中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (8): 1177-1190 DOI: 10.7536/PC221220 Previous Articles   Next Articles

• Review •

All Solid-State Sodium Batteries and Its Interface Modification

Dongrong Yang1,2,3, Da Zhang1,2,3(), Kun Ren1,2,3, Fupeng Li1,2,3, Peng Dong1,2,3, Jiaqing Zhang1,2,3, Bin Yang1,2,3, Feng Liang1,2,3()   

  1. 1 Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology,Kunming 650093, China
    2 National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China
    3 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: liangfeng@kust.edu.cn (Feng Liang);zhangda@kust.edu.cn (Da Zhang)
  • Supported by:
    National Natural Science Foundation of China(12175089); National Natural Science Foundation of China(12205127); Key Research and Development Program of Yunnan Province(202103AF140006); Applied Basic Research Programs of Yunnan Provincial Science and Technology Department(202001AW070004)
Richhtml ( 74 ) PDF ( 666 ) Cited
Export

EndNote

Ris

BibTeX

All solid-state sodium batteries have great potential for portable electronics, electric vehicles, and large-scale energy storage applications due to the low cost of sodium, high security, and high energy density. However, the development and large-scale application of all-solid-state sodium ion batteries urgently need to solve the problems such as low ion conductivity of solid electrolyte, high charge-transfer impedance on interface, insufficient interfacial contact, and compatibility issues between electrodes and electrolytes solid electrolyte. Herein, combining the latest reports with our research findings, the research progress and development trend of β-Al2O3 electrolytes, NASICON electrolytes, sulfide electrolytes, polymer electrolytes, and composite electrolytes were summarized. The latest achievements in interface characteristics, the modification strategies of the interface between the electrodes and solid electrolytes and modification methods for surfaces of solid electrolytes were reviewed. Finally, the development direction of interface modification strategy for solid-state sodium ion batteries was prospected. This review have contributed to understand the interface science issues of all solid-state sodium ion batteries and provides a theoretical guidance for the development and application of solid-state sodium ion batteries.

Contents

1 Introduction

2 Solid-state electrolytes

3 Challenges for all solid-state sodium batteries

4 Interfaces engineering

4.1 Cathode/electrolyte interfaces

4.2 Anode/electrolytes interfaces

4.3 Structure design for interfaces engineering

5 Conclusion and future perspectives

Fig.1 Performance comparison of (a, b, c, d, e) inorganic solid electrolytes, and (f) solid polymer electrolytes[27]
Table 1 The characteristics, advantages, and disadvantages of common inorganic solid electrolytes[40,41]
Fig.2 (a) Crystal structures of β-Al2O3 and β″-Al2O3[26]; (b) schematic illustration of Na+ conducting pathways in Na3Zr2Si2PO12[27]; (c) crystal structures of the Na3PS4[26]; (d) schematic illustration of Na+ transport mechanism in polymer solid electrolytes[54]
Fig.3 Temperature-dependent Na+ conductivities of inorganic solid electrolytes[87]: (a) NASICON; (b) sulfide solid electrolytes; (c) polymer and composite solid electrolytes; (d) crystalline organic, anti-perovskites and borohydrides solid electrolytes
Fig.4 Schematic illustration of the SSBs
Fig.5 (a) Schematic of the interface for NVP|IL/SE|Na batteries[58]; (b) schematic of the Na2S-Na3PS4-CMK-3 composite cathode[95]; (c) preparation process for S-MSP20-Na3SbS4 cathode[96]; (d, e) schematic of plastic-crystal electrolyte and active material in composited cathode[97]; (f) cycling performance of the Na|PEO-SN-NaClO4/PAN-Na3Zr2Si2PO12-NaClO4|PB cell at 0.2 C[98]; and (g) illustration of the asymmetric solid electrolytes
Fig.6 (a) Schematic of PEALD process for Al2O3 layer[105]; (b) schematic of the CVD-grown graphene-like interlayer on NASICON surface[106]; (c) NaClO4/FEC modified surface of Na[107]; (d) schematic of the Na|SnS2-Na3Zr2Si2PO12 interface[108]; (e) contact model of SEs and sodium metallic[109]; (f) interfaces between Na-SiO2 composite and NASICON[110]
Fig.7 (a) Illustration of the interfaces between solid-state polymer and Na-C anode[112]; (b) voltage curves of the Na-C|PEO20NaFSI| Na-C and Na|PEO20NaFSI|Na batteries at a current density of 0.1, 0.2, and 0.3 mA[112]; (c) schematic of the cathode-supported solid electrolyte membrane[113]; (d) illustration of the Na2FeP2O7 and β''-Al2O3 integrated structure[114]; (e) schematic illustration of the Pt|Na3-xV2-xZrx(PO4)3|Pt battery[115]
[1]
Jiang Y P, Wang B, Liu A M, Song R S, Bao C Y, Ning Y, Wang F, Ruan T T, Wang D L, Zhou Y. Electrochimica Acta, 2020, 339: 135941.

