中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (3): 390-406 DOI: 10.7536/PC220913 Previous Articles   Next Articles

• Review •

Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery

Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua()   

  1. Research Institute of Chemical Defense, Beijing Key Laboratory of Advanced Chemical Energy Storage Technology and Materials,Beijing 100191, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: wen_yuehua@126.com
  • Supported by:
    National Natural Science Foundation of China(21975284)
Richhtml ( 98 ) PDF ( 1986 ) Cited
Export

EndNote

Ris

BibTeX

With the rapid development of portable electronic devices, electric vehicles, and smart grids, there is an increasing interest in high-energy-density lithium metal batteries. Uneven Li stripping or deposition on the surface of lithium metal will lead to the growth of lithium dendrites, which can easily pierce the separator and cause the short circuit in the battery. Moreover, the highly reactive lithium metal will continue to react with the electrolyte, resulting in an unstable solid electrolyte. interfacial (SEI) film and irreversible capacity loss. Taking high-energy-density and high safety into account is a key scientific problem that needs to be solved urgently in the development and application of lithium metal batteries. The interaction of strong electron withdrawing group (C≡N) in polyacrylonitrile (PAN) polymer and C=O in carbonate solvent can form a more stable SEI film. As a lithium anode coating, PAN can also inhibit the growth of lithium dendrites. In addition, due to the low lowest unoccupied molecular orbital, high electrochemical stability and wide electrochemical window, PAN can be regard as polymer electrolytes for lithium metal batteries, and matched with a high-voltage cathode to achieve both high energy density and safety. Thus, PAN polymer has significant potential application in electrolytes for lithium metal batteries. This review mainly starts from the different states of electrolytes (liquid, gel, and solid state). Recent research development of PAN polymer as separators and lithium anode protective layers in liquid electrolytes, as well as its application in gel electrolytes and solid-state electrolytes are presented. Finally, the review prospects the development trend of PAN polymer in lithium metal battery electrolytes.

