, 2013, 341(6149): 1230444.

doi: 10.1126/science.1230444
[2]
Li B, Wen H M, Cui Y J, Zhou W, Qian G D, Chen B L. Adv. Mater., 2016, 28(40): 8819.

doi: 10.1002/adma.v28.40
[3]
Zhu D R, Zhou J, Yang J, Bao W W, Shen X. J. Nanjing Univ. Tech. Nat. Sci. Ed., 2007, 29(3): 103.
(朱敦如, 周俊, 杨捷, 包魏魏, 沈旋. 南京工业大学学报(自然科学版), 2007, 29(3): 103.).
[4]
Wang J, Zhang Y, Su Y, Liu X, Zhang P X, Lin R B, Chen S X, Deng Q, Zeng Z L, Deng S G, Chen B L. Nat. Commun., 2022, 13: 200.

doi: 10.1038/s41467-021-27929-7 pmid: 35017555
[5]
Li J, Huang H L, Xue W J, Sun K, Song X H, Wu C R, Nie L, Li Y, Liu C Y, Pan Y, Jiang H L, Mei D H, Zhong C L. Nat. Catal., 2021, 4(8): 719.

doi: 10.1038/s41929-021-00665-3
[6]
Feng X, Ren Y W, Jiang H F. Prog. Chem., 2020, 32(11): 1697.
(封啸, 任颜卫, 江焕峰. 化学进展, 2020, 32(11): 1697.).

doi: 10.7536/PC200407
[7]
Li Z H, Zeng H, Zeng G, Ru C Y, Li G H, Yan W F, Shi Z, Feng S H. Angew. Chem. Int. Ed., 2021, 60(51): 26577.

doi: 10.1002/anie.v60.51
[8]
Lai X Y, Wang Z Y, Zheng Y T, Chen Y M. Prog. Chem., 2019, 31(6): 783.
(赖欣宜, 王志勇, 郑永太, 陈永明. 化学进展, 2019, 31(6): 783.).

doi: 10.7536/PC181029
[9]
Li H L, Eddaoudi M, O'Keeffe M, Yaghi O M. Nature, 1999, 402(6759): 276.

doi: 10.1038/46248
[10]
Chui S S Y, Lo S M F, Charmant J P H, Orpen A G, Williams I D. Science, 1999, 283(5405): 1148.

pmid: 10024237
[11]
Feng L, Wang K Y, Day G S, Ryder M R, Zhou H C. Chem. Rev., 2020, 120(23): 13087.

doi: 10.1021/acs.chemrev.0c00722
[12]
Yuan S, Feng L, Wang K C, Pang J D, Bosch M, Lollar C, Sun Y J, Qin J S, Yang X Y, Zhang P, Wang Q, Zou L F, Zhang Y M, Zhang L L, Fang Y, Li J L, Zhou H C. Adv. Mater., 2018, 30(37): 1704303.

doi: 10.1002/adma.v30.37
[13]
Howarth A J, Liu Y Y, Li P, Li Z Y, Wang T C, Hupp J T, Farha O K. Nat. Rev. Mater., 2016, 1(3): 15018.

doi: 10.1038/natrevmats.2015.18
[14]
Ding M L, Cai X C, Jiang H L. Chem. Sci., 2019, 10(44): 10209.

doi: 10.1039/C9SC03916C
[15]
Wang C H, Liu X L, Demir N K, Chen J P, Li K. Chem. Soc. Rev., 2016, 45(18): 5107.

doi: 10.1039/C6CS00362A
[16]
Devic T, Serre C. Chem. Soc. Rev., 2014, 43(16): 6097.

doi: 10.1039/C4CS00081A
[17]
FÉrey G, Serre C, Mellot-Draznieks C, Millange F, SurblÉ S, Dutour J, Margiolaki I. Angew. Chem. Int. Ed., 2004, 43(46): 6296.

doi: 10.1002/anie.200460592
[18]
FÉrey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, SurblÉ S, Margiolaki I. Science, 2005, 309(5743): 2040.

doi: 10.1126/science.1116275
[19]
Park K S, Ni Z, CôtÉ A P, Choi J Y, Huang R D, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M. Proc. Natl. Acad. Sci. U. S. A., 2006, 103(27): 10186.