doi: 10.1016/j.electacta.2020.135941
[2]
Wang F, Wang B, Ruan T T, Gao T T, Song R S, Jin F, Zhou Y, Wang D L, Liu H K, Dou S X. ACS Nano, 2019, 13(10): 12219.

doi: 10.1021/acsnano.9b07241 pmid: 31589407
[3]
Yadegari H, Sun X L. Trends Chem., 2020, 2(3): 241.

doi: 10.1016/j.trechm.2019.12.003
[4]
Sun Q, Liu J, Xiao B W, Wang B Q, Banis M, Yadegari H, Adair K R, Li R Y, Sun X L. Adv. Funct. Mater., 2019, 29(13): 1808332.

doi: 10.1002/adfm.v29.13
[5]
Senthilkumar S T, Go W, Han J, Pham Thi Thuy L, Kishor K, Kim Y, Kim Y,. J. Mater. Chem. A, 2019, 7(40): 22803.

doi: 10.1039/c9ta08321a
[6]
Lee B, Paek E, Mitlin D, Lee S W. Chem. Rev., 2019, 119(8): 5416.

doi: 10.1021/acs.chemrev.8b00642
[7]
Tang B, Jaschin P W, Li X, Bo S H, Zhou Z. Mater. Today, 2020, 41: 200.

doi: 10.1016/j.mattod.2020.08.016
[8]
Bucci G, Brandon T, Ananya R B, Yet-Ming C, Craig C W. Physical Review Materials, 2018, 2(10): 105407.

doi: 10.1103/PhysRevMaterials.2.105407
[9]
Xu C, Ahmad Z, Aryanfar A, Viswanathan V, Greer J R. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(1): 57.

doi: 10.1073/pnas.1615733114
[10]
Wang Y M, Song S F, Xu C H, Hu N, Molenda J, Lu L. Nano Mater. Sci., 2019, 1(2): 91.
[11]
Liu Q, Zhao X H, Yang Q, Hou L J, Mu D B, Tan G Q, Li L, Chen R J, Wu F. Adv. Mater. Technol., 2023, 8(7): 2200822.

doi: 10.1002/admt.v8.7
[12]
Lu Y, Li L, Zhang Q, Niu Z Q, Chen J. Joule, 2018, 2(9): 1747.

doi: 10.1016/j.joule.2018.07.028
[13]
Che H Y, Chen S L, Xie Y Y, Wang H, Amine K, Liao X Z, Ma Z F. Energy Environ. Sci., 2017, 10(5): 1075.

doi: 10.1039/C7EE00524E
[14]
Yao Y, Wei Z Y, Wang H Y, Huang H J, Jiang Y, Wu X J, Yao X Y, Wu Z S, Yu Y. Adv. Energy Mater., 2020, 10(12): 2070055.

doi: 10.1002/aenm.v10.12
[15]
Fan L, Wei S Y, Li S Y, Li Q, Lu Y Y. Adv. Energy Mater., 2018, 8(11): 1702657.

doi: 10.1002/aenm.v8.11
[16]
Zhang W, Zhao C D, Wu X L. Adv. Mater. Interfaces, 2020, 7(23): 2001444.

doi: 10.1002/admi.v7.23
[17]
Sheng O W, Jin C B, Ding X F, Liu T F, Wan Y H, Liu Y J, Nai J W, Wang Y, Liu C T, Tao X Y. Adv. Funct. Mater., 2021, 31(27): 2100891.

doi: 10.1002/adfm.v31.27
[18]
Tang S, Guo W, Fu Y Z. Adv. Energy Mater., 2021, 11(2): 2000802.

doi: 10.1002/aenm.v11.2
[19]
Zuo T T, Rueß R, Pan R J, Walther F, Rohnke M, Hori S, Kanno R, Schröder D, Janek J. Nat. Commun., 2021, 12: 6669.