Contents

1 Introduction

2 The application of PAN in liquid state electrolytes

2.1 As separator

2.2 As lithium anode protective layers

3 The application of PAN in gel electrolytes

4 The application of PAN in solid-state electrolyte

4.1 Monolayer electrolytes containing PAN

4.2 Heterogeneous multilayer electrolytes containing PAN

4.3 PAN electrospinning fiber membrane

5 Conclusion and outlook

Table 1 The PAN-based separators and their physical performance
Fig. 1 Illustration of Li-S batteries with (a) conventional PP (Celgard) separator and (b) APANF separator; (c) Voltage profiles of symmetrical cells with different separators[44]. Copyright 2020, Elsevier
Fig. 2 (a) The merits of a PBA@PAN separator in Li metal batteries; The SEM images and crystalline structures of (b) FeFe-PB, (c) NiFe-PBA, and (d) NiCo-PBA[46]. Copyright 2022, American Chemical Society
Fig. 3 (a) Cathodic linear sweep at 1 mV·s-1 scan rate; (b) Galvanostatic Li deposition curves at 1 mA·cm-2 in 5 M LiFSI electrolytes without and with AN additive; (c) Calculated reduction potential of the representative Li+ solvation structures; (d) Calculated reduction potential of Li+-AN, Li+-EC, Li+-DEC, and Li+-FSI- pairs[51]. Copyright 2021, Elsevier
Fig. 4 (a) Electrostatic potential maps of PAN and EC; (b) Schematic illustration of the dipole-dipole interaction between the C≡N group of PAN and the C=O group of EC; (c) Cross-sectional and surface SEM morphologies of bare Li and Li sheets coated with polar polymer network after cycling under 5 mA·cm-2 [55]. Copyright 2019, Royal Society of Chemistry (d) Binding energy between the two polymers and solvent molecules; (e) Li/ELPAN and Li/ELPS after 5 cycles in a Li-Li symmetric battery[56]. Copyright 2022, Elsevier
Table 2 Solid electrolyte based on blending PAN polymer with different fillers
Fig. 5 ( a ) Synthetic routes of the PAN in situ; ( b ) Schematic illustration of the composite SPE with SiO2 networks[22]. Copyright 2022, Elsevier
Fig. 6 ( a ) The function mechanism of PAN-modified SCN electrolyte interphase on the surface of LLZTO electrolyte[94]. Copyright 2021, Wiley ( b )1H NMR spectra of PAN and PAN with different amounts of LLZTO; ( c ) Schematic illustration showing the interparticle Li+ transport in the bulk of the composite electrolyte[95]. Copyright 2021, American Chemical Society
Fig. 7 (a) Schematic diagram of the heterogeneous multilayered solid electrolyte[96]. Copyright 2019, Wiley (b) Illustrations of the solid full battery with pristine LATP and DPCE[97]. Copyright 2019, American Chemical Society. (c) Schematic diagram of the NCM622‖heterogeneous dual-layered electrolyte membrane‖Li battery[98]. Copyright 2021, Elsevier. (d) Schematic illustration of the preparation process for SPE membrane[99]. Copyright 2021, Elsevier. (e) The preparation diagram of the double-layer UFF/ PEO/PAN/LiTFSI SPE[100]. Copyright 2021, Wiley
Fig. 8 Schematic illustrations of the micro-wetting design in a solid- state battery using thin and high-strength PAN network infused with PEO/LiTFSI electrolyte (PLN). (a) A schematic diagram of the battery assembly; (b) the position of the liquid electrolyte and the vapor generation process; (c) the mixed solvent forming fast-ion-transport channels at the internal PAN/PEO interface inside PLN; (d) the adsorption of TFSI- anions by the PAN network; (e) LiPO2F2, as the decomposition product of the electrolyte vapor, is generated at the external anode/electrolyte interface[103]. Copyright 2021, Royal Society of Chemistry
[1]
Fan L, Wei S Y, Li S Y, Li Q, Lu Y Y. Adv. Energy Mater., 2018, 8(11): 1702657.
[2]
Cui Y, Wan J Y, Ye Y S, Liu K, Chou L Y, Cui Y,. Nano Lett., 2020, 20(3): 1686.

doi: 10.1021/acs.nanolett.9b04815 pmid: 32020809
[3]
Zhang D C, Xu X J, Qin Y L, Ji S M, Huo Y P, Wang Z S, Liu Z B, Shen J D, Liu J. Chem. Eur. J., 2020, 26(8): 1720.

doi: 10.1002/chem.v26.8
[4]
Fan L Z, He H C, Nan C W. Nat. Rev. Mater., 2021, 6(11): 1003.

doi: 10.1038/s41578-021-00320-0
[5]
Manthiram A, Yu X W, Wang S F. Nat. Rev. Mater., 2017, 2(4): 16103.

doi: 10.1038/natrevmats.2016.103
[6]
Su A Y, Guo P L, Li J, Kan D X, Pang Q, Li T Q, Sun J Q, Chen G, Wei Y J. J. Mater. Chem. A, 2020, 8(9): 4775.

doi: 10.1039/C9TA05804D
[7]
Fu C Y, Homann G, Grissa R, Rentsch D, Zhao W G, Gouveia T, Falgayrat A, Lin R Y, Fantini S, Battaglia C. Adv. Energy Mater., 2022, 12(27): 2200412.
[8]
Guan X Z, Wang A X, Liu S, Li G J, Liang F, Yang Y W, Liu X J, Luo J Y. Small, 2018, 14(37): 1801423.
[9]
Chang C H, Chung S H, Manthiram A. Adv. Sustainable Syst., 2017, 1(1/2): 1600034.
[10]
Lin D C, Liu Y Y, Cui Y. Nat. Nanotechnol., 2017, 12(3): 194.

doi: 10.1038/nnano.2017.16
[11]
Zhang H, Eshetu G G, Judez X, Li C M, Rodriguez-Martínez L M, Armand M. Angew. Chem. Int. Ed., 2018, 57(46): 15002.