doi: 10.1073/pnas.0602439103
[20]
Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. J. Am. Chem. Soc., 2008, 130(42): 13850.

doi: 10.1021/ja8057953
[21]
Low J J, Benin A I, Jakubczak P, Abrahamian J F, Faheem S A, Willis R R. J. Am. Chem. Soc., 2009, 131(43): 15834.

doi: 10.1021/ja9061344
[22]
Kang I J, Khan N A, Haque E, Jhung S H. Chem. Eur. J., 2011, 17(23): 6437.

doi: 10.1002/chem.v17.23
[23]
Moumen E, Assen A H, Adil K, Belmabkhout Y. Coord. Chem. Rev., 2021, 443: 214020.

doi: 10.1016/j.ccr.2021.214020
[24]
Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O'Keeffe M, Yaghi O M. Science, 2008, 319(5865): 939.

doi: 10.1126/science.1152516 pmid: 18276887
[25]
Wang Z S, Li M, Peng Y L, Zhang Z J, Chen W, Huang X C. Angew. Chem. Int. Ed., 2019, 58(45): 16071.

doi: 10.1002/anie.v58.45
[26]
Colombo V, Galli S, Choi H J, Han G D, Maspero A, Palmisano G, Masciocchi N, Long J R. Chem. Sci., 2011, 2(7): 1311.

doi: 10.1039/c1sc00136a
[27]
He T, Huang Z H, Yuan S, Lv X L, Kong X J, Zou X D, Zhou H C, Li J R. J. Am. Chem. Soc., 2020, 142(31): 13491.

doi: 10.1021/jacs.0c05074
[28]
He T, Kong X J, Bian Z X, Zhang Y Z, Si G R, Xie L H, Wu X Q, Huang H L, Chang Z, Bu X H, Zaworotko M J, Nie Z R, Li J R. Nat. Mater., 2022, 21(6): 689.

doi: 10.1038/s41563-022-01237-x
[29]
Shi Z L, Tao Y, Wu J S, Zhang C Z, He H L, Long L L, Lee Y J, Li T, Zhang Y B. J. Am. Chem. Soc., 2020, 142(6): 2750.

doi: 10.1021/jacs.9b12879
[30]
Lin J B, Nguyen T T T, Vaidhyanathan R, Burner J, Taylor J M, Durekova H, Akhtar F, Mah R K, Ghaffari-Nik O, Marx S, Fylstra N, Iremonger S S, Dawson K W, Sarkar P, Hovington P, Rajendran A, Woo T K, Shimizu G K H. Science, 2021, 374(6574): 1464.

doi: 10.1126/science.abi7281
[31]
Serre C, Millange F, Thouvenot C, Noguès M, Marsolier G, Louër D, FÉrey G. J. Am. Chem. Soc., 2002, 124(45): 13519.

doi: 10.1021/ja0276974
[32]
Seo Y K, Yoon J W, Lee J S, Hwang Y K, Jun C H, Chang J S, Wuttke S, Bazin P, Vimont A, Daturi M, Bourrelly S, Llewellyn P L, Horcajada P, Serre C, FÉrey G. Adv. Mater., 2012, 24(6): 806.

doi: 10.1002/adma.201104084
[33]
Liu T F, Zou L F, Feng D W, Chen Y P, Fordham S, Wang X, Liu Y Y, Zhou H C. J. Am. Chem. Soc., 2014, 136(22): 7813.

doi: 10.1021/ja5023283
[34]
Lian X Z, Feng D W, Chen Y P, Liu T F, Wang X, Zhou H C. Chem. Sci., 2015, 6(12): 7044.

doi: 10.1039/C5SC02587G
[35]
Abtab S M T, Alezi D, Bhatt P M, Shkurenko A, Belmabkhout Y, Aggarwal H, Aggarwal H, Weseliński Ł J, Alsadun N, Samin U, Hedhili M N, Eddaoudi M. Chem, 2018, 4(1): 94.

doi: 10.1016/j.chempr.2017.11.005
[36]
Zhang J, Li P, Zhang X, Ma X, Wang B. Acta Chim. Sinica, 2020, 78: 597.

doi: 10.6023/A20050153
(张晋维, 李平, 张馨凝, 马小杰, 王博. 化学学报, 2020, 78: 597.).

