中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (12): 1942-1959 DOI: 10.7536/PC180405 Previous Articles   Next Articles

• Review •

Multifunctional Lithium-Sulfur Battery Separator

Kai Yang, Shengnan Zhang, Dongmei Han, Min Xiao, Shuanjin Wang*, Yuezhong Meng*   

  1. The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.51573215, U1301244).
PDF ( 1047 ) Cited
Export

EndNote

Ris

BibTeX

Lithium-sulfur batteries, with the advantages of rich sulfur resources, low production costs, and environmental friendliness, have a high theoretical specific capacity(1675 mAh·g-1). However, polysulfide shuttle causes serious problems such as the passivation of metal lithium anode, the decrease of battery capacity and coulomb efficiency, and hinders its practical applications. It is considered to be an extremely effective strategy to introduce a barrier layer to restrain polysulfide shuttle between the cathode and anode, which presents excellent performance in alleviating polysulfide shuttle, improving the utilization efficiency of active materials and extending cycle life and cycle stability. Herein, the research progress of the functional lithium sulfur battery separators is reviewed. Furthermore, the future research trend is also predicted.
Contents
1 Introduction
2 The principle and configuration of lithium-sulfur batteries
3 Technical challenges of research and application
4 Research development of functional separator
4.1 Functional separator with adsorption
4.2 Functional separator with catalytic function
4.3 Functional separator with electrostatic repulsion
4.4 Functional separator with physical barrier
4.5 Novel multifunctional separator fabrication
4.6 Functional separator for protecting Li metal anode, synergistically
5 Conclusion and outlook

CLC Number: 