doi: 10.1002/anie.201712702 pmid: 29442418
[12]
Yang P, Gao X W, Tian X L, Shu C Y, Yi Y K, Liu P, Wang T, Qu L, Tian B B, Li M T, Tang W, Yang B L, Goodenough J B. ACS Energy Lett., 2020, 5(5): 1681.

doi: 10.1021/acsenergylett.0c00412
[13]
Jiang T L, He P G, Wang G X, Shen Y, Nan C W, Fan L Z. Adv. Energy Mater., 2020, 10(12): 2070052.
[14]
Yang X F, Jiang M, Gao X J, Bao D N, Sun Q, Holmes N, Duan H, Mukherjee S, Adair K, Zhao C T, Liang J W, Li W H, Li J J, Liu Y, Huang H, Zhang L, Lu S G, Lu Q W, Li R Y, Singh C V, Sun X L. Energy Environ. Sci., 2020, 13(5): 1318.

doi: 10.1039/D0EE00342E
[15]
Hu P, Chai J C, Duan Y L, Liu Z H, Cui G L, Chen L Q. J. Mater. Chem. A, 2016, 4(26): 10070.

doi: 10.1039/C6TA02907H
[16]
Wang J, Yang J, Xie J, Xu N. Adv. Mater., 2002, 14(13/14): 963.

doi: 10.1002/(ISSN)1521-4095
[17]
Ahmed M S, Lee S, Agostini M, Jeong M G, Jung H G, Ming J, Sun Y K, Kim J, Hwang J Y. Adv. Sci., 2021, 8(21): 2101123.
[18]
Luo L, Xu Y L, Zhang H, Han X N, Dong H, Xu X, Chen C, Zhang Y, Lin J H. ACS Appl. Mater. Interfaces, 2016, 8(12): 8154.

doi: 10.1021/acsami.6b03046
[19]
Chen Y, Liu S J, Cheng S K, Gao S Y, Chai J C, Jiang Q Y, Liu Z H, Liu X Q, Liu J Y, Xie M, Dai W B. ACS Appl. Energy Mater., 2022, 5(3): 3072.

doi: 10.1021/acsaem.1c03692
[20]
Song Z B, Wang L, Yang K, Gong Y, Yang L Y, Liu X H, Pan F. Mater. Today Energy, 2022, 30: 101153.
[21]
Ma Y, Ma J, Cui G L. Energy Storage Mater., 2019, 20: 146.
[22]
Yao M, Ruan Q Q, Yu T H, Zhang H T, Zhang S J. Energy Storage Mater., 2022, 44: 93.
[23]
Tsutsumi H, Doi S, Onimura K, Oishi T. Electrochemistry, 2002, 70(2): 94.

doi: 10.5796/electrochemistry.70.94
[24]
Gopalan A, Santhosh P, Manesh K, Nho J, Kim S, Hwang C, Lee K. J. Membr. Sci., 2008, 325(2): 683.

doi: 10.1016/j.memsci.2008.08.047
[25]
Cho T H, Tanaka M, Onishi H, Kondo Y, Nakamura T, Yamazaki H, Tanase S, Sakai T. J. Power Sources, 2008, 181(1): 155.

doi: 10.1016/j.jpowsour.2008.03.010
[26]
Cho T H, Sakai T, Tanase S, Kimura K, Kondo Y, Tarao T, Tanaka M. Electrochem. Solid-State Lett., 2007, 10(7): A159.

doi: 10.1149/1.2730727
[27]
Yuan X T, Razzaq A A, Chen Y J, Lian Y B, Zhao X H, Peng Y, Deng Z. Chin. Chemical Lett., 2021, 32(2): 890.

doi: 10.1016/j.cclet.2020.07.008
[28]
Yuan F, Chen H Z, Yang H Y, Li H Y, Wang M. Mater. Chem. Phys., 2005, 89(2/3): 390.

