中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (7): 1115-1125 DOI: 10.7536/PC200741 Previous Articles   Next Articles

• Review •

FAHFAs: Biological Functions, Analysis and Synthesis

Quanfei Zhu1, Jundi Hao1, Jingwen Yan1, Yu Wang1, Yuqi Feng1,2,*()   

  1. 1 School of Chemistry and Molecular Sciences, Wuhan University,Wuhan 430072, China
    2 Frontier Science Center for Immunology and Metabolism, Wuhan University,Wuhan 430072, China
  • Received: Revised: Online: Published:
  • Contact: Yuqi Feng
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(21635006); National Natural Science Foundation of China(31670373); National Natural Science Foundation of China(21721005); National Natural Science Foundation of China(21904099); China Postdoctoral Science Foundation(2018M642893)
Richhtml ( 57 ) PDF ( 1100 ) Cited
Export

EndNote

Ris

BibTeX

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are a new class of functional lipids. It has been reported that they play important roles in mammals, such as improving glucose tolerance, enhancing insulin sensitivity, maintaining blood glucose homeostasis, and anti-inflammatory. Since its discovery in 2014, FAHFA has been attracting more and more attention of scientists, and has become a new branch of lipid research. This review summarizes the research advances of FAHFA since its discovery, covering the physiological function, metabolism, storage in organism, analysis and chemical synthesis of FAHFA.