[1] Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Nat. Mater., 2011, 11:19.
[2] Manthiram A, Fu Y, Chung S H, Zu C, Su Y S. Chem. Rev., 2014, 114:11751.
[3] Urbonaite S, Poux T, Novák P. Adv. Energy Mater., 2015, 5:1500118.
[4] 易梓琦(Yi Z Q). 华中科技大学博士论文(Doctoral Dissertation of Huazhong University of Science and Technology), 2015.
[5] 王久林(Wang J L). 中国科学院上海微系统与信息技术研究所博士论文(Doctoral Dissertation of Shanghai Institute of Microsystem and Information Technology), 2002.
[6] 李林艳(Li L Y),崔晓兰(Cui X L),单忠强(Shan Z Q),田建华(Tian J H),刘肖燕(Liu X Y). 功能材料(Journal of Functional Materials), 2014, 45:11087.
[7] 苗力孝(Miao L X). 北京理工大学博士论文(Doctoral Dissertation of Beijing Institute of Technology), 2014.
[8] 邓南平(Deng N P),马晓敏(Ma X M),阮艳莉(Ruan Y L),王晓清(Wang X Q),康卫民(Kang W M),程博闻(Cheng B W). 化学进展(Prog.Chem.), 2016, 28:1435.
[9] Seh Z W, Sun Y, Zhang Q, Cui Y. Chem. Soc. Rev., 2016, 45:5605.
[10] Ma G, Wen Z, Wu M, Shen C, Wang Q, Jin J, Wu X. Chem. Commun., 2014, 50:14209.
[11] Sun Z, Xiao M, Wang S, Han D, Song S, Chen G, Meng Y. J. Mater. Chem. A, 2014, 2:15938.
[12] Akridge J R, Mikhaylik Y V, White N. Solid State Ionics, 2004, 175:243.
[13] Shim J, Striebel K A,Cairns E J. J. Electrochem. Soc., 2002, 149:A1321.
[14] Zhang S. Energies, 2012, 5:5190.
[15] Bai S, Liu X, Zhu K, Wu S, Zhou H. Nat. Energy, 2016, 1:16094.
[16] Chang C, Chung S H, Manthiram A. Small, 2016, 12:174.
[17] Chen M, Jiang S, Cai S, Wang X, Xiang K, Ma Z, Song P, Fisher A C. Chem. Eng. J., 2017, 313:404.
[18] Deng N, Kang W, Liu Y, Ju J, Wu D, Li L, Hassan B S, Cheng B. J. Power Sources, 2016, 331:132.
[19] Barchasz C, Molton F, Duboc C, Lepretre J C, Patoux S, Alloin F. Anal. Chem., 2012, 84:3973.
[20] Wild M, O'Neill L, Zhang T, Purkayastha R, Minton G, Marinescu M, Offer G J. Energy Environ. Sci., 2015, 8:3477.
[21] Danuta H, Juliusz U. Electric Dry Cells and Storage Batteries. US3043896, 1962.
[22] Allen M J, Tung V C, Kaner R B. Chemical Reviews, 2010, 110:132.
[23] Liu X, Huang J Q, Zhang Q, Mai L. Adv. Mater., 2017, 29:1601759.
[24] Xiang Y, Li J, Lei J, Liu D, Xie Z, Qu D, Li K, Deng T, Tang H. ChemSusChem, 2016, 9:3023.
[25] Yan B, Li X, Bai Z, Song X, Xiong D, Zhao M, Li D, Lu S. 2017, 338:34.
[26] Wang J L, Yang J, Xie J, Xu N. Adv. Mater., 2002, 14:963.
[27] Wang J L, He Y S, Yang J. Adv. Mater., 2015, 27:569.
[28] Wang J L, Lin F, Jia H, Yang J, Monroe C W, Nuli Y. Angew. Chem. Int. Ed., 2015, 126:10263.
[29] Ji X, Lee K T, Nazar L F. Nat. Mater., 2009, 8:500.
[30] Geng X, Rao M, Li X, Li W. J. Solid State Electrochem., 2013, 17:987.
[31] Li G C, Hu J J, Li G R, Ye S H, Gao X P. J. Power Sources, 2013, 240:598.
[32] Yu M, Ma J, Song H, Wang A, Tian F, Wang Y, Qiu H, Wang R. Energy Environ. Sci., 2016, 9:1495.
[33] Sun Y, Zhao Y, Cui Y, Zhang J, Zhang G, Luo W, Zheng W. Electrochim. Acta, 2017, 239:56.
[34] Tao Y, Wei Y, Liu Y, Wang J, Qiao W, Ling L, Long D. Energy Environ. Sci., 2016, 9:3230.
[35] Zhang J, Shi Y, Ding Y, Zhang W, Yu G. Nano Lett., 2016, 16.
[36] Al Salem H, Babu G, Rao C V, Arava L M. J. Am. Chem. Soc., 2015, 137:11542.
[37] Chang C H, Chung S H, Han P, Manthiram A. Mater. Horiz., 2017, 4:908.
[38] Fanous J, Wegner M, Grimminger J, Andresen Ä, Buchmeiser M R. Chem. Mater., 2012, 23:5024.
[39] Yao H, Yan K, Li W, Zheng G, Kong D, Seh Z W, Narasimhan V K, Liang Z, Cui Y. Energy Environ. Sci., 2014, 7:3381.
