中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (7): 1548-1553 DOI: 10.7536/PC220231 Previous Articles   Next Articles

• Review •

Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry

Peng Xu(), Biao Yu()   

  1. State Key Laboratory of Bioorganic and Natural Product Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science,Shanghai 200032, China
  • Received: Revised: Online: Published:
  • Contact: Peng Xu, Biao Yu
  • Supported by:
    the National Natural Science Foundation of China(22177125); Science and Technology Commission of Shanghai Municipality(22ZR1475600)
Richhtml ( 15 ) PDF ( 354 ) Cited
Export

EndNote

Ris

BibTeX

Glycans are the most abundant organic polymers in nature, and vital biomaterials for structural support and energy storage in living organisms. Meanwhile, glycans play an important role in cell recognition, differentiation, development, carcinogenesis and immunity. Compared with nucleic acid and protein, the specific role of glycans in many biological processes is still unknown, which is related to the difficulty of accessing well-defined glycans and the lack of precise tools for manipulating glycans in vivo. Synthetic methods in carbohydrate chemistry have been developed rapidly in recent decades, providing a powerful weapon for the study of synthetic glycans, especially oligosaccharides. Nevertheless, compared with the synthesis of nucleic acids and proteins, the synthesis of structurally well-defined glycans remains an unsolved chemical challenge with many unexpected problems. There are various factors that may affect the efficiency and stereoselectivity of glycosylation profile. Furthermore, glycans could be assembled into ordered aggregates through intermolecular non-covalent forces, then affecting the synthesis. For instance, in the process of removal protecting groups, the great change of solubility of glycan has a decisive effect on the reaction. The effect of aggregation formation on reactivity has not been thoroughly studied. Therefore, it is still necessary to complete the synthesis of well-defined glycan through trial-and-error experiments. In addition, glycans and glycoconjugates play an important role in living organisms by forming supramolecular structures. In conclusion, it is of great significance to study the condensed matter chemistry in glycans and their synthesis.

Contents

1 Structure, function and synthesis of glycans in living systems

2 Challenges and advances in the chemical synthesis of glycans

3 Some uncertainties in the chemical synthesis of glycans

3.1 The solvent effect

3.2 The concentration effect

3.3 The temperature effect

3.4 Problems in heterogeneous reactions

3.5 Solubility problem

4 Possible condensed matter chemistry problems

5 Prospect

Fig. 1 Protein glycosylation and the glycan-involved interactions[2]
Fig. 2 Glycan synthesis by condensation polymerization[14]. Ac = acetyl[14]
Fig. 3 Stereoselective synthesis of α- decaglucan based on a concentration effect[17]. Bn = benzyl, Bz = benzoyl, Tol = p-methylphenyl
Fig. 4 Template directed cyclo-glycosylation with the stereoselectivity being effected by the reaction temperature[21]. Me = methyl, TBDPS = tert-butyldiphenylsilyl
Fig. 5 1,2-cis Selective glycosylation in the presence of different dehydrating agents[23]
Fig. 6 Deprotection of glycans relevant to the O-antigen of Bacteroides vulgatus[25f]. Ph = phenyl, TBS = tert-butyldimethyl, MP = p-methoxyphenyl
[1]
(a) Bertozzi C R, Kiessling L L. Science, 2001, 291: 2357.

pmid: 11269316
(b) Introdution to Glycobiology.3rd ed. Taylor M E, Drickamer K. Oxford, 2011.

pmid: 11269316
[2]
(a) Dwek R A. Chem. Rev., 1996, 96: 683.

doi: 10.1021/cr940283b pmid: 11749347
(b) Bashkin J K. Chem. Rev., 2000, 100: 4265.

pmid: 11749347
[3]
Barsanti L, Passarelli V, Evangelista V, Frassanito A M, Gualtieri P. Nat. Prod. Rep., 2011, 28: 457.

doi: 10.1039/c0np00018c pmid: 21240441
[4]
Byun S, Lee C G, Kang H J, Kim G C, Jun C D, Jan G, Suh C H, Jung J Y, Sprent J, Rudra D, De Castro C, Molinaro A, Surh C D, Im S H. Sci. Immunol., 2018, 3: eaat6975.
[5]
Biörklund M, van Rees A, Mensink R P, Önning G. Eur. J. Clin. Nutr., 2005, 59: 1272.

doi: 10.1038/sj.ejcn.1602240 pmid: 16015250
[6]
Guberman M, Seeberger P H. J. Am. Chem. Soc., 2019, 141: 5581.

doi: 10.1021/jacs.9b00638 pmid: 30888803
[7]
Xiao R, Grinstaff M W. Prog. Polym. Sci., 2017, 74: 78.
[8]
(a) Mydock L L, Demchenko A V. Org. Biomol. Chem., 2010, 8: 497.

doi: 10.1039/B916088D
(b) Crich D. Acc. Chem. Res., 2010, 43: 1144.

