中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (06): 990-998 DOI: 10.7536/PC121046 Previous Articles   Next Articles

• Review •

Development and Application of Low Molecular Mass Organogelators in Quasi-Solid-State Dye-Sensitized Solar Cells

Tao Li, Huo Zhipeng*, Pan Xu, Zhang Changneng, Dai Songyuan*   

  1. Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
  • Received: Revised: Online: Published:
PDF ( 1197 ) Cited
Export

EndNote

Ris

BibTeX

The dye sensitized solar cells (DSC) have been regarded as a promising candidate for next generation solar cells and attracted much attention owing to their low cost, low energy consumption, simple fabrication process and high power conversion efficiency. As a major component of the DSC, electrolyte has important impact on the performance and stability of DSC. In this paper, the operating principle of DSC and research progress of electrolyte, including liquid, solid state and quasi-solid-state electrolyte are described briefly. In addition, the application of low molecular mass organogelators (LMOG) in quasi-solid-state dye-sensitized solar cells is reviewed in details, and the application of LMOG in quasi-solid-state dye-sensitized solar cells is predicted. Contents
1 Introduction
2 Electrolytes and their category
2.1 Liquid electrolyte
2.2 Solid state electrolyte
2.3 Quasi-solid state electrolyte
3 Application of low molecular mass organogelators in quasi-solid state dye-sensitized solar cells
3.1 Low molecular mass organogelators (LMOG)
3.2 Application of LMOG in organic solvent electrolyte
3.3 Application of LMOG in ionic liquid electrolyte
4 Conclusion and outlook

CLC Number: 