Contents

1 Introduction

2 Advances since the discovery of FAHFAs

2.1 FAHFAs biological functions

2.2 FAHFAs metabolism

2.3 Storage forms of FAHFAs in vivo

2.4 FAHFAs analysis

2.5 FAHFAs synthesis

3 Conclusion and outlook

Fig. 1 Anti-diabetic and anti-inflammatory effects of FAHFAs[2]. Copyright 2014, Elsevier
Fig. 2 Proposed scheme for 9-PAHSA synthesis[20]. Copyright 2018, American Diabetes Association
Fig. 3 Discovery of FAHFA-TAGs and their metabolic regulation[22]. Copyright 2019, American Chemical Society
Fig. 4 Analysis of OAHSAs and PAHSAs in PG WAT of WT and AG4OX mice with the original and shorter method[24]. Extracted ion chromatograms comparing perigonadal white adipose tissue (PG WAT) PAHSAs in AG4OX and WT mice using the original (a) and shorter method (b). Extracted ion chromatograms analyzing OAHSAs in PG WAT WT and AG4OX mice in the original (c) and shorter method (d). Copyright 2018, American Chemical Society
Fig. 5 Schematic illustration for the quantification of FAHFAs by SAX-SPE-CIL-UHPLC-MS/MS analysis[16]. Copyright 2017, Elsevier
Fig. 6 Derivatization reaction of FAHFAs and AMPP[28]
Fig. 7 Overview of the procedure for the screening and identification of FAHFAs in rice and Arabidopsis thaliana by CIL-LC-MS[31]. Copyright 2018, American Chemical Society
Table 1 Reported FAHFA families
No. FAHFA family Structure a Formula No. FAHFA family Structure a Formula
1 POHPO 16:1-O-16:1 C32H58O4 39 MAHAA 14:0-O-20:0 C34H66O4
2 OAHPO 18:1-O-16:1 C34H62O4 40 PAHAA 16:0-O-20:0 C36H70O4
3 PAHPO 16:0-O-16:1 C32H60O4 41 SAHAA 18:0-O-20:0 C38H74O4
4 SAHPO 18:0-O-16:1 C34H64O4 42 OAHAA 18:1-O-20:0 C38H72O4
5 LAHPO 18:2-O-16:1 C34H60O4 43 LAHAA 18:2-O-20:0 C38H70O4
6 POHOA 16:1-O-18:1 C34H62O4 44 AAHAA 20:0-O-20:0 C40H78O4
7 OAHOA 18:1-O-18:1 C36H66O4 45 PAHDDA 16:0-O-12:0 C28H54O4
8 PAHOA 16:0-O-18:1 C34H64O4 46 PDAHDA 15:0-O-10:0 C25H48O4
9 SAHOA 18:0-O-18:1 C36H68O4 47 PAHDA 16:0-O-10:0 C26H50O4
10 ALAHOA 18:3-O-18:1 C36H62O4 48 HDAHDA 17:0-O-10:0 C27H52O4
11 LAHOA 18:2-O-18:1 C36H64O4 49 SAHDA 18:0-O-10:0 C28H54O4
12 POHPA 16:1-O-16:0 C32H60O4 50 PDAHCA 15:0-O-8:0 C23H44O4
13 OAHPA 18:1-O-16:0 C34H64O4 51 PAHCA 16:0-O-8:0 C24H46O4
14 PAHPA 16:0-O-16:0 C32H62O4 52 HDAHCA 17:0-O-8:0 C25H48O4
15 SAHPA 18:0-O-16:0 C34H66O4 53 SAHCA 18:0-O-8:0 C26H50O4
16 MAHPA 14:0-O-16:0 C30H58O4 54 PDAHHA 15:0-O-6:0 C21H40O4
17 MOHPA 14:1-O-16:0 C30H56O4 55 PAHHA 16:0-O-6:0 C22H42O4
18 PDAHPA 15:0-O-16:0 C31H60O4 56 HDAHHA 17:0-O-6:0 C23H44O4
19 HDAHPA 17:0-O-16:0 C33H64O4 57 SAHHA 18:0-O-6:0 C24H46O4
20 LAHPA 18:2-O-16:0 C34H62O4 58 NAHHA 19:0-O-6:0 C25H48O4
21 ALAHPA 18:3-O-16:0 C34H60O4 59 AAHHA 20:0-O-6:0 C26H50O4
22 AAHPA 20:0-O-16:0 C36H70O4 60 MAHMA 14:0-O-14:0 C28H54O4
23 POHSA 16:1-O-18:0 C34H64O4 61 MOHMA 14:1-O-14:0 C28H52O4
24 OAHSA 18:1-O-18:0 C36H68O4 62 PDAHMA 15:0-O-14:0 C29H56O4
25 PAHSA 16:0-O-18:0 C34H66O4 63 PDEAHMA 15:1-O-14:0 C29H54O4
26 SAHSA 18:0-O-18:0 C36H70O4 64 PAHMA 16:0-O-14:0 C30H58O4
27 MAHSA 14:0-O-18:0 C32H62O4 65 POHMA 16:1-O-14:0 C30H56O4
28 PDAHSA 15:0-O-18:0 C33H64O4 66 SAHMA 18:0-O-14:0 C32H62O4
29 HDAHSA 17:0-O-18:0 C35H68O4 67 FAHFA(38:3) 20:3-O-18:0 C38H68O4
30 LAHSA 18:2-O-18:0 C36H66O4 68 FAHFA(38:5) 20:4-O-18:1 C38H64O4
31 AAHSA 20:0-O-18:0 C38H74O4 69 FAHFA(40:5) 20:3-O-20:2 C40H68O4
32 ALAHSA 18:3-O-18:0 C36H64O4 70 FAHFA(40:6) 22:5-O-18:1 C40H66O4
33 DHAHLA 22:6-O-18:2 C40H62O4 71 FAHFA(40:7) 20:4-O-20:3 C40H64O4
34 POHLA 16:1-O-18:2 C34H60O4 72 FAHFA(42:6) 20:3-O-22:3 C42H70O4
35 PAHLA 16:0-O-18:2 C34H62O4 73 FAHFA(42:8) 20:4-O-22:4 C42H66O4
36 ALAHLA 18:3-O-18:2 C36H60O4 74 FAHFA(42:9) 20:4-O-22:5 C42H64O4
37 LAHLA 18:2-O-18:2 C36H62O4 75 FAHFA(44:9) 22:5-O-22:4 C44H68O4
38 DHAHDHA 22:6-O-22:6 C44H62O4
Fig. 8 Prediction model, based on the log10k, ester position, and carbon number of FA, for saturated FAHSAs. Blue dots represent the confirmed compounds; red dots represent the predicted compounds[31]. Copyright 2018, American Chemical Society
Scheme 1 Proposed chemical synthesis pathway of 5-PAHSA by Yore et al.[2]
Scheme 2 Proposed chemical synthesis pathway of 5-PAHSA by Balas et al.[37]
Scheme 3 Proposed chemical synthesis pathway of 5(R)-PAHSA by Nelson et al.[38]
[1]
Fahy E, Subramaniam S, Brown H A, Glass C K, Merrill A H, Murphy R C, Raetz C R, Russell D W, Seyama Y, Shaw W. Eur. J. Lipid Sci. Tech., 2005, 107:337.