doi: 10.1038/s41467-021-26895-4
[20]
Haruyama J, Sodeyama K, Han L Y, Takada K, Tateyama Y. Chem. Mater., 2014, 26(14): 4248.

doi: 10.1021/cm5016959
[21]
Koerver R, Aygün I, Leichtweiß T, Dietrich C, Zhang W B, Binder J O, Hartmann P, Zeier W G, Janek J. Chem. Mater., 2017, 29(13): 5574.

doi: 10.1021/acs.chemmater.7b00931
[22]
Banerjee A, Wang X F, Fang C C, Wu E A, Meng Y S. Chem. Rev., 2020, 120(14): 6878.

doi: 10.1021/acs.chemrev.0c00101 pmid: 32603100
[23]
Bao C Y, Wang B, Liu P, Wu H, Zhou Y, Wang D L, Liu H K, Dou S X. Adv. Funct. Mater., 2020, 30(52): 2004891.

doi: 10.1002/adfm.v30.52
[24]
Jin X, Zhao Y, Shen Z H, Pu J, Xu X X, Zhong C L, Zhang S, Li J C, Zhang H G. Energy Storage Mater., 2020, 31: 221.
[25]
Wu, F.B, Yang B, Ye J L. Eds. Chapter 2-Technologies of energy storage systems. In Grid-Scale Energy Storage Systems and Applications; Academic Press: Cambridge, MA, USA, 2019.17.
[26]
Zhao C L, Liu L L, Qi X G, Lu Y X, Wu F X, Zhao J M, Yu Y, Hu Y S, Chen L Q. Adv. Energy Mater., 2018, 8(17): 1703012.

doi: 10.1002/aenm.v8.17
[27]
Wu J F, Zhang R, Fu Q F, Zhang J S, Zhou X Y, Gao P, Xu C H, Liu J L, Guo X. Adv. Funct. Mater., 2021, 31(13): 2008165.

doi: 10.1002/adfm.v31.13
[28]
Zhao Y J, Wang C Z, Dai Y J, Jin H B. Nano Energy, 2021, 88: 106293.

doi: 10.1016/j.nanoen.2021.106293
[29]
Wang C Z, Sun Z, Zhao Y J, Wang B Y, Shao C X, Sun C, Zhao Y, Li J B, Jin H B, Qu L T. Small, 2021, 17(40): 2103819.

doi: 10.1002/smll.v17.40
[30]
Shen L, Deng S G, Jiang R R, Liu G Z, Yang J, Yao X Y. Energy Storage Mater., 2022, 46: 175.
[31]
Shen L, Yang J, Liu G, Avdeev M, Yao X. Mater. Today Energy, 2021, 20: 100691.
[32]
Liu L L, Qi X G, Yin S J, Zhang Q Q, Liu X Z, Suo L M, Li H, Chen L Q, Hu Y S. ACS Energy Lett., 2019, 4(7): 1650.

doi: 10.1021/acsenergylett.9b00857
[33]
Zhang Q Q, Lu Y X, Yu H, Yang G J, Liu Q Y, Wang Z X, Chen L Q, Hu Y S. J. Electrochem. Soc., 2020, 167(7): 070523.

doi: 10.1149/1945-7111/ab741b
[34]
Qiao L X, Judez X, Rojo T, Armand M, Zhang H. J. Electrochem. Soc., 2020, 167(7): 070534.

doi: 10.1149/1945-7111/ab7aa0
[35]
Kang S, Yang C, Jeon B, Jeon B, Koo B, Hong S T, Lee H. Chemical Engineering Journal, 2021, 426: 131901.

doi: 10.1016/j.cej.2021.131901
[36]
Zheng S H, Huang H J, Dong Y F, Wang S, Zhou F, Qin J Q, Sun C L, Yu Y, Wu Z S, Bao X H. Energy Environ. Sci., 2020, 13(3): 821.

doi: 10.1039/C9EE03219C
[37]
Lonchakova O V, Semenikhin O A, Zakharkin M V, Karpushkin E A, Sergeyev V G, Antipov E V. Electrochimica Acta, 2020, 334: 135512.

doi: 10.1016/j.electacta.2019.135512
[38]
Zhang Z, Huang Y, Li C, Li X. ACS Appl. Mater. Interfaces, 2021, 13(31): 37262.