doi: 10.6023/A20050153
[37]
Jian M P, Qiu R S, Xia Y, Lu J, Chen Y, Gu Q F, Liu R P, Hu C Z, Qu J H, Wang H T, Zhang X W. Sci. Adv., 2020, 6(23): eaay3998.

doi: 10.1126/sciadv.aay3998
[38]
Evangelou D, Pournara A, Tziasiou C, Andreou E, Armatas G S, Manos M J. Inorg. Chem., 2022, 61(4): 2017.

doi: 10.1021/acs.inorgchem.1c03199
[39]
Gu Y M, Qi H F, Sun T T, Liu X W, Qadir S, Sun T J, Li D F, Zhao S S, Fairen-Jimenez D, Wang S D. Chem. Mater., 2022, 34(6): 2708.

doi: 10.1021/acs.chemmater.1c04168
[40]
Bai Y, Dou Y B, Xie L H, Rutledge W, Li J R, Zhou H C. Chem. Soc. Rev., 2016, 45(8): 2327.

doi: 10.1039/C5CS00837A
[41]
Cichocka M O, Liang Z Z, Feng D W, Back S, Siahrostami S, Wang X, Samperisi L, Sun Y J, Xu H Y, Hedin N, Zheng H Q, Zou X D, Zhou H C, Huang Z H. J. Am. Chem. Soc., 2020, 142(36): 15386.

doi: 10.1021/jacs.0c06329
[42]
Wang X N, Zhang Y, Shi Z X, Lu T T, Wang Q, Li B. ACS Appl. Mater. Interfaces, 2021, 13(45): 54217.

doi: 10.1021/acsami.1c18130
[43]
Yang L T, Cai P Y, Zhang L L, Xu X Y, Yakovenko A A, Wang Q, Pang J D, Yuan S, Zou X D, Huang N, Huang Z H, Zhou H C. J. Am. Chem. Soc., 2021, 143(31): 12129.

doi: 10.1021/jacs.1c03960
[44]
Feng D W, Gu Z Y, Li J R, Jiang H L, Wei Z W, Zhou H C. Angew. Chem. Int. Ed., 2012, 51(41): 10307.

doi: 10.1002/anie.201204475
[45]
Deria P, Mondloch J E, Tylianakis E, Ghosh P, Bury W, Snurr R Q, Hupp J T, Farha O K. J. Am. Chem. Soc., 2013, 135(45): 16801.

doi: 10.1021/ja408959g
[46]
Yang S L, Li G, Guo M Y, Liu W S, Bu R, Gao E Q. J. Am. Chem. Soc., 2021, 143(23): 8838.

doi: 10.1021/jacs.1c03432
[47]
Jiang H, Yang K W, Zhao X X, Zhang W Q, Liu Y, Jiang J W, Cui Y. J. Am. Chem. Soc., 2021, 143(1): 390.

doi: 10.1021/jacs.0c11276 pmid: 33356210
[48]
Wang S J, Ly H G T, Wahiduzzaman M, Simms C, Dovgaliuk I, Tissot A, Maurin G, Parac-Vogt T N, Serre C. Nat. Commun., 2022, 13: 1284.

doi: 10.1038/s41467-022-28886-5
[49]
Salcedo-Abraira P, Babaryk A A, Montero-Lanzuela E, Contreras-Almengor O R, Cabrero-Antonino M, Grape E S, Willhammar T, NavalÓn S, Elkäim E, García H, Horcajada P. Adv. Mater., 2021, 33(52): 2106627.

doi: 10.1002/adma.v33.52
[50]
Xing K, Fan R Q, Liu X Y, Gai S, Chen W, Yang Y L, Li J. Chem. Commun., 2020, 56(4): 631.

doi: 10.1039/C9CC07869J
[51]
Wang X, Qin T, Bao S S, Zhang Y C, Shen X, Zheng L M, Zhu D R. J. Mater. Chem. A, 2016, 4(42): 16484.

doi: 10.1039/C6TA06792A
[52]
Zhao J, He X, Zhang Y C, Zhu J, Shen X, Zhu D R. Cryst. Growth Des., 2017, 17(10): 5524.

doi: 10.1021/acs.cgd.7b01061
[53]
Zhang S L, Xie Y X, Yang M R, Zhu D R. Inorg. Chem. Front., 2022, 9(6): 1134.