doi: 10.1002/(ISSN)1438-9312
[2]
Yore M M, Syed I, Moraes-Vieira P M, Zhang T J, Herman M A, Homan E A, Patel R T, Lee J, Chen S L, Peroni O D, Dhaneshwar A S, Hammarstedt A, Smith U, McGraw T E, Saghatelian A, Kahn B B. Cell, 2014, 159(2):318.

doi: 10.1016/j.cell.2014.09.035
[3]
Muoio D M, Newgard C B. Nature, 2014, 516(7529):49.

doi: 10.1038/nature14070
[4]
Ussar S, Tschöp M H. Cell, 2014, 159(2):238.

doi: 10.1016/j.cell.2014.09.045
[5]
Lee J, Moraes-Vieira P M, Castoldi A, Aryal P, Yee E U, Vickers C, Parnas O, Donaldson C J, Saghatelian A, Kahn B B. J. Biol. Chem., 2016, 291(42):22207.

doi: 10.1074/jbc.M115.703835
[6]
Kuda O, Brezinova M, Rombaldova M, Slavikova B, Posta M, Beier P, Janovska P, Veleba J, Kopecky J, Kudova E, Pelikanova T, Kopecky J. Diabetes, 2016, 65(11):3516.2.

doi: 10.2337/db16-er11b
[7]
Kolar M J, Konduri S, Chang T N, Wang H J, McNerlin C, Ohlsson L, Härröd M, Siegel D, Saghatelian A. J. Biol. Chem., 2019, 294(27):10698.

doi: 10.1074/jbc.RA118.006956
[8]
Syed I, Lee J, Moraes-Vieira P M, Donaldson C J, Sontheimer A, Aryal P, Wellenstein K, Kolar M J, Nelson A T, Siegel D, Mokrosinski J, Farooqi I S, Zhao J J, Yore M M, Peroni O D, Saghatelian A, Kahn B B. Cell Metab., 2018, 27(2):419.

doi: 10.1016/j.cmet.2018.01.001
[9]
Moraes-Vieira P M, Saghatelian A, Kahn B B. Diabetes, 2016, 65(7):1808.

doi: 10.2337/db16-0221 pmid: 27288004
[10]
Syed I, Rubin de Celis M F, Mohan J F, Moraes-Vieira P M, Vijayakumar A, Nelson A T, Siegel D, Saghatelian A, Mathis D, Kahn B B. J. Clin. Investig., 2019, 129(9):3717.

doi: 10.1172/JCI122445
[11]
Kahn B B, Saghatelian A, Syed I. EP, EP, US 2019/0151276 A1, 2019.
[12]
Hamad A R A, Sadasivam M, Rabb H. J. Clin. Investig., 2019, 129(9):3527.

doi: 10.1172/JCI130313
[13]
Brezinova M, Kuda O, Hansikova J, Rombaldova M, Balas L, Bardova K, Durand T, Rossmeisl M, Cerna M, Stranak Z, Kopecky J. Biochim. Et Biophys. Acta BBA Mol. Cell Biol. Lipids, 2018, 1863(2):126.
[14]
Rodríguez J P, Guijas C, Astudillo A M, Rubio J M, Balboa M A, Balsinde J. Cancers, 2019, 11(4):524.

doi: 10.3390/cancers11040524
[15]
Liu T, Tan Z R, Yu J, Peng F, Guo J W, Meng W H, Chen Y, Rao T, Liu Z Q, Peng J B. Expert. Rev. Proteom., 2020, 17(3):233.