doi: 10.1021/acsami.1c11476
[39]
Wen P C, Lu P F, Shi X Y, Yao Y, Shi H D, Liu H Q, Yu Y, Wu Z S. Adv. Energy Mater., 2021, 11(6): 2002930.

doi: 10.1002/aenm.v11.6
[40]
Yang H L, Zhang B W, Konstantinov K, Wang Y X, Liu H K, Dou S X. Adv. Energy Sustain. Res., 2021, 2(2): 2000057.

doi: 10.1002/aesr.v2.2
[41]
Hou M J, Liang F, Chen K F, Dai Y N, Xue D F. Nanotechnology, 2020, 31(13): 132003.

doi: 10.1088/1361-6528/ab5be7
[42]
Hueso K B, Palomares V, Armand M, Rojo T. Nano Res., 2017, 10(12): 4082.

doi: 10.1007/s12274-017-1602-7
[43]
Lee S T, Lee D H, Lee S M, Han S S, Lee S H, Lim S K. Bull. Mater. Sci., 2016, 39(3): 729.

doi: 10.1007/s12034-016-1199-6
[44]
Bates J B, Engstrom H, Wang J C, Larson B C, Dudney N J, Brundage W E. Solid State Ion., 1981, 5: 159.

doi: 10.1016/0167-2738(81)90217-4
[45]
Lu X C, Xia G G, Lemmon J P, Yang Z G. J. Power Sources, 2010, 195(9): 2431.

doi: 10.1016/j.jpowsour.2009.11.120
[46]
Zhang S P, Yao Y, Yu Y. ACS Energy Lett., 2021, 6(2): 529.

doi: 10.1021/acsenergylett.0c02488
[47]
Yang K S, Liu D Y, Qian Z F, Jiang D T, Wang R H. ACS Nano, 2021, 15(11): 17232.

doi: 10.1021/acsnano.1c07476
[48]
Hou M J, Yang X C, Liang F, Dong P, Chen Y N, Li J R, Chen K F, Dai Y N, Xue D F. ACS Appl. Mater. Interfaces, 2021, 13(28): 33262.

doi: 10.1021/acsami.1c07601
[49]
Hou M J, Qu T, Zhang Q K, Yao Y C, Dai Y N, Liang F, Okuma G, Hayashi K. Corros. Sci., 2020, 177: 109012.
[50]
Schuett J, Pescher F, Neitzel-Grieshammer S. Phys. Chem. Chem. Phys., 2022, 24(36): 22154.

doi: 10.1039/d2cp03621e pmid: 36089841
[51]
Deng Z, Gautam G S, Chotard J N, Kolli S K, Canepa P. ECS Meeting Abstracts. IOP Publishing, 2020, 5: 1002.
[52]
Zhang Q K, Liang F, Yao Y C, Ma W H, Yang B, Dai Y N. Progress in Chemistry, 2019, 31(1): 210.
(张庆凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 化学进展, 2019, 31(1): 210.).

doi: 10.7536/PC180434
[53]
Park H, Jung K, Nezafati M, Kim C S, Kang B. ACS Appl. Mater. Interfaces, 2016, 8(41): 27814.

doi: 10.1021/acsami.6b09992
[54]
Zhao Y, Wang L, Zhou Y N, Liang Z, Tavajohi N, Li B H, Li T. Adv. Sci., 2021, 8(7): 2003675.

doi: 10.1002/advs.v8.7
[55]
Song S F, Duong H M, Korsunsky A M, Hu N, Lu L. Sci. Rep., 2016, 6: 32330.

doi: 10.1038/srep32330
[56]
Ma Q L, Guin M, Naqash S, Tsai C L, Tietz F, Guillon O. Chem. Mater., 2016, 28(13): 4821.

doi: 10.1021/acs.chemmater.6b02059
[57]
Ruan Y L, Song S D, Liu J J, Liu P, Cheng B W, Song X Y, Battaglia V. Ceram. Int., 2017, 43(10): 7810.

doi: 10.1016/j.ceramint.2017.03.095
[58]
Zhang Z Z, Zhang Q H, Shi J N, Chu Y S, Yu X Q, Xu K Q, Ge M Y, Yan H F, Li W J, Gu L, Hu Y S, Li H, Yang X Q, Chen L Q, Huang X J. Adv. Energy Mater., 2017, 7(4): 1601196.