doi: 10.1016/j.matchemphys.2004.09.032
[29]
Lee Y M, Kim J W, Choi N S, Lee J A, Seol W H, Park J K. J. Power Sources, 2005, 139(1/2): 235.

doi: 10.1016/j.jpowsour.2004.06.055
[30]
Zhang S S. J. Power Sources, 2007, 164(1): 351.

doi: 10.1016/j.jpowsour.2006.10.065
[31]
Wang J Q, Zhang P, Liang B, Liu Y X, Xu T, Wang L F, Cao B, Pan K. ACS Appl. Mater. Interfaces, 2016, 8(9): 6211.

doi: 10.1021/acsami.5b12723
[32]
Woo Y C, Tijing L D, Park M J, Yao M W, Choi J S, Lee S, Kim S H, An K J, Shon H K. Desalination, 2017, 403: 187.

doi: 10.1016/j.desal.2015.09.009
[33]
Ma X J, Kolla P, Yang R D, Wang Z, Zhao Y, Smirnova A L, Fong H. Electrochimica Acta, 2017, 236: 417.

doi: 10.1016/j.electacta.2017.03.205
[34]
Lopez J, Pei A, Oh J Y, Wang G J N, Cui Y, Bao Z N. J. Am. Chem. Soc., 2018, 140(37): 11735.

doi: 10.1021/jacs.8b06047
[35]
Abraham K M, Alamgir M. J. Electrochem. Soc., 1990, 137(5): 1657.

doi: 10.1149/1.2086749
[36]
Lee J H, Manuel J, Choi H, Park W H, Ahn J H. Polymer, 2015, 68: 335.

doi: 10.1016/j.polymer.2015.04.055
[37]
Gao Y, Sang X, Chen Y F, Li Y, Liu B B, Sheng J L, Feng Y, Li L, Liu H Q, Wang X W, Kuang C X, Zhai Y Y. J. Mater. Sci., 2020, 55(8): 3549.

doi: 10.1007/s10853-019-04218-9
[38]
Wang A A, Sun Z H, Ning R X, Liang J, Li L, Zhou X S. AIP Adv., 2019, 9(8): 085027.

doi: 10.1063/1.5116286
[39]
Chen W P, Wang X, Liang J Y, Chen Y, Ma W, Zhang S Y. Membranes, 2022, 12(2): 124.

doi: 10.3390/membranes12020124
[40]
Chen D X, Wang X, Liang J Y, Zhang Z, Chen W P. Membranes, 2021, 11(4): 267.

doi: 10.3390/membranes11040267
[41]
Gong W Z, Zhang Z, Wei S Y, Ruan S L, Shen C Y, Turng L S. J. Electrochem. Soc., 2020, 167(2): 020509.

doi: 10.1149/1945-7111/ab615f
[42]
Yusuf A, Avvaru V S, Dirican M, Sun C C, Wang D Y. Appl. Mater. Today, 2020, 20: 100675.
[43]
Kang S H, Jang J K, Jeong H Y, So S, Hong S K, Hong Y T, Yoon S J, Yu D M. ACS Appl. Energy Mater., 2022, 5(2): 2452.

doi: 10.1021/acsaem.1c03948
[44]
Hu M F, Ma Q Y, Yuan Y, Pan Y K, Chen M Q, Zhang Y Y, Long D H. Chem. Eng. J., 2020, 388: 124258.
[45]
Zhang L P, Feng G H, Li X L, Cui S Z, Ying S W, Feng X M, Mi L W, Chen W H. J. Membr. Sci., 2019, 577: 137.

doi: 10.1016/j.memsci.2019.02.002
[46]
Du M C, Peng Z H, Long X, Huang Z J, Lin Z W, Yang J H, Ding K, Chen L Y, Hong X J, Cai Y P, Zheng Q F. Nano Lett., 2022, 22(12): 4861.

doi: 10.1021/acs.nanolett.2c01243
[47]
Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X W. Energy Environ. Sci., 2014, 7(12): 3857.