doi: 10.1080/14789450.2020.1757443
[16]
Zhu Q F, Yan J W, Gao Y, Zhang J W, Yuan B F, Feng Y Q. J. Chromatogr. B, 2017, 1061/1062: 34.
[17]
Zhu Q F, Yan J W, Ni J, Feng Y Q. BBA-Mol. Cell Biol. L., 2020, 1865: 158639.
[18]
Parsons W H, Kolar M J, Kamat S S, Iii A B C, Hulce J J, Saez E, Kahn B B, Saghatelian A, Cravatt B F. Nat. Chem. Biol., 2016, 12(5):367.

doi: 10.1038/nchembio.2051
[19]
Kolar M J, Kamat S S, Parsons W H, Homan E A, Maher T, Peroni O D, Syed I, Fjeld K, Molven A, Kahn B B, Cravatt B F, Saghatelian A. Biochemistry, 2016, 55(33):4636.

doi: 10.1021/acs.biochem.6b00565
[20]
Kuda O, Brezinova M, Silhavy J, Landa V, Zidek V, Dodia C, Kreuchwig F, Vrbacky M, Balas L, Durand T, Hübner N, Fisher A B, Kopecky J, Pravenec M. Diabetes, 2018, 67(6):1190.

doi: 10.2337/db17-1087
[21]
McLean S, Davies N W, Nichols D S, McLeod B J. Lipids, 2015, 50(6):591.

doi: 10.1007/s11745-015-4025-9
[22]
Tan D, Ertunc M E, Konduri S, Zhang J, Pinto A M, Chu Q, Kahn B B, Siegel D, Saghatelian A. J. Am. Chem. Soc., 2019, 141(22):8798.

doi: 10.1021/jacs.9b00045
[23]
Zhang T J, Chen S L, Syed I, Ståhlman M, Kolar M J, Homan E A, Chu Q, Smith U, Borén J, Kahn B B, Saghatelian A. Nat. Protoc., 2016, 11(4):747.

doi: 10.1038/nprot.2016.040
[24]
Kolar M J, Nelson A T, Chang T N, Ertunc M E, Christy M P, Ohlsson L, Härröd M, Kahn B B, Siegel D, Saghatelian A. Anal. Chem., 2018, 90(8):5358.

doi: 10.1021/acs.analchem.8b00503
[25]
López-Bascón M A, Calderón-Santiago M, Priego-Capote F. Anal. Chimica Acta, 2016, 943:82.

doi: 10.1016/j.aca.2016.09.014
[26]
Qi B L, Liu P, Wang Q Y, Cai W J, Yuan B F, Feng Y Q. Trac Trends Anal. Chem., 2014, 59:121.

doi: 10.1016/j.trac.2014.03.013
[27]
Zhang T Y, Li S, Zhu Q F, Wang Q, Hussain D, Feng Y Q. Trac Trends Anal. Chem., 2019, 119:115608.

doi: 10.1016/j.trac.2019.07.019
[28]
Hu C F, Wang M, Duan Q, Han X L. Anal. Chimica Acta, 2020, 1105: 105.

doi: 10.1016/j.aca.2020.01.026
[29]
Liberati-Čizmek A M, Biluš M, Brkić A L, Barić I C, Bakula M, Hozić A, Cindrić M. Plant Foods Hum. Nutr., 2019, 74(2):235.

doi: 10.1007/s11130-019-00728-8
[30]
Ma Y, Kind T, Vaniya A, Gennity I, Fahrmann J F, Fiehn O. J. Cheminformatics, 2015, 7(1):1.

doi: 10.1186/s13321-014-0049-z
[31]
Zhu Q F, Yan J W, Zhang T Y, Xiao H M, Feng Y Q. Anal. Chem., 2018, 90(16):10056.

doi: 10.1021/acs.analchem.8b02839
[32]
Hu T, Lin M, Zhang D, Li M L, Zhang J L. Anal. Bioanal. Chem., 2018, 410(28):7415.