doi: 10.1021/ar100035r
(c) Frihed T G, Bols M, Pedersen C M. Chem. Rev., 2015, 115: 4963
(d) Yu B. Acc. Chem. Res., 2018, 51: 507.

doi: 10.1021/acs.accounts.7b00573
[9]
Krasnova L, Wong C-H. J. Am. Chem. Soc., 2019, 141: 3735.

doi: 10.1021/jacs.8b11005 pmid: 30716271
[10]
Panza M, Pistorio S G, Stine K J, Demchenko A V. Chem. Rev., 2018, 118: 8105.

doi: 10.1021/acs.chemrev.8b00051
[11]
Zhu X, Schmidt R R. Angew. Chem. Int. Ed., 2009, 48: 1900.

doi: 10.1002/anie.200802036
[12]
Ratcliffe A J, Fraser-Reid B. J. Chem. Soc., 1990, 747.
[13]
Voit B. Angew. Chem. Int. Ed., 2000, 37: 3407.

doi: 10.1002/(SICI)1521-3773(19981231)37:24【-逻*辑*与-】lt;3407::AID-ANIE3407【-逻*辑*与-】gt;3.0.CO;2-Z
[14]
Li L, Xu Y, Milligan I, Fu L, Franckowiak E A, Du W. Angew. Chem. Int. Ed., 2013, 52: 13699.

doi: 10.1002/anie.201306391
[15]
Demchenko A, Stauch T, Boons G J. Synlett, 1997, 818.
[16]
(a) Chao C S, Li C W, Chen M C, Chang S S, Mong K K T. Chem. Eur. J., 2009, 15: 10972
(b) Yang F, Zhu Y, Yu B. Chem. Commun., 2012, 48: 7097
(c) Kimura T, Eto T, Takahashi D, Toshima K. Org. Lett., 2016, 18: 3190.

doi: 10.1021/acs.orglett.6b01404
[17]
Zhao Q, Zhang H, Zhang Y, Zhou S, Gao J. Org. Biomol. Chem., 2020, 18, 6549.
[18]
(a) Kononov L O, Malysheva N N, Kononova E G, Orlova A V. Eur. J. Org. Chem., 2008, 3251;
(b) Kononov L O, Malysheva N N, Orlov A V. Eur. J. Org. Chem., 2009, 611.
[19]
Orlova A V, Ahiadorme D A, Laptinskaya T V, Kononov L O. Rus. Chem. Bull., 2021, 70: 2214.

doi: 10.1007/s11172-021-3335-8
[20]
Durand A. Eur. Polym. J., 2007, 43: 1744.

doi: 10.1016/j.eurpolymj.2007.02.031
[21]
Valverde S, GÓmez A M, LÓpez J C, HerradÓn B. Tetrahedron Lett., 1996, 37: 1105.
[22]
Sharkey P F, Eby R, Schuerch C. Carbohydr. Res., 1981, 96: 223.

doi: 10.1016/S0008-6215(00)81872-8
[23]
Jona H, Takeuchi K, Mukaiyama T. Chem. Lett., 2000, 1278.
[24]
Satoh T, Imai T, Ishihara H, Maeda T, Kitajyo Y, Narumi A, Kaga H, Kaneko N, Kakuchi T. Macromolecules, 2003, 36: 6364.

doi: 10.1021/ma034643l
[25]
(a) Hansen S U U, Miller G J, Jayson G C, Gardiner J M, Org. Lett., 2013, 15: 88;

doi: 10.1021/ol303112y pmid: 30090231
(b) Hansen S U, Miller G J, Cliff M J, Jayson G C, Gardiner J M. Chem. Sci., 2015, 6: 6158;

doi: 10.1039/c5sc02091c pmid: 30090231
(c) Naresh K, Schmacher F, Hahm H S, Seeberger P H. Chem. Commun., 2017, 53: 9085;

doi: 10.1039/C7CC04380E pmid: 30090231
(d) Wu Y, Xiong D C, Chen S C, Wang Y S, Ye X S. Nat. Commun., 2017, 8: 14851;

doi: 10.1038/ncomms14851 pmid: 30090231
(e) Joseph A A, Pardo-Vargas A, Seeberger P H. J. Am. Chem. Soc., 2020, 142: 8561;

doi: 10.1021/jacs.0c00751 pmid: 30090231
(f) Zhu Q, Shen Z, Chiodo F, Nicolardi S, Molinaro A, Silipo A, Yu B. Nat. Commun., 2020, 11: 4142.

doi: 10.1038/s41467-020-17992-x pmid: 30090231
[26]
Yu Y, Tyrikos-Ergas T, Zhu Y, Fittolani G, Bordoni V, Singhal A, Fair R J, Grafmüller A, Seeberger P H, Delbianco M. Angew. Chem. Int. Ed., 2019, 58: 13127.