doi: 10.1039/C4EE01432D
[48]
Zhang R, Li N W, Cheng X B, Yin Y X, Zhang Q, Guo Y G. Adv. Sci., 2017, 4(3): 1600445.
[49]
Cheng X B, Zhang R, Zhao C Z, Wei F, Zhang J G, Zhang Q. Adv. Sci., 2016, 3(3): 1500213.
[50]
Cheng X B, Zhang R, Zhao C Z, Zhang Q. Chem. Rev., 2017, 117(15): 10403.

doi: 10.1021/acs.chemrev.7b00115
[51]
Zhang J, Zhou M S, Shi J Y, Zhao Y F, Wen X Y, Su C C, Wu J Z, Guo J C. Nano Energy, 2021, 88: 106298.

doi: 10.1016/j.nanoen.2021.106298
[52]
Xu H Y, Li Q, Pan H Y, Qiu J L, Cao W Z, Yu X Q, Li H. Chin. Phys. B, 2019, 28(7): 078202.
[53]
Xu K. Chem. Rev., 2014, 114(23): 11503.

doi: 10.1021/cr500003w
[54]
Wang C, Sun X L, Yang L, Song D P, Wu Y, Ohsaka T, Matsumoto F, Wu J F. Adv. Mater. Interfaces, 2021, 8(1): 2001698.
[55]
Bae J, Qian Y M, Li Y T, Zhou X Y, Goodenough J B, Yu G H. Energy Environ. Sci., 2019, 12(11): 3319.

doi: 10.1039/C9EE02558H
[56]
Shi P, Liu Z Y, Zhang X Q, Chen X, Yao N, Xie J, Jin C B, Zhan Y X, Ye G, Huang J Q, Ifan E L S, Maria-Magdalena T, Zhang Q. J. Energy Chem., 2022, 64: 172.

doi: 10.1016/j.jechem.2021.04.045
[57]
Wang D D, Liu H X, Liu F, Ma G R, Yang J, Gu X D, Zhou M, Chen Z. Nano Lett., 2021, 21(11): 4757.

doi: 10.1021/acs.nanolett.1c01241
[58]
Manuel Stephan A. Eur. Polym. J., 2006, 42(1): 21.

doi: 10.1016/j.eurpolymj.2005.09.017
[59]
Cheng X L, Pan J, Zhao Y, Liao M, Peng H S. Adv. Energy Mater., 2018, 8(7): 1702184.
[60]
Yang Q, Deng N P, Cheng B W, Kang W M. Progress in Chemistry, 2021, 33(12): 2270.

doi: 10.7536/PC201145
(杨琪, 邓南平, 程博闻, 康卫民. 化学进展, 2021, 33(12): 2270.).

doi: 10.7536/PC201145
[61]
Wang S H, Kuo P L, Hsieh C T, Teng H. ACS Appl. Mater. Interfaces, 2014, 6(21): 19360.

doi: 10.1021/am505448a
[62]
Sun X X, Sun G W, Wang X H. Polymer, 2017, 108: 432.

doi: 10.1016/j.polymer.2016.12.026
[63]
Wu Q Y, Liang H Q, Gu L, Yu Y, Huang Y Q, Xu Z K. Polymer, 2016, 107: 54.

doi: 10.1016/j.polymer.2016.11.008
[64]
He C, Liu J, Li J, Zhu F, Zhao H. J. Memb. Sci., 2018, 560: 30.

doi: 10.1016/j.memsci.2018.05.013
[65]
Li S S, Ren W H, Huang Y, Zhou Q G, Luo C, Li Z Z, Li X, Wang M S, Cao H J. Electrochimica Acta, 2021, 391: 138950.

doi: 10.1016/j.electacta.2021.138950
[66]
Wang X L, Hao X J, Xia Y, Liang Y F, Xia X H, Tu J P. J. Membr. Sci., 2019, 582: 37.