[40] Wei H, Ma J, Li B, Zuo Y, Xia D. ACS Appl. Mater. Interfaces, 2014, 6:20276.
[41] Chung S H, Manthiram A. Adv. Funct. Mater., 2015, 24:5299.
[42] Kim H M, Hwang J Y, Manthiram A, Sun Y K. ACS Appl. Mater. Interfaces, 2016, 8:983.
[43] Chung S H, Han P, Manthiram A. ACS Appl. Mater. Interfaces, 2016, 8:4709.
[44] Chung S H, Manthiram A. J. Phys. Chem. Lett., 2014, 5:1978.
[45] Chung S H, Manthiram A. Adv. Mater., 2014, 26:7352.
[46] Liu N, Huang B, Wang W, Shao H, Li C, Zhang H, Wang A, Yuan K, Huang Y Q. ACS Appl. Mater. Interfaces, 2016, 8:16101.
[47] Wang H, Zhang W, Liu H, Guo Z P. Angew. Chem. Int. Ed., 2016, 55:3992.
[48] Balach J, Jaumann T, Klose M, Oswald S, Eckert J, Giebeler L. Adv. Funct. Mater., 2015, 25:5285.
[49] Tang H, Yao S, Shen X, Xi X, Xiao K. Energy Tech., 2017, 5:623.
[50] Oh C, Yoon N, Choi J, Choi Y, Ahn S, Lee J K. J. Mater. Chem. A, 2017, 5:5750.
[51] Kim J H, Jung G Y, Lee Y H, Kim J H, Lee S Y, Kwak S K, Lee S Y. Nano Lett., 2017, 17:2220.
[52] Zhu J, Ge Y, Kim D, Lu Y, Chen C, Jiang M, Zhang X. Nano Energy, 2016, 20:176.
[53] Zeng P, Huang L, Han Y, Zhang X, Zhang R, Chen Y. ChemElectroChem, 2018, 5:375.
[54] Ma G, Huang F, Wen Z, Wang Q, Hong X, Jin J, Wu X W. J. Mater. Chem. A, 2016, 4:16968.
[55] Evers S, Yim T, Nazar L F. J. Phys. Chem. C, 2012, 116:19653.
[56] Xu Q, Hu G C, Bi H L, Xiang H F. Ionics, 2015, 21:981.
[57] Zhang Z, Lai Y, Zhang Z, Zhang K, Li J. Electrochim. Acta, 2014, 129:55.
[58] Zhu J, Yildirim E, Aly K, Shen J, Chen C, Lu Y, Jiang M, Kim D, Tonelli A E, Pasquinelli M A, Bradford P D, Zhang X. J. Mater. Chem. A, 2016, 4:13572.
[59] Sun W, Ou X, Yue X, Yang Y, Wang Z, Rooney D, Sun K. Electrochim. Acta, 2016, 207:198.
[60] Liu M, Li Q, Qin X, Liang G, Han W, Zhou D, He Y B, Li B, Kang F. Small, 2017, 13:1602539.
[61] Liu J, Yuan L, Yuan K, Li Z, Hao Z, Xiang J, Huang Y. Small, 2016, 8:13638.
[62] Tang H, Yao S, Mi J, Wu X, Hou J, Shen X. Mater. Lett., 2017, 186:127.
[63] Liu N, Ai F, Wang W, Shao H, Zhang H, Wang A, Xu Z J, Huang Y. Electrochim. Acta, 2016, 215:162.
[64] Shao H, Huang B, Liu N, Wang W, Zhang H, Wang A, Wang F, Huang Y Q. J. Mater. Chem. A, 2016, 4:16627.
[65] Xu G, Yan Q B, Wang S, Kushima A, Bai P, Liu K, Zhang X, Tang Z, Li J. Chem. Sci., 2017, 8:6619.
[66] Zhang S S. Inorg. Chem. Front., 2015, 2:1059.
[67] Wu F, Qian J, Chen R, Ye Y, Sun Z, Xing Y, Li L. J. Mater. Chem. A, 2016, 4:17033.
[68] Zhang Z A, Wang G, Lai Y, Li J, Zhang Z, Chen W. J. Power Sources, 2015, 300:157.
[69] Zhou X, Wang P, Zhang Y, Wang L, Zhang L, Zhang L, Xu L, Liu L. J. Mater. Chem. A, 2017, 5:12958.
[70] Cheng X, Wang W, Wang A, Yuan K, Jin Z, Yang Y, Zhao X. RSC Adv., 2016, 6:89972.
[71] Zhang J, Shi Y, Ding Y, Peng L, Zhang W, Yu G. Adv. Energy Mater., 2017, 7:1602876.
[72] Ramakrishnan P, Baek S H, Park Y, Kim J H. Carbon, 2017, 115:249.
[73] Yuan X, Wu L, He X, Zeinu K, Huang L, Zhu X, Hou H, Liu B, Hu J, Yang J. Chem. Eng. J., 2017, 320:178.
[74] Xu J, Su D, Zhang W, Bao W, Wang G. J. Mater. Chem. A, 2016, 4:17381.
[75] Xing L B, Xi K, Li Q, Su Z, Lai C, Zhao X, Kumar R V. J. Power Sources, 2016, 303:22.
[76] Yuan X, Liu B, Hou H, Zeinu K, He Y, Yang X, Xue W, He X, Huang L, Zhu X, Wu L, Hu J, Yang J, Xie J. RSC Adv., 2017, 7:22567.