doi: 10.1002/aenm.v7.4
[59]
Oh J A S, He L C, Plewa A, Morita M, Zhao Y, Sakamoto T, Song X, Zhai W, Zeng K Y, Lu L. ACS Appl. Mater. Interfaces, 2019, 11(43): 40125.

doi: 10.1021/acsami.9b14986
[60]
Zhu Z Y, Chu I H, Deng Z, Ong S P. Chem. Mater., 2015, 27(24): 8318.

doi: 10.1021/acs.chemmater.5b03656
[61]
Cao C, Li Z B, Wang X L, Zhao X B, Han W Q. Front. Energy Res., 2014, 2: 25.
[62]
Kim J J, Yoon K, Park I, Kang K. Small Methods, 2017, 1(10): 1700219.

doi: 10.1002/smtd.v1.10
[63]
Zhang L, Yang K, Mi J L, Lu L, Zhao L R, Wang L M, Li Y M, Zeng H. Adv. Energy Mater., 2015, 5(24): 1501294.

doi: 10.1002/aenm.201501294
[64]
Takeuchi S, Suzuki K, Hirayama M, Kanno R. J. Solid State Chem., 2018, 265: 353.

doi: 10.1016/j.jssc.2018.06.023
[65]
Famprikis T, Dawson J A, Fauth F, Clemens O, Suard E, Fleutot B, Courty M, Chotard J N, Islam M S, Masquelier C. ACS Mater. Lett., 2019, 1(6): 641.
[66]
Banerjee A, Park K H, Heo J W, Nam Y J, Moon C K, Oh S M, Hong S T, Jung Y S. Angewandte Chemie, 2016, 128(33): 9786.

doi: 10.1002/ange.v128.33
[67]
Yu Z X, Shang S L, Seo J H, Wang D W, Luo X Y, Huang Q Q, Chen S R, Lu J, Li X L, Liu Z K, Wang D H. Adv. Mater., 2017, 29(16): 1605561.

doi: 10.1002/adma.v29.16
[68]
Chu I H, Kompella C S, Nguyen H, Zhu Z Y, Hy S, Deng Z, Meng Y S, Ong S P. Sci. Rep., 2016, 6: 33733.

doi: 10.1038/srep33733
[69]
Wan H L, Mwizerwa J P, Qi X G, Liu X, Xu X X, Li H, Hu Y S, Yao X Y. ACS Nano, 2018, 12(3): 2809.

doi: 10.1021/acsnano.8b00073
[70]
Heo J W, Banerjee A, Park K H, Jung Y S, Hong S T. Adv. Energy Mater., 2018, 8(11): 1702716.

doi: 10.1002/aenm.v8.11
[71]
Scrosati B. Chem. Record, 2001, 1(2): 173.

doi: 10.1002/(ISSN)1528-0691
[72]
Young W S, Kuan W F, Epps T H III. J. Polym. Sci. B Polym. Phys., 2014, 52(1): 1.

doi: 10.1002/polb.23404
[73]
Chen R J, Qu W J, Guo X, Li L, Wu F. Mater. Horiz., 2016, 3(6): 487.

doi: 10.1039/C6MH00218H
[74]
Ramaswamy M, Malayandi T, Subramanian S, Srinivasalu J, Rangaswamy M, Soundararajan V. Polym. Plast. Technol. Eng., 2017, 56(9): 992.

doi: 10.1080/03602559.2016.1247280
[75]
Zhang J J, Zhao J H, Yue L P, Wang Q F, Chai J C, Liu Z H, Zhou X H, Li H, Guo Y G, Cui G L, Chen L Q. Adv. Energy Mater., 2015, 5(24): 1501082.

doi: 10.1002/aenm.201501082
[76]
Li X R, Meng L Y, Zhang Y L, Qin Z X, Meng L P, Li C F, Liu M L. Polymers, 2022, 14(11): 2159.

doi: 10.3390/polym14112159
[77]
Chen S L, Che H Y, Feng F, Liao J P, Wang H, Yin Y M, Ma Z F. ACS Appl. Mater. Interfaces, 2019, 11(46): 43056.

doi: 10.1021/acsami.9b11259
[78]
Patel M, Chandrappa K G, Bhattacharyya A J. Solid State Ion., 2010, 181(17/18): 844.

doi: 10.1016/j.ssi.2010.04.013
[79]
Kiran Kumar K, Ravi M, Pavani Y, Bhavani S, Sharma A K, Narasimha Rao V V R. Phys. B Condens. Matter, 2011, 406(9): 1706.