[1] Oregan B, Grätzel M. Nature, 1991, 353: 737-740
[2] Nazeeruddin M K, Baranoff E, Grätzel M. Sol. Energy, 2011, 85: 1172-1178
[3] Grätzel M. J. Photochem. Photobiol. A-Chem., 2004, 168: 235-235
[4] 陈人杰(Chen R J), 张海琴(Zhang H Q), 吴峰(Wu F). 化学进展(Prog. Chem. ), 2011, 23(2/3): 366-373
[5] 秦达(Qin D), 郭晓枝(Guo X Z), 孙惠成(Sun H C), 罗艳红(Luo Y H), 孟庆波(Meng Q B), 李冬梅(Li D M). 化学进展(Prog. Chem. ), 2011, 23(2/3): 557-568
[6] Kumara G R A, Konno A, Shiratsuchi K, Tsukahara J, Tennakone K. Chem. Mater., 2002, 14: 954-955
[7] Meng Q B, Takahashi K, Zhang X T, Sutanto I, Rao T N, Sato O, Fujishima A, Watanabe H, Nakamori T, Uragami M. Langmuir, 2003, 19: 3572-3574
[8] Stergiopoulos T, Arabatzis I M, Katsaros G, Falaras P. Nano Lett., 2002, 2: 1259-1261
[9] Han H W, Liu W, Zhang J, Zhao X Z. Adv. Funct. Mater., 2005, 15: 1940-1944
[10] Zafer C, Karapire C, Sariciftci N S, Icli S. Sol. Energy Mater. Sol. Cells, 2005, 88: 11-21
[11] Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, Grätzel M. Nature, 1998, 395: 583-585
[12] O'Regan B, Lenzmann F, Muis R, Wienke J. Chem. Mater., 2002, 14: 5023-5029
[13] 郭磊(Guo L), 潘旭(Pan X), 戴松元(Dai S Y). 化学进展(Prog. Chem. ), 2008, 20(10): 1595-1605
[14] Wu J H, Lin J M, Zhou M, Wei C R. Macromol. Rapid Commun., 2000, 21: 1032-1034
[15] Gong J, Sumathy K, Liang J. Renew. Energy, 2012, 39: 419-423
[16] Kim Y J, Kim J H, Kang M S, Lee M J, Won J, Lee J C, Kang Y S. Adv. Mater., 2004, 16: 1753-1757
[17] Liu Y, Lee J Y, Hong L. J. Power Sources, 2004, 129: 303-311
[18] Kim J H, Kang M S, Kim Y J, Won J, Kang Y S. Solid State Ionics, 2005, 176: 579-584
[19] Wang P, Zakeeruddin S M, Exnar I, Grätzel M. Chem. Commun., 2002, 2972-2973
[20] Scully S R, Lloyd M T, Herrera R, Giannelis E P, Malliaras G G. Synth. Met., 2004, 144: 291-296
[21] Ho A W Y, Wenham S R. Sol. Energy Mater. Sol. Cells, 2007, 91: 1234-1242
[22] Lee W F, Chen Y C. Eur. Polym. J., 2005, 41: 1605-1612
[23] Wu J H, Lan Z, Lin J M, Huang M L, Hao S C, Sato T, Yin S. Adv. Mater., 2007, 19: 4006-4011
[24] Li Q H, Wu J H, Tang Z Y, Xiao Y M, Huang M L, Lin J M. Electrochim. Acta, 2010, 55: 2777-2781
[25] Tang Z Y, Wu J H, Li Q H, Lan Z, Fan L G, Lin J M, Huang M L. Electrochim. Acta, 2010, 55: 4883-4888
[26] Tang Z Y, Wu J H, Liu Q, Zheng M, Tang Q W, Lan Z, Lin J M. J. Power Sources, 2012, 203: 282-287
[27] Cao F, Oskam G, Searson P C. J. Phys. Chem., 1995, 99: 17071-17073
[28] Yu Z X, Qin D, Zhang Y D, Sun H C, Luo Y H, Meng Q B, Li D M. Energy Enviro. Sci., 2011, 4: 1298-1305
[29] Yoon J, Kang D K, Won J, Park J Y, Kang Y S. J. Power Sources, 2012, 201: 395-401
[30] Wang P, Zakeeruddin S M, Comte P, Exnar I, Grätzel M. J. Am. Chem. Soc., 2003, 125: 1166-1167
[31] Wang P, Zakeeruddin S M, Grätzel M. J. Fluorine Chem., 2004, 125: 1241-1245
[32] Kubo W, Kambe S, Nakade S, Kitamura T, Hanabusa K, Wada Y, Yanagida S. J. Phys. Chem. B, 2003, 107: 4374-4381
[33] Zhang Y G, Zhao J, Sun B Q, Chen X J, Li Q, Qiu L H, Yan F. Electrochim. Acta, 2012, 61: 185-190
[34] Terech P, Weiss R G. Chem. Rev., 1997, 97: 3133-3159
[35] Hanabusa K, Hiratsuka K, Kimura M, Shirai H. Chem. Mater., 1999, 11: 649-655
[36] Placin F, Desvergne J P, Lassegues J C. Chem. Mater., 2001, 13: 117-121
[37] Sangeetha N M, Maitra U. Chem. Soc. Rev., 2005, 34: 821-836
[38] Wang C, Zhang D Q, Zhu D B. Langmuir, 2007, 23: 1478-1482
[39] Davis R, Berger R, Zentel R. Adv. Mater., 2007, 19: 3878-3881
[40] Fernandes S A, Natalino R, Rodrigues P A, da Silva G M J, Jham G N. Tetrahedron Lett., 2012, 53: 1630-1633
[41] Caplar V, Frkanec L, Vujicic N S, Zini Dc' M. Chem.-Eur. J., 2010, 16: 3066-3082
[42] Rogers M A, Kontogiorgos V. Food Biophys., 2012, 7: 132-137
[43] Luboradzki R, Gronwald O, Ikeda M, Shinkai S, Reinhoudt D N. Tetrahedron, 2000, 56: 9595-9599
[44] Gronwald O, Shinkai S. Chem.-Eur. J., 2001, 7: 4328-4334
[45] Jung J H, Amaike M, Nakashima K, Shinkai S. J. Chem. Soc. Perkin Transactions 2, 2001, 1938-1943
[46] Hasegawa M, Enozawa H, Kawabata Y, Iyoda M. J. Am. Chem. Soc., 2007, 129: 3072-3073
[47] George M, Weiss R G. Acc. Chem. Res., 2006, 39: 489-497
[48] Kimura M, Mukai R, Tanigawa N, Tanaka S, Tamaru Y. Tetrahedron, 2003, 59: 7767-7777
[49] Shirakawa M, Kawano S, Fujita N, Sada K, Shinkai S. J. Org. Chem., 2003, 68: 5037-5044
[50] Kimura M, Muto T, Takimoto H, Wada K, Ohta K, Hanabusa K, Shirai H, Kobayashi N. Langmuir, 2000, 16: 2078-2082
[51] Sun R D, Nakajima A, Fujishima A, Watanabe T, Hashimoto K. J. Phys. Chem. B, 2001, 105: 1984-1990
[52] Shi F, Chen X X, Wang L Y, Niu J, Yu J H, Wang Z Q, Zhang X. Chem. Mater., 2005, 17: 6177-6180
[53] Tsuchiya K, Orihara Y, Kondo Y, Yoshino N, Ohkubo T, Sakai H, Abe M. J. Am. Chem. Soc., 2004, 126: 12282-12283
[54] Gansauer A, Franke D, Lauterbach T, Nieger M. J. Am. Chem. Soc., 2005, 127: 11622-11623
[55] Gansauer A, Winkler I, Klawonn T, Nolte R J M, Feiters M C, Boerner H G, Hentschel J, Dotz K H. Organometallics, 2009, 28: 1377-1382
[56] Klawonn T, Gansauer A, Winkler I, Lauterbach T, Franke D, Nolte R J M, Feiters M C, Borner H, Hentschel J, Dotz K H. Chem. Commun., 2007, 1894-1895
[57] Smith D K. Adv. Mater., 2006, 18: 2773-2778
[58] Llusar M, Monros G, Roux C, Pozzo J L, Sanchez C. J. Mater. Chem., 2003, 13: 2505-2514
[59] Placin F, Desvergne J P, Belin C, Buffeteau T, Desbat B, Ducasse L, Lassegues J C. Langmuir, 2003, 19: 4563-4572
[60] Hirst A R, Smith D K. Chem.-Eur. J., 2005, 11: 5496-5508
[61] Langford S J, Latter M J, Lau V L, Martin L L, Mechler A. Org. Lett., 2006, 8: 1371-1373
[62] Derango C, Charpin P, Navaza J, Keller N, Nicolis I, Villain F, Coleman A W. J. Am. Chem. Soc., 1992, 114: 5475-5476
[63] Kubo W, Murakoshi K, Kitamura T, Yoshida S, Haruki M, Hanabusa K, Shirai H, Wada Y, Yanagida S. J. Phys. Chem. B, 2001, 105: 12809-12815
[64] Mohmeyer N, Wang P, Schmidt H W, Zakeeruddin S M, Grätzel M. J. Mater. Chem., 2004, 14: 1905-1909
[65] Huo Z P, Dai S Y, Zhang C G, Kong F T, Fang X Q, Guo L, Liu W Q, Hu L H, Pan X, Wang K. J. Phys. Chem. B, 2008, 112: 12927-12933
[66] 霍志鹏(Huo Z P), 戴松元(Dai S Y), 张昌能(Zhang C N), 刘伟庆(Liu W Q), 方霞琴(Fang X Q), 蔡墨朗(Cai M L), 郭磊(Guo L), 王孔嘉(Wang K J), 姜年权(Jiang N Q), 郑亦庄(Zheng Y Z). 高等学校化学学报(Chem. J. Chinese Universities), 2009, 30(6): 1214-1218
[67] Huo Z P, Zhang C N, Fang X Q, Cai M L, Dai S Y, Wang J K. J. Power Sources, 2010, 195: 4384-4390
[68] Lan Z, Wu J H, Un J M, Huang M L. Sci. China-Chem., 2012, 55: 242-246
[69] Yu Q J, Yu C L, Guo F Y, Wang J Z, Jiao S J, Gao S Y, Li H T, Zhao L C. Energy Enviro. Sci., 2012, 5: 6151-6155
[70] Yang Y, Hu H, Zhou C H, Xu S, Sebo B, Zhao X Z. J. Power Sources, 2011, 196: 2410-2415
[71] Kimizuka N, Nakashima T. Langmuir, 2001, 17: 6759-6761
[72] Kubo W, Kitamura T, Hanabusa K, Wada Y, Yanagida S. Chem. Commun., 2002, 374-375
[73] Mohmeyer N, Kuang D B, Wang P, Schmidt H W, Zakeeruddin S M, Grätzel M. J. Mater. Chem., 2006, 16: 2978-2983
[74] Mohmeyer N, Schmidt H W. Chem.-Eur. J., 2005, 11: 863-872
[75] Pan X, Dai S Y, Wang K J. Chin. J. Chem., 2007, 25: 1601-1603
[76] Voss B A, Bara J E, Gin D L, Noble R D. Chem. Mater., 2009, 21: 3027-3029
[77] Li P J, Zhang Y G, Fa W J, Zhang Y D, Huang B. J. Carbohydr. Polym., 2011, 86: 1216-1220
[78] Tan L, Dong X L, Wang H, Yang Y J. Electrochem. Commun., 2009, 11: 933-936
[79] Sun S, Song J, Feng R, Shan Z. Electrochim. Acta, 2012, 69: 51-55
[80] Mikoshiba S, Murai S, Sumino H, Hayase S. Chem. Lett., 2002, 918-919