[77] Zhou G, Paek E, Hwang G S, Manthiram A. Nat. Commun., 2015, 6:7760.
[78] Wu F, Li J, Tian Y, Su Y, Wang J, Yang W, Li N, Chen S, Bao L Y. Sci. Rep., 2015, 5:13340.
[79] Pang Q, Tang J, Huang H, Liang X, Hart C, Tam K C, Nazar L F. Adv. Mater., 2015, 27:6021.
[80] Balach J, Singh H K, Gomoll S, Jaumann T, Klose M, Oswald S, Richter M, Eckert J, Giebeler L. ACS Appl. Mater. Interfaces, 2016, 8:14586.
[81] Yuan Z, Peng H J, Hou T Z, Huang J Q, Chen C M, Wang D W, Cheng X B, Wei F, Zhang Q. Nano Lett., 2016, 16:519.
[82] Peng H J, Zhang Z W, Huang J Q, Zhang G, Xie J, Xu W T, Shi J L, Chen X, Cheng X B, Zhang Q. Adv. Mater., 2016, 28:9551.
[83] Zuo P, Hua J, He M, Zhang H, Qian Z, Ma Y, Du C, Cheng X, Gao Y, Yin G P. J. Mater. Chem. A, 2017, 5:10936.
[84] Balach J, Jaumann T, Muhlenhoff S, Eckert J, Giebeler L. Chem. Commun., 2016, 52:8134.
[85] Ren Y X, Zhao T S, Liu M, Zeng Y K, Jiang H R. J. Power Sources, 2017, 361:203.
[86] Jin Z, Xie K, Hong X, Hu Z, Liu X. J. Power Sources, 2012, 218:163.
[87] Huang J Q, Zhang Q, Peng H J, Liu X Y, Qian W Z, Wei F. Energy Environ. Sci., 2013, 7:347.
[88] Bauer I, Thieme S, Brückner J, Althues H, Kaskel S. J. Power Sources, 2014, 251:417.
[89] Ma L, Nath P, Tu Z, Tikekar M, Archer L A. Chem. Mater., 2016, 28:5147.
[90] Abbas S A, Ibrahem M A, Hu L H, Lin C N, Fang J, Boopathi K M, Wang P C, Li L J, Chu C W. J. Mater. Chem. A, 2016, 4:9661.
[91] Conder J, Forner-Cuenca A, Gubler E M, Gubler L, Novak P, Trabesinger S. ACS Appl. Mater. Interfaces, 2016, 8:18822.
[92] Abbas S A, Ibrahem M A, Hu L H, Lin C N, Fang J, Boopathi K M, Wang P C, Li L J, Chu C W. J. Mater. Chem. A, 2016, 4:9661.
[93] Li Z, Jiang Q, Ma Z, Liu Q, Wu Z, Wang S Y. RSC Adv., 2015, 5:79473.
[94] Conder J, Urbonaite S, Streich D, Novak P, Gubler L. RSC Adv., 2015, 5:79654.
[95] Yu X, Joseph J, Manthiram A. Mater. Horiz., 2016, 3.
[96] Zeng F, Jin Z, Yuan K, Liu S, Cheng X, Wang A, Wang W, Yang Y S. J. Mater. Chem. A, 2016, 4:12319.
[97] Hao Z, Yuan L, Li Z, Liu J, Xiang J, Wu C, Zeng R, Huang Y. Electrochim. Acta, 2016, 200:197.
[98] Ahn W, Lim S N, Dong U L, Kim K B, Chen Z, Yeon S H, Jin C S. J. Mater. Chem. A, 2015, 3:9461.
[99] Yim T, Han S H, Park N H, Park M S, Lee J H, Shin J, Choi J W, Jung Y, Jo Y N, Yu J S. Adv. Funct. Mater., 2016, 26:7817.
[100] Zhao Y, Liu M, Lv W, He Y B, Wang C, Yun Q, Li B, Kang F, Yang Q H. Nano Energy, 2016, 30:1.
[101] 黄佳琦(Huang J Q), 孙滢智(Sun Y Z), 王云飞(Wang Y F), 张强(Zhang Q). 化学学报(Acta Chimica Sinica), 2017, 75:173.
[102] Jiang Y, Chen F, Gao Y, Wang Y, Wang S, Gao Q, Jiao Z, Zhao B, Chen Z. J. Power Sources, 2017, 342:929.
[103] Peng H J, Wang D W, Huang J Q, Cheng X B, Yuan Z, Wei F, Zhang Q. Adv. Sci., 2016, 3:1500268.
[104] Jin J, Lin C, Zhang W, Wang L, Wang Z G, Zhao W, Duan W, Zhao Z G, Liu B. J. Mater. Chem. A, 2016, 4:5993.
[105] Park J, Yu B C, Park J S, Choi J W, Kim C, Sung Y E, Goodenough J B. Adv. Energy Mater., 2017, 7:1602567.
[106] Ghazi Z A, He X, Khattak A M, Khan N A, Liang B, Iqbal A, Wang J, Sin H, Li L, Tang Z Y. Adv. Mater., 2017, 29:1606817.
[107] Geim A K. Science, 2009, 324:1530.
[108] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Nature, 2005, 438:197.
[109] Galpaya D. Nature, 2015, 448:457.
[110] Li H, Yang X, Wang X, Liu M, Ye F, Wang J, Qiu Y, Li W, Zhang Y. Nano Energy, 2015, 12:468.