doi: 10.1039/D1QI01610E
[54]
Lv X L, Feng L, Xie L H, He T, Wu W, Wang K Y, Si G R, Wang B, Li J R, Zhou H C. J. Am. Chem. Soc., 2021, 143(7): 2784.

doi: 10.1021/jacs.0c11546
[55]
Lv X L, Feng L, Wang K Y, Xie L H, He T, Wu W, Li J R, Zhou H C. Angew. Chem. Int. Ed., 2021, 60(4): 2053.

doi: 10.1002/anie.v60.4
[56]
Zhang X, Wang B, Alsalme A, Xiang S C, Zhang Z J, Chen B L. Coord. Chem. Rev., 2020, 423: 213507.

doi: 10.1016/j.ccr.2020.213507
[57]
Padial N M, Castells-Gil J, Almora-Barrios N, Romero-Angel M, da Silva I, Barawi M, García-Sánchez A, de la Peña O’Shea V A, Martí-Gastaldo C. J. Am. Chem. Soc., 2019, 141(33): 13124.

doi: 10.1021/jacs.9b04915
[58]
Chiong J A, Zhu J, Bailey J B, Kalaj M, Subramanian R H, Xu W Q, Cohen S M, Tezcan F A. J. Am. Chem. Soc., 2020, 142(15): 6907.

doi: 10.1021/jacs.0c01626
[59]
Lai Q X, Chu Z Q, Xiao X Y, Dai D J, Song T, Luo T Y, Tang W L, Feng X, Zhang Z Y, Li T, Xiao H, Su J, Liu C. Chem. Commun., 2022, 58(22): 3601.

doi: 10.1039/D2CC00213B
[60]
Xiang F H, Zhang H, Yang Y S, Li L, Que Z N, Chen L J, Yuan Z, Chen S M, Yao Z Z, Fu J W, Xiang S C, Chen B L, Zhang Z J. Angew. Chem. Int. Ed., 2023, 62(13): e202300638.
[61]
Chen Y, Wang B, Wang X Q, Xie L H, Li J P, Xie Y B, Li J R. ACS Appl. Mater. Interfaces, 2017, 9(32): 27027.

doi: 10.1021/acsami.7b07920
[62]
Zhou D D, Chen P, Wang C, Wang S S, Du Y F, Yan H, Ye Z M, He C T, Huang R K, Mo Z W, Huang N Y, Zhang J P. Nat. Mater., 2019, 18(9): 994.

doi: 10.1038/s41563-019-0427-z
[63]
Zhu N X, Wei Z W, Chen C X, Wang D W, Cao C C, Qiu Q F, Jiang J J, Wang H P, Su C Y. Angew. Chem. Int. Ed., 2019, 58(47): 17033.

doi: 10.1002/anie.v58.47
[64]
Zhu N X, Wei Z W, Chen C X, Xiong X H, Xiong Y Y, Zeng Z, Wang W, Jiang J J, Fan Y N, Su C Y. Angew. Chem. Int. Ed., 2022, 61(4): e202112097.
[65]
Qin T, Gong J, Ma J H, Wang X, Wang Y H, Xu Y, Shen X, Zhu D R. Chem. Commun., 2014, 50(100): 15886.

doi: 10.1039/C4CC06588C
[66]
Geng S B, Lin E, Li X, Liu W S, Wang T, Wang Z F, Sensharma D, Darwish S, Andaloussi Y H, Pham T, Cheng P, Zaworotko M J, Chen Y, Zhang Z J. J. Am. Chem. Soc., 2021, 143(23): 8654.

doi: 10.1021/jacs.1c02108
[67]
Zhai Q G, Bu X H, Zhao X, Li D S, Feng P Y. Acc. Chem. Res., 2017, 50(2): 407.

doi: 10.1021/acs.accounts.6b00526
[68]
Yang H J, Peng F, Hong A N, Wang Y X, Bu X H, Feng P Y. J. Am. Chem. Soc., 2021, 143(36): 14470.

doi: 10.1021/jacs.1c07277
[69]
He T, Kong X J, Zhou J, Zhao C, Wang K C, Wu X Q, Lv X L, Si G R, Li J R, Nie Z R. J. Am. Chem. Soc., 2021, 143(26): 9901.