[1] Qiyao Guo, Jialong Duan, Yuanyuan Zhao, Qingwei Zhou, Qunwei Tang. Hybrid Energy Harvesting Solar Cells―From Principles to Applications [J]. Progress in Chemistry, 2023, 35(2): 318-329.
[2] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[3] Chaolumen Xue, Wanru Liu, Tuya Bai, Mingmei Han, Ren Sha, Chuanlang Zhan. Recent Progress on Solar Cell Performance Based on Structural Tailoring on DA'D Units of Nonfullerene Acceptors [J]. Progress in Chemistry, 2022, 34(2): 447-459.
[4] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[5] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[6] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[7] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[8] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[9] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[10] Yi Zhou, Jingjing Hu, Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Energy Band Regulation in 2D Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(7): 966-977.
[11] Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Strategies for Interfacial Modification in Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(6): 817-835.
[12] Xiaohui Ma, Liqun Yang, Shijian Zheng, Qilin Dai, Cong Chen, Hongwei Song. All-Inorganic Perovskite Solar Cells: Status and Future [J]. Progress in Chemistry, 2020, 32(10): 1608-1632.
[13] Lei Wang, Qin Zhou, Yuqiong Huang, Bao Zhang, Yaqing Feng. Interface Passivation Strategy: Improving the Stability of Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(1): 119-132.
[14] Zhaoqi Shen, Jingzhao Cheng, Xiaofeng Zhang, Weiya Huang, Herui Wen, Shiyong Liu. P3HT/Non-Fullerene Acceptors Heterojunction Organic Solar Cells [J]. Progress in Chemistry, 2019, 31(9): 1221-1237.
[15] Yeling Yan, Junmei Cao, Fanning Meng, Ning Wang, Liguo Gao, Tingli Ma. Large-Area Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(7): 1031-1043.