[111] Wang C, Wang X, Wang Y, Chen J, Zhou H, Huang Y. Nano Energy, 2015, 11:678.
[112] Wang H, Yang Y, Liang Y, Robinson J T, Li Y, Jackson A, Cui Y, Dai H. Nano Lett., 2011, 11:2644.
[113] Lu Y, Gu S, Guo J, Rui K, Chen C, Zhang S, Jin J, Yang J, Wen Z Y. ACS Appl. Mater. Interfaces, 2017, 9:14878.
[114] Wang X, Wang Z, Chen L. J. Power Sources, 2013, 242:65.
[115] Lin W, Chen Y, Li P, He J, Zhao Y, Wang Z, Liu J, Qi F, Zheng B, Zhou J. J. Electrochem. Soc., 2015, 162:A1624.
[116] Zhuang T Z, Huang J Q, Peng H J, He L Y, Cheng X B, Chen C M, Zhang Q. Small, 2016, 12:381.
[117] Hwang J Y, Kim H M, Shin S, Sun Y K. Adv. Funct. Mater., 2018, 28:1704294.
[118] Ou X, Yu Y, Wu R, Tyagi A, Zhuang M, Ding Y, Abidi I H, Wu H, Wang F, Luo Z. ACS Appl. Mater. Interfaces, 2018, 10:5534.
[119] Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W. ACS Nano, 2012, 6:1322.
[120] Lin C, Zhang W, Wang L, Wang Z, Zhao W, Duan W, Zhao Z, Liu B, Jin J. J. Mater. Chem. A, 2016, 4:5993.
[121] Song J, Su D, Xie X, Guo X, Bao W, Shao G, Wang G X. ACS Appl. Mater. Interfaces, 2016, 8:29427.
[122] Babu G, Masurkar N, Al Salem H, Arava L M. J. Am. Chem. Soc., 2017, 139:171.
[123] Sun J, Sun Y, Pasta M, Zhou G, Li Y, Liu W, Xiong F, Cui Y. Adv. Mater., 2016, 28:9797.
[124] Fan C Y, Yuan H Y, Li H H, Wang H F, Li W L, Sun H Z, Wu X L, Zhang J P. ACS Appl. Mater. Interfaces, 2016, 8:16108.
[125] Li C, Ward A L, Doris S E, Pascal T A, Prendergast D, Helms B A. Nano Lett., 2015, 15:5724.
[126] Li Z, Han Y, Wei J, Wang W, Cao T, Xu S, Xu Z H. ACS Appl. Mater. Interfaces, 2017, 9:44776.
[127] Yu B C, Park K, Jang J H, Goodenough J B. ACS Energy Lett., 2016, 1:633.
[128] Freitag A, Stamm M, Ionov L. J. Power Sources, 2017, 363:384.
[129] Wang Y, Zhang Z, Haibara M, Sun D, Ma X, Jin Y, Munakata H, Kanamura K. Electrochim. Acta, 2017, 255:109.
[130] Deng N, Wang Y, Yan J, Ju J, Li Z, Fan L, Zhao H, Kang W, Cheng B. J. Power Sources, 2017, 362:243.
[131] Zhu P, Zhu J, Zang J, Chen C, Lu Y, Jiang M, Yan C, Dirican M, Selvan R K, Zhang X W. J. Mater. Chem. A, 2017, 5:15096.
[132] Zhu J, Chen C, Lu Y, Zang J, Jiang M, Kim D, Zhang X W. Carbon, 2016, 101:272.
[133] Bai S, Zhu K, Wu S, Wang Y, Yi J, Ishida M, Zhou H. J. Mater. Chem. A, 2016, 4:16812.
[134] Wu F, Ye Y S, Chen R J, Qian J, Zhao T, Li L, Li W H. Nano Lett., 2015, 15:7431.
[135] Kim J S, Hwang T H, Kim B G, Min J, Choi J W. Adv. Funct. Mater., 2014, 24:5359.
[136] Kim P J H, Seo J, Fu K, Choi J, Liu Z, Kwon J, Hu L B, Paik U. NPG Asia Mater., 2017, 9:e375.
[1] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[2] Fusheng Pan, Yuan Yao, Jie Sun. Catalysis in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(3): 442-461.
[3] Rong Yang, Lan Li, Bing Ren, Dan Chen, Liping Chen, Yinglin Yan. Doped-Graphene in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2018, 30(11): 1681-1691.
[4] Wan Wenbo, Pu Weihua, Ai Desheng. Research Progress in Lithium Sulfur Battery [J]. Progress in Chemistry, 2013, 25(11): 1830-1841.
[5] Miao lixiao, Wang Weikun, Wang Mengjia, Duan Bochao, Yang Yusheng, Wang Anbang. Sulfur Composite Cathode for Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2013, 25(11): 1867-1875.
[6] Lai Chao, Li Guochun, Ye Shihai, Gao Xueping. Sulfur-Carbon Composite as Cathode with High Capacity [J]. Progress in Chemistry, 2011, 23(0203): 527-532.