doi: 10.1021/jacs.1c04077
[70]
Nguyen H T T, Tu T N, Nguyen M V, Lo T H N, Furukawa H, Nguyen N N, Nguyen M D. ACS Appl. Mater. Interfaces, 2018, 10(41): 35462.

doi: 10.1021/acsami.8b11037
[71]
Tan C X, Han X, Li Z J, Liu Y, Cui Y. J. Am. Chem. Soc., 2018, 140(47): 16229.

doi: 10.1021/jacs.8b09606
[72]
Feng L, Yuan S, Qin J S, Wang Y, Kirchon A, Qiu D, Cheng L, Madrahimov S T, Zhou H C. Matter, 2019, 1(1): 156.

doi: 10.1016/j.matt.2019.02.002
[73]
Cao L H, Yang Y, Tang X H, Wang X, Yin Z. Cryst. Growth Des., 2022, 22(1): 37.
[74]
Ding M L, Jiang H L. CCS Chem., 2021, 3(8): 2740.

doi: 10.31635/ccschem.020.202000515
[75]
Lv X L, Yuan S, Xie L H, Darke H F, Chen Y, He T, Dong C, Wang B, Zhang Y Z, Li J R, Zhou H C. J. Am. Chem. Soc., 2019, 141(26): 10283.

doi: 10.1021/jacs.9b02947
[76]
Duan Z G, Li Y, Xiao X, Huang X L, Li X T, Li Y Y, Zhang C, Zhang H, Li L, Lin Z H, Zhao Y G, Huang W. ACS Appl. Mater. Interfaces, 2020, 12(16): 18715.

doi: 10.1021/acsami.0c03336
[1] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[2] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[3] Peng Ning, Yunhui Cheng, Zhou Xu, Li Ding, Maolong Chen. Application of Metal-Organic Framework Materials in Enrichment of Active Peptides [J]. Progress in Chemistry, 2020, 32(4): 497-504.
[4] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[5] Xiaohan Wang, Caixia Liu, Chunfeng Song, Degang Ma, Zhenguo Li, Qingling Liu. Application of Metal-Organic Frameworks for Low-Temperature Selective Catalytic Reduction of NO with NH3 [J]. Progress in Chemistry, 2020, 32(12): 1917-1929.
[6] Yuanming Tan, Hao Meng, Xia Zhang. Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes [J]. Progress in Chemistry, 2019, 31(7): 980-995.
[7] Xinyi Lai, Zhiyong Wang, Yongtai Zheng, Yongming Chen. Nanoscale Metal Organic Frameworks for Drug Delivery [J]. Progress in Chemistry, 2019, 31(6): 783-790.
[8] Jiawei Li, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Chemical Fixation of Carbon Dioxide [J]. Progress in Chemistry, 2019, 31(10): 1350-1361.
[9] Yu Dong, Haibo Li, Jin Li, Lei Feng, Zhiwei Zhang*. Synthesis of Homoharringtonine and Harringtonine [J]. Progress in Chemistry, 2018, 30(12): 1827-1835.
[10] Yu Yin*, Zhuangzhuang Zhang, Dan Xu, Zhihao Wen, Zhifeng Yang, Aihua Yuan. π Complexation Adsorbents Based on Porous Materials:Preparation and Application [J]. Progress in Chemistry, 2017, 29(6): 628-636.
[11] Jiang Ning, Deng Zhiyong, Wang Gongying, Liu Shaoying. Preparation of Metal-Organic Frameworks and Application for CO2 Adsorption and Separation [J]. Progress in Chemistry, 2014, 26(10): 1645-1654.
[12] Wang Nanfang, Liu Suqin*. Preparation and Properties of Separation Membranes for Vanadium Redox Flow Battery [J]. Progress in Chemistry, 2013, 25(01): 60-68.
[13] . Bismuth (V)-Contained Semiconductor Compounds and Their Applications in Heterogeneous Photocatalysis [J]. Progress in Chemistry, 2010, 22(09): 1729-1734.
[14] Mu Cuizhi,Xu Feng*,Lei Wei. Application of Functional Metal-Organic Framework Materials [J]. Progress in Chemistry, 2007, 19(9): 1345-1356.
[15] Wu Zhenyu,Zhang Yunhong,Wang Hui,Ma Fengqi. Research on Design and Synthesis of Cyclic Peptides [J]. Progress in Chemistry, 2002, 14(02): 113-.