doi: 10.1007/s00216-018-1350-x
[33]
Pham T, Vidal N, Manful C, Fillier T, Pumphrey R, Doody K, Thomas R. Molecules, 2019, 24(2):232.

doi: 10.3390/molecules24020232
[34]
Marshall D L, Saville J T, Maccarone A T, Ailuri R, Kelso M J, Mitchell T W, Blanksby S J. Rapid Commun. Mass Spectrom., 2016, 30(21):2351.

doi: 10.1002/rcm.7715
[35]
Ding J, Kind T, Zhu Q F, Wang Y, Yan J W, Fiehn O, Feng Y Q. Anal. Chem., 2020, 92(8):5960.

doi: 10.1021/acs.analchem.0c00172 pmid: 32202765
[36]
Nelson A T. Doctoral Dissertation of University of Texas at Austin, 2018.
[37]
Balas L, Bertrand-Michel J, Viars F, Faugere J, Lefort C, Caspar-Bauguil S, Langin D, Durand T. Org. Biomol. Chem., 2016, 14(38):9012.

doi: 10.1039/C6OB01597B
[38]
Nelson A T, Kolar M J, Chu Q, Syed I, Kahn B B, Saghatelian A, Siegel D. J. Am. Chem. Soc., 2017, 139(13):4943.

doi: 10.1021/jacs.7b01269
[1] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[2] Bin Qiao, Hongfei Chen, Hui Zhang, Chenxin Cai. Analysis and Detection of Tumor Exosomes [J]. Progress in Chemistry, 2019, 31(6): 847-857.
[3] Hu Daihua, Chen Wang, Wang Yongji. Synthesis and Structure-Activity Relationship of Active Vitamin D3 Analogues [J]. Progress in Chemistry, 2016, 28(6): 839-859.
[4] Liang Yanyu, Tang Shan, Zheng Jishen. Cell-Permeable Cyclic Peptides [J]. Progress in Chemistry, 2014, 26(11): 1793-1800.
[5] Shi Yugang, Dang Yali, Liu Yuhua, Bai Xue. Microbial and Chemical Production of Chondroitin Sulfate [J]. Progress in Chemistry, 2014, 26(08): 1378-1394.
[6] Liu Ning, Wang Xuzhen*, Xu Wenya, Guo Decai, Tang Jizhou, Zhang Baolu. Chemical Synthesis of Molybdenum Disulfide and Its Applications as Hydrodesulphurization Catalysts [J]. Progress in Chemistry, 2013, 25(05): 726-734.
[7] Du Kejie, Wang Yi, Liang Jiewen, Ji Liangnian, Chao Hui*. DNA Topoisomerase Inhibitors [J]. Progress in Chemistry, 2013, 25(04): 545-554.
[8] Liu Xiaoyang. Chemistry under High Pressure [J]. Progress in Chemistry, 2009, 21(0708): 1373-1388.
[9] . Chemical Synthesis of Rebeccamycin and Its Analogues [J]. Progress in Chemistry, 2008, 20(11): 1699-1707.
[10] Qiang Ma1|Yong Ju1,2**|Yufen Zhao1. Chemical Synthesis of Glycoconjugates [J]. Progress in Chemistry, 2006, 18(09): 1110-1120.
[11] Du Canping,Chen Yongjun,Liang Wenping,Han Xiaodong. The Challenge and Opportunity of the Natural Product Chemistry [J]. Progress in Chemistry, 2002, 14(05): 405-.
[12] Han Difei,Wang Anjie,Kong Xiangguo. Applications of Mesoporous MCM-41 in Heterogeneous Catalysis of Synthesis of Fine Chemicals [J]. Progress in Chemistry, 2002, 14(02): 98-.
[13] Zeng Fanxing,Jiang Hualiang,Yang Yushe,Chen Kaixian,Ji Ruyun**. Progress in Synthesis and Structural Modification of Huperzine A [J]. Progress in Chemistry, 2000, 12(01): 63-.
[14] Guo Zhixin,Li Yuliang,Zhu Daoben. Advances in Chemistry of the Fullerenes [J]. Progress in Chemistry, 1998, 10(01): 1-.