doi: 10.1016/j.physb.2011.02.010
[80]
Kunteppa H, Roy A S, Koppalkar A R, Ambika Prasad M V N. Phys. B Condens. Matter, 2011, 406(21): 3997.

doi: 10.1016/j.physb.2010.11.074
[81]
Yu W H, Zhai Y F, Yang G M, Yao J Y, Song S F, Li S, Tang W P, Hu N, Lu L. Ceram. Int., 2021, 47(8): 11156.

doi: 10.1016/j.ceramint.2020.12.239
[82]
Wang Y M, Wang Z T, Sun J G, Zheng F, Kotobuki M, Wu T, Zeng K Y, Lu L. J. Power Sources, 2020, 454: 227949.

doi: 10.1016/j.jpowsour.2020.227949
[83]
Wu J F, Yu Z Y, Wang Q, Guo X. Energy Storage Mater., 2020, 24: 467.
[84]
Serra Moreno J, Armand M, Berman M B, Greenbaum S G, Scrosati B, Panero S. J. Power Sources, 2014, 248: 695.

doi: 10.1016/j.jpowsour.2013.09.137
[85]
Li Z, Fu J L, Zhou X Y, Gui S W, Wei L, Yang H, Li H, Guo X. Adv. Sci., 2023, 10(10): 2201718.

doi: 10.1002/advs.v10.10
[86]
Song S F, Kotobuki M, Zheng F, Xu C H, Savilov S V, Hu N, Lu L, Wang Y, Dong Z, Li W. J. Mater. Chem. A, 2017, 5(14): 6424.

doi: 10.1039/C6TA11165C
[87]
Hou W R, Guo X W, Shen X Y, Amine K, Yu H J, Lu J. Nano Energy, 2018, 52: 279.

doi: 10.1016/j.nanoen.2018.07.036
[88]
Kim J K, Lim Y J, Kim H, Cho G B, Kim Y. Energy Environ. Sci., 2015, 8(12): 3589.

doi: 10.1039/C5EE01941A
[89]
Ling W, Fu N, Yue J P, Zeng X X, Ma Q, Deng Q, Xiao Y, Wan L J, Guo Y G, Wu X W. Adv. Energy Mater., 2020, 10(9): 1903966.

doi: 10.1002/aenm.v10.9
[90]
Yoshida K, Sato T, Unemoto A, Matsuo M, Ikeshoji T, Udovic T J, Orimo S I. Appl. Phys. Lett., 2017, 110(10): 103901.

doi: 10.1063/1.4977885
[91]
Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C. Nature Materials, 2019, 18(12): 1278.

doi: 10.1038/s41563-019-0431-3
[92]
Goodenough J B, Hong H Y P, Kafalas J A. Mater. Res. Bull., 1976, 11(2): 203.

doi: 10.1016/0025-5408(76)90077-5
[93]
de Klerk N J J, Wagemaker M. ACS Appl. Energy Mater., 2018, 1(10): 5609.

doi: 10.1021/acsaem.8b01141 pmid: 30406216
[94]
Cheng Z, Liu M, Ganapathy S, Li C, Li Z L, Zhang X Y, He P, Zhou H S, Wagemaker M. Joule, 2020, 4(6): 1311.

doi: 10.1016/j.joule.2020.04.002
[95]
Fan X L, Yue J, Han F D, Chen J, Deng T, Zhou X Q, Hou S, Wang C S. ACS Nano, 2018, 12(4): 3360.

doi: 10.1021/acsnano.7b08856
[96]
Ando T, Sakuda A, Tatsumisago M, Hayashi A. Electrochem. Commun., 2020, 116: 106741.

doi: 10.1016/j.elecom.2020.106741
[97]
Gao H C, Xue L G, Xin S, Park K, Goodenough J B. Angew. Chem., 2017, 129(20): 5633.

doi: 10.1002/ange.v129.20
[98]
Yu X W, Xue L G, Goodenough J B, Manthiram A. Adv. Funct. Mater., 2021, 31(2): 2002144.

doi: 10.1002/adfm.v31.2
[99]
Jiang B W, Wei Y, Wu J Y, Cheng H, Yuan L X, Li Z, Xu H H, Huang Y H. EnergyChem, 2021, 3(5): 100058.