doi: 10.1016/j.memsci.2019.03.048
[67]
Zhou D, He Y B, Liu R L, Liu M, Du H D, Li B H, Cai Q, Yang Q H, Kang F Y. Adv. Energy Mater., 2015, 5(15): 1500353.
[68]
Jeon Y M, Kim S, Lee M, Lee W B, Park J H. Adv. Energy Mater., 2020, 10(47): 2003114.
[69]
Zhang X, Zhao S, Fan W, Wang J, Li C. Electrochim. Acta, 2019, 301: 304.

doi: 10.1016/j.electacta.2019.01.156
[70]
Wang X Y, Fang Y J, Yan X D, Liu S L, Zhao X Y, Zhang L Z. Polymer, 2021, 230: 124038.
[71]
Cheng H, Yan C Y, Orenstein R, Dirican M, Wei S Z, Subjalearndee N, Zhang X W. Adv. Fiber Mater., 2022, 4(3): 532.

doi: 10.1007/s42765-021-00128-1
[72]
Yang X F, Adair K R, Gao X J, Sun X L. Energy Environ. Sci., 2021, 14(2): 643.

doi: 10.1039/D0EE02714F
[73]
Zheng Y, Yao Y Z, Ou J H, Li M, Luo D, Dou H Z, Li Z Q, Amine K, Yu A P, Chen Z W. Chem. Soc. Rev., 2020, 49(23): 8790.

doi: 10.1039/d0cs00305k pmid: 33107869
[74]
Tang W J, Tang S, Zhang C J, Ma Q T, Xiang Q, Yang Y W, Luo J Y. Adv. Energy Mater., 2018, 8(24): 1800866.
[75]
Zhang T F, He W J, Zhang W, Wang T, Li P, Sun Z M, Yu X B. Chem. Sci., 2020, 11(33): 8686.

doi: 10.1039/D0SC03121F
[76]
Barbosa J, Dias J, Lanceros-MÉndez S, Costa C. Membranes, 2018, 8(3): 45.

doi: 10.3390/membranes8030045
[77]
Oudenhoven J F M, Baggetto L, Notten P H L. Adv. Energy Mater., 2011, 1(1): 10.

doi: 10.1002/aenm.201000002
[78]
Li J Z, Huang X J, Chen L Q. J. Electrochem. Soc., 2000, 147(7): 2653.

doi: 10.1149/1.1393585
[79]
Zhang J X, Zhao N, Zhang M, Li Y Q, Chu P K, Guo X X, Di Z F, Wang X, Li H. Nano Energy, 2016, 28: 447.

doi: 10.1016/j.nanoen.2016.09.002
[80]
Yue L P, Ma J, Zhang J J, Zhao J W, Dong S M, Liu Z H, Cui G L, Chen L Q. Energy Storage Mater., 2016, 5: 139.
[81]
Yang T, Zheng J, Cheng Q, Hu Y Y, Chan C K. ACS Appl. Mater. Interfaces, 2017, 9(26): 21773.

doi: 10.1021/acsami.7b03806
[82]
Tran H K, Wu Y S, Chien W C, Wu S H, Jose R, Lue S J, Yang C C. ACS Appl. Energy Mater., 2020, 3(11): 11024.

doi: 10.1021/acsaem.0c02018
[83]
Hu S, Du L L, Zhang G, Zou W Y, Zhu Z, Xu L, Mai L Q. ACS Appl. Mater. Interfaces, 2021, 13(11): 13183.

doi: 10.1021/acsami.0c22635
[84]
Zhang X, Xu B Q, Lin Y H, Shen Y, Li L L, Nan C W. Solid State Ion., 2018, 327: 32.

doi: 10.1016/j.ssi.2018.10.023
[85]
Jia W S, Li Z L, Wu Z R, Wang L P, Wu B, Wang Y H, Cao Y, Li J Z. Solid State Ion., 2018, 315: 7.

doi: 10.1016/j.ssi.2017.11.026
[86]
Gao H C, Grundish N S, Zhao Y J, Zhou A J, Goodenough J B. Energy Mater. Adv., 2021, 2021: 1932952.
[87]
Liu L, Cai Y H, Zhao Z K, Ma C W, Li C L, Mu D B. Mater. Chem. Front., 2022, 6(4): 430.

doi: 10.1039/D1QM01508G
[88]
Liu C H, Sacci R L, Sahore R, Veith G M, Dudney N J, Chen X C. J. Power Sources, 2022, 527: 231165.
[89]
Ferry A, Edman L, Forsyth M, MacFarlane D R, Sun J Z. J. Appl. Phys., 1999, 86(4): 2346.

doi: 10.1063/1.371053
[90]
Wu B, Wang L P, Li Z L, Zhao M J, Chen K H, Liu S H, Pu Y Q, Li J Z. J. Electrochem. Soc., 2016, 163(10): A2248.

doi: 10.1149/2.0531610jes
[91]
Chen Y T, Chuang Y C, Su J H, Yu H C, Chen-Yang Y W. J. Power Sources, 2011, 196(5): 2802.

doi: 10.1016/j.jpowsour.2010.11.058
[92]
Pignanelli F, Romero M, Esteves M, Fernández-Werner L, Faccio R, Mombrú A W. Ionics, 2019, 25(6): 2607.

doi: 10.1007/s11581-018-2768-z
[93]
Liu W, Liu N, Sun J, Hsu P C, Li Y Z, Lee H W, Cui Y. Nano Lett., 2015, 15(4): 2740.

doi: 10.1021/acs.nanolett.5b00600
[94]
Yang Y N, Jiang F L, Li Y Q, Wang Z X, Zhang T. Angewandte Chemie Int. Ed., 2021, 60(45): 23922.

doi: 10.1002/anie.v60.45
[95]
Chen W P, Duan H, Shi J L, Qian Y M, Wan J, Zhang X D, Sheng H, Guan B, Wen R, Yin Y X, Xin S, Guo Y G, Wan L J. J. Am. Chem. Soc., 2021, 143(15): 5717.

doi: 10.1021/jacs.0c12965 pmid: 33843219
[96]
Duan H, Fan M, Chen W P, Li J Y, Wang P F, Wang W P, Shi J L, Yin Y X, Wan L J, Guo Y G. Adv. Mater., 2019, 31(12): 1807789.
[97]
Liang J Y, Zeng X X, Zhang X D, Zuo T T, Yan M, Yin Y X, Shi J L, Wu X W, Guo Y G, Wan L J. J. Am. Chem. Soc., 2019, 141(23): 9165.

doi: 10.1021/jacs.9b03517
[98]
Mu S, Huang W L, Sun W H, Zhao N, Jia M Y, Bi Z J, Guo X X. J. Energy Chem., 2021, 60: 162.

doi: 10.1016/j.jechem.2020.12.026
[99]
Li B Y, Su Q M, Liu C K, Wang Q S, Zhang M, Ding S K, Du G H, Xu B S. J. Power Sources, 2021, 496: 229835.
[100]
He F, Tang W J, Zhang X Y, Deng L J, Luo J Y. Adv. Mater., 2021, 33(45): 2105329.
[101]
Li D, Chen L, Wang T S, Fan L Z. ACS Appl. Mater. Interfaces, 2018, 10(8): 7069.

doi: 10.1021/acsami.7b18123
[102]
Gao L, Li J X, Sarmad B, Cheng B W, Kang W M, Deng N P. Nanoscale, 2020, 12(26): 14279.

doi: 10.1039/d0nr04244g pmid: 32609141
[103]
Shi P R, Ma J B, Huang Y F, Fu W B, Li S, Wang S W, Zhang D F, He Y B, Kang F Y. J. Mater. Chem. A, 2021, 9(25): 14344.