doi: 10.1002/anie.201906577
[27]
Yu Y, Gim S, Kim D, Arnon Z A, Gazit E, Seeberger P H, Delbianco M. J. Am. Chem. Soc., 2019, 141: 4833.

doi: 10.1021/jacs.8b11882
[28]
(a) Xu R. Nat. Sci. Rev., 2018, 5: 1;
(b) Xu R, Wang K, Chen G, Yan W. Nat. Sci. Rev., 2019, 6: 191.

doi: 10.1093/nsr/nwy128
[1] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[2] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[3] Pengbo Han, He Xu, Zhongfu An, Zheyi Cai, Zhengxu Cai, Hui Chao, Biao Chen, Ming Chen, Yu Chen, Zhenguo Chi, Shuting Dai, Dan Ding, Yuping Dong, Zhiyuan Gao, Weijiang Guan, Zikai He, Jingjing Hu, Rong Hu, Yixiong Hu, Qiuyi Huang, Miaomiao Kang, Danxia Li, Jisen Li, Shuzhen Li, Wenlang Li, Zhen Li, Xinlin Lin, Huaying Liu, Peiying Liu, Xiaoding Lou, Chao Lu, Dongge Ma, Hanlin Ou, Juan Ouyang, Qian Peng, Jun Qian, Anjun Qin, Jiamin Qu, Jianbing Shi, Zhigang Shuai, Lihe Sun, Rui Tian, Wenjing Tian, Bin Tong, Huiliang Wang, Dong Wang, He Wang, Tao Wang, Xiao Wang, Yucheng Wang, Shuizhu Wu, Fan Xia, Yujun Xie, Kai Xiong, Bin Xu, Dongpeng Yan, Haibo Yang, Qingzheng Yang, Zhiyong Yang, Lizhen Yuan, Wangzhang Yuan, Shuangquan Zang, Fang Zeng, Jiajie Zeng, Zhuo Zeng, Guoqing Zhang, Xiaoyan Zhang, Xuepeng Zhang, Yi Zhang, Yufan Zhang, Zhijun Zhang, Juan Zhao, Zheng Zhao, Zihao Zhao, Zujin Zhao, Ben Zhong Tang. Aggregation-Induced Emission [J]. Progress in Chemistry, 2022, 34(1): 1-130.
[4] Quanfei Zhu, Jundi Hao, Jingwen Yan, Yu Wang, Yuqi Feng. FAHFAs: Biological Functions, Analysis and Synthesis [J]. Progress in Chemistry, 2021, 33(7): 1115-1125.
[5] Fei Ren, Jianbing Shi, Bin Tong, Zhengxu Cai, Yuping Dong. Near Infrared Fluorescent Dyes with Aggregation-Induced Emission [J]. Progress in Chemistry, 2021, 33(3): 341-354.
[6] Libo Mao, Huailing Gao, Yufeng Meng, Yulu Yang, Xiangsen Meng, Shuhong Yu. Biomineralization: A Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1086-1099.
[7] Xiaoyang Liu. Condensed Matter Chemistry under High Pressure [J]. Progress in Chemistry, 2020, 32(8): 1184-1202.
[8] Xiping Jing. From Solid State Chemistry to Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1049-1059.
[9] Yifan Xue, Wenhui Meng, Runze Wang, Junjie Ren, Weili Heng, Jianjun Zhang. Supersaturation Theory and Supersaturating Drug Delivery System(SDDS) [J]. Progress in Chemistry, 2020, 32(6): 698-712.
[10] Peng Zhang, Xinjie Guo, Qian Zhang, Caifeng Ding. Photochemical Sensing Based on the Aggregation of Organic Dyes [J]. Progress in Chemistry, 2020, 32(2/3): 286-297.
[11] Jianxi Zhao, Panpan Gu, Hui Zeng, Shenglu Deng. Self-Assembly of Surfactants in Non-Polar Organic Solvents [J]. Progress in Chemistry, 2019, 31(5): 643-653.
[12] Yawen Li, Wantong Ao, Huilin Jin, Liping Cao. Aggregation-Induced Emission of Tetraphenylethene Derivatives with Macrocycles via Host-Guest Interactions [J]. Progress in Chemistry, 2019, 31(1): 121-134.
[13] Hu Daihua, Chen Wang, Wang Yongji. Synthesis and Structure-Activity Relationship of Active Vitamin D3 Analogues [J]. Progress in Chemistry, 2016, 28(6): 839-859.
[14] Lu Xiaomei, Li Jie, Hu Wenbo, Deng Weixing, Fan Quli, Huang Wei. Recent Advances of the Water-Soluble Conjugated Polymer Brushes [J]. Progress in Chemistry, 2016, 28(4): 528-540.
[15] Lu Jinrong, Ju Yong. Supramolecular Gels Based on Natural Product-Triterpenoids [J]. Progress in Chemistry, 2016, 28(2/3): 260-268.