doi: 10.1016/j.enchem.2021.100058
[100]
Wan H L, Mwizerwa J P, Qi X G, Xu X X, Li H, Zhang Q, Cai L T, Hu Y S, Yao X Y. ACS Appl. Mater. Interfaces, 2018, 10(15): 12300.

doi: 10.1021/acsami.8b01805
[101]
Cheng M, Qu T, Zi J, Yao Y C, Liang F, Ma W H, Yang B, Dai Y N, Lei Y. Nanotechnology, 2020, 31(42): 425401.

doi: 10.1088/1361-6528/aba059
[102]
Chen L, Huang S B, Qiu J Y, Zhang H, Cao G P. Progress in Chemistry, 2021, 33(8): 1378.
(陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 化学进展, 2021, 33(8): 1378.).

doi: 10.7536/PC200734
[103]
Ma Q, Liu J J, Qi X G, Rong X H, Shao Y J, Feng W F, Nie J, Hu Y S, Li H, Huang X J, Chen L Q, Zhou Z B. J. Mater. Chem. A, 2017, 5(17): 7738.

doi: 10.1039/C7TA01820G
[104]
Kuai Y X, Wang F F, Yang J, Lu H C, Xu Z X, Xu X C, NuLi Y N, Wang J L. Mater. Chem. Front., 2021, 5(17): 6502.

doi: 10.1039/D1QM00769F
[105]
Luo W, Lin C F, Zhao O, Noked M, Zhang Y, Rubloff G W, Hu L B. Adv. Energy Mater., 2017, 7(2): 1601526.

doi: 10.1002/aenm.v7.2
[106]
Matios E, Wang H, Wang C L, Hu X F, Lu X, Luo J M, Li W Y. ACS Appl. Mater. Interfaces, 2019, 11(5): 5064.

doi: 10.1021/acsami.8b19519
[107]
Lu Y, Cai Y C, Zhang Q, Liu L J, Niu Z Q, Chen J. Chem. Sci., 2019, 10(15): 4306.

doi: 10.1039/C8SC05178J
[108]
Wang X X, Chen J J, Mao Z Y, Wang D J. J. Mater. Chem. A, 2021, 9(29): 16039.

doi: 10.1039/D1TA04869D
[109]
Zhou W D, Li Y T, Xin S, Goodenough J B. ACS Cent. Sci., 2017, 3(1): 52.

doi: 10.1021/acscentsci.6b00321
[110]
Fu H Y, Yin Q Y, Huang Y, Sun H B, Chen Y W, Zhang R Q, Yu Q, Gu L, Duan J, Luo W. ACS Mater. Lett., 2020, 2(2): 127.
[111]
Lu Y, Alonso J A, Yi Q, Lu L, Wang Z L, Sun C W. Adv. Energy Mater., 2019, 9(28): 1901205.

doi: 10.1002/aenm.v9.28
[112]
Zhao C L, Liu L L, Lu Y X, Wagemaker M, Chen L Q, Hu Y S. Angew. Chem., 2019, 131(47): 17182.

doi: 10.1002/ange.v131.47
[113]
Chen X Z, He W J, Ding L X, Wang S Q, Wang H H. Energy Environ. Sci., 2019, 12(3): 938.

doi: 10.1039/C8EE02617C
[114]
Yamauchi H, Ikejiri J, Sato F, Oshita H, Honma T, Komatsu T. J. Am. Ceram. Soc., 2019, 102(11): 6658.

doi: 10.1111/jace.16607
[115]
Inoishi A, Omuta T, Kobayashi E, Kitajou A, Okada S. Adv. Mater. Interfaces, 2017, 4(5): 1600942.

doi: 10.1002/admi.v4.5
[1] Hao Zhang, Yanhui Wu. Preparation and Modification of MOF-Polymer Mixed Matrix Membrane and its Application in Pervaporation [J]. Progress in Chemistry, 2023, 35(8): 1154-1167.
[2] Qingping Li, Tao Li, Chenchen Shao, Wei Liu. Modification of Cathode Materials for Prussian Blue-Based Sodium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(7): 1053-1064.
[3] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[4] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[5] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[6] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[7] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[8] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[9] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[10] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[11] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[12] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[13] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[14] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[15] Xiangrui Kong, Jing Dou, Shuzhen Chen, Bingbing Wang, Zhijun Wu. Progress of Synchrotron-Based Research on Atmospheric Science [J]. Progress in Chemistry, 2022, 34(4): 963-972.