中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (2/3): 260-268 DOI: 10.7536/PC150923 Previous Articles   Next Articles

• Review and comments •

Supramolecular Gels Based on Natural Product-Triterpenoids

Lu Jinrong1*, Ju Yong2   

  1. 1. College of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China;
    2. Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Foundation of Hebei Education Department (No. QN2015237).
PDF ( 1567 ) Cited
Export

EndNote

Ris

BibTeX

Supramolecular gels based on hierarchically self-assembly of small organic molecules through non-covalent interactions attract more and more attention because of the potential applications. Expected design of gelators that could directly self-assembly into fiber network instead of serendipity is challenging for both molecular recognition and supramolecular self-assembly. Pentacyclic triterpenoids with unique chiral skeleton structures are very important active biomolecules as natural products. They have much medicinal value because of their biological activities such as liver-protecting,anti-hyperlipidemia, anti-tumor, anti-virus and anti-inflammatory. Due to the characteristics of rigid chiral skeleton and multiple reaction sites, the aggregation and self-assembly properties of pentacyclic triterpenoids have attracted more and more attention. In this review, the aggregation property of pentacyclic triterpenoids without any modification in different solvents and supramolecular gels formed by functional molecules based on derivatives of triterpenoids are described in detail. In addition, the potential applications of the gels based on pentacyclic triterpenoids are also represented. Imitating and modifying these natural products used as building blocks in self-assembling architectures can not only minimize the tedious synthetic work of gelators and introduce ready units for supramolecular gels, but also help to elaborate the interactions between biomolecules and make use of natural products to create new materials.

Contents
1 Introduction
2 Supramolecular gels based on pentacyclic triterpenoids without modification
2.1 Supramolecular gels based on lupane-triterpenoid
2.2 Supramolecular gels based on oleanane-triterpenoid
3 Supramolecular gels based on pentacyclic triterpenoid derivatives
3.1 Gelators of pentacyclic triterpenoid derivatives start from carboxyl
3.2 Gelators of pentacyclic triterpenoid derivatives start from hydroxyl
4 Conclusion and outlook

CLC Number: 