doi: 10.1039/D1TA03059K
[104]
Ma Y X, Wan J Y, Yang Y F, Ye Y S, Xiao X, Boyle D T, Burke W, Huang Z J, Chen H, Cui Y, Yu Z A, Oyakhire S T, Cui Y,. Adv. Energy Mater., 2022, 12(15): 2103720.
[105]
Zhang Z S, Zhang L, Liu Y Y, Yang T T, Wang Z W, Yan X L, Yu C. J. Mater. Chem. A, 2019, 7(40): 23173.

doi: 10.1039/C9TA08415K
[106]
Zhang D C, Xu X J, Ji S M, Wang Z S, Liu Z B, Shen J D, Hu R Z, Liu J, Zhu M. ACS Appl. Mater. Interfaces, 2020, 12(19): 21586.

doi: 10.1021/acsami.0c02291
[1] Dongrong Yang, Da Zhang, Kun Ren, Fupeng Li, Peng Dong, Jiaqing Zhang, Bin Yang, Feng Liang. All Solid-State Sodium Batteries and Its Interface Modification [J]. Progress in Chemistry, 2023, 35(8): 1177-1190.
[2] Xinye Liu, Zhichao Liang, Shanxing Wang, Yuanfu Deng, Guohua Chen. Carbon-Based Materials for Modification of Polyolefin Separators to Improve the Performance of Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1665-1678.
[3] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[4] Xiangye Li, Tianjiao Bai, Xin Weng, Bing Zhang, Zhenzhen Wang, Tieshi He. Application of Electrospun Fibers in Supercapacitors [J]. Progress in Chemistry, 2021, 33(7): 1159-1174.
[5] Linli Guo, Xin Zhang, Min Xiao, Shuanjin Wang, Dongmei Han, Yuezhong Meng. Two-Dimensional Materials Modified Separator Strategies of Suppressing the Shuttle Effect in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(7): 1212-1220.
[6] Yusen Ding, Pu Zhang, Hong Li, Wenhuan Zhu, Hao Wei. Research Status and Prospect of Li-Se Batteries [J]. Progress in Chemistry, 2021, 33(4): 610-632.
[7] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
[8] Hao Sun, Chengwei Song, Yuepeng Pang, Shiyou Zheng. Functional Design of Separator for Li-S Batteries [J]. Progress in Chemistry, 2020, 32(9): 1402-1411.
[9] Qingkai Zhang, Feng Liang, Yaochun Yao, Wenhui Ma, Bin Yang, Yongnian Dai. Sodium-Based Solid-State Electrolyte and Its Applications in Energy [J]. Progress in Chemistry, 2019, 31(1): 210-222.
[10] Kai Yang, Shengnan Zhang, Dongmei Han, Min Xiao, Shuanjin Wang*, Yuezhong Meng*. Multifunctional Lithium-Sulfur Battery Separator [J]. Progress in Chemistry, 2018, 30(12): 1942-1959.
[11] Gong Xue, Yang Jinlong, Jiang Yulin, Mu Shichun. Application of Electrospinning Technique in Power Lithium-Ion Batteries [J]. Progress in Chemistry, 2014, 26(01): 41-47.
[12] Wan Wenbo, Pu Weihua, Ai Desheng. Research Progress in Lithium Sulfur Battery [J]. Progress in Chemistry, 2013, 25(11): 1830-1841.
[13] Tao Li, Huo Zhipeng*, Pan Xu, Zhang Changneng, Dai Songyuan*. Development and Application of Low Molecular Mass Organogelators in Quasi-Solid-State Dye-Sensitized Solar Cells [J]. Progress in Chemistry, 2013, 25(06): 990-998.
[14] Huang Zheng, Chi Bo, Pu Jian, Li Jian*. New Development of Key Materials for High-Performance Lithium-Air Batteries [J]. Progress in Chemistry, 2013, 25(0203): 260-269.
[15] Wan Ajun, Tan Lianjiang. Gelation of Polyacrylonitrile Solution [J]. Progress in Chemistry, 2012, 24(0203): 370-376.