[1] 张本印(Zhang B Y),王环(Wang H),沈建伟(Shen J W),杨晓艳(Yang X Y),罗晓东(Luo X D),张晓峰(Zhang X F). 化学进展(Progress in Chemistry), 2010, 22:877.
[2] Dzubak P, Hajduch M, Vydra D, Hustova A, Kvasnica M, Biedermann D, Lenka M, Milan U, Jan S. Nat. Prod. Rep., 2006, 23:394.
[3] Petronelli A, Pannitteri G, Testa U. Anti-Cancer Drugs, 2009, 20:880.
[4] Chen J, Liu J, Zhang L Y, Wu G Z, Hua W Y, Wu X M, Sun H B. Bioorg. Med. Chem. Lett., 2006, 16:2915.
[5] Honda T, Rounds B V, Bore L, Favaloro F G, Suh N, Wang Y P, Sporn M B, Gribble G W. J. Med. Chem., 2000, 43:4233.
[6] Steed J W. Chem. Commun., 2011, 47:1379.
[7] Buerkle L E, Rowan S J. Chem. Soc. Rev., 2012, 41:6089.
[8] Miljanic S, Frkanec L, Meic Z, Zinic M. Langmuir, 2005, 21:2754.
[9] Wang C, Zhang D, Zhu D. J. Am. Chem. Soc., 2005, 127:16372.
[10] Chen L, Morris K, Laybourn A, Elias D, Hicks M R, Rodger A, Serpell L, Adams D J. Langmuir, 2009, 26:5232.
[11] Suzuki M, Hanabusa K. Chem. Soc. Rev., 2009, 38:967.
[12] Jadhav S R, Vemula P K, Kumar R, Raghavan S R, John G. Angew. Chem. Int. Ed., 2010, 49:7695.
[13] Svobodova H, Noponen V, Kolehmainen E, Sievanen E. RSC Advances, 2012, 2:4985.
[14] 卢金荣(Lu J R), 巨勇(Ju Y). 有机化学(Chinese Journal of Organic Chemistry), 2013, 33:469.
[15] Hu J, Lu J R, Ju Y. Chem. Asian. J., 2011, 6:2636.
[16] 胡君(Hu J),巨勇(Ju Y). 化学进展(Progress in Chemistry), 2011, 23:181.
[17] John G, Vijai Shankar B, Jadhav S R, Vemula P K. Langmuir, 2010, 26:17843.
[18] Bag B G, Pramanik S R, Maity G C. Supramol. Chem., 2005, 297.
[19] Bag B G, Garai C, Majumdar R, Laguerre M. Struct. Chem., 2012, 23:393.
[20] Fulda S. Int. J. Mol. Sci., 2008, 9:1096.
[21] Genet C, Strehle A, Schmidt C, Boudjelal G, Lobstein A, Schoonjans K, Souchet M, Auwerx J, Saladin R, Wagner A. J. Med. Chem., 2010, 53:178.
[22] Dash S S. Nanoscale, 2011, 3:4564.
[23] Bag B G, Majumdar R. RSC Advances, 2012, 2:8623.
[24] Bag B G, Paul K. Asian J. Org. Chem., 2012, 1:150.
[25] Peterca M, Percec V, Leowanawat P, Bertin A. J. Am. Chem. Soc., 2011, 133:20507.
[26] Bag B G, Majumdar R. RSC Adv., 2014, 4:53327.
[27] Li Y H, Huang G Y, Zhang X H, Li B Q, Chen Y M, Lu T L, Lu T J, Xu F. Adv. Funct. Mater., 2013, 23:660.
[28] Xue Z X, Wang S T, Lin L, Chen L, Liu M J, Feng L, Jiang L. Adv. Mater., 2011, 23:4270.
[29] Lee K Y, Mooney D J. Chem. Rev., 2001, 101:1869.
[30] Wu J D, Lu J R, Hu J, Gao Y X, Ma Q, Ju Y. RSC Adv., 2013, 3:24906.
[31] Bag B G, Dinda S K, Dey P P, Mallia A. V, Weiss R G. Langmuir, 2009, 25:8663.
[32] Hu J, Wu J D, Wang Q, Ju Y. Beilstein J. Org. Chem., 2013, 9:2877.
[33] Bag B G, Maity G C, Dinda S K. Org. Lett., 2006, 8:5457.
[34] Maity G C. J. Phy. Sci., 2013, 17:169.
[35] Bag B G, Majumdar R, Dinda S K, Dey P P, Maity G C, Ajay Mallia V, Weiss R G. Langmuir, 2013, 29:1766.
[36] Hu J, Zhang M, Ju Y. Soft Matter, 2009, 5:4971.
[37] Lu J R, Hu J, Song Y, Ju Y. Org. Lett., 2011, 13:3372.
[38] Lu J R, Hu J, Liu C L, Gao H X, Ju Y. Soft Matter, 2012, 8:9576.
[39] Li X, Kuang Y, Xu B. Soft Matter, 2012, 8:2801.
[40] Lu J R, Gao Y X, Wu J D, Ju Y. RSC Adv., 2013, 3:23548.
[41] Ajayaghosh A, Praveen V K, Vijayakumar C. Chem. Soc. Rev., 2008, 37:109.
[42] Dhinakaran M K, Das T M. Org. Biomol. Chem., 2012, 10:2077.
[43] Lu J R, Wu J D, Ju Y. New. J. Chem., 2014, 38:6050.
[44] 金培元(Jin P Y), 卢金荣(Lu J R), 巨勇(Ju Y).有机化学(Chinese Journal of Organic Chemistry), 2012, 32:1673.
[45] Hu J, Yu L B, Zhang M, Ju Y. Chin. J. Chem., 2011, 29:1139.
[46] Saha A, Adamcik J, Bolisetty S, Handschin S, Mezzenga R. Angew. Chem. Int. Ed., 2015, 54:5408.
[47] Shen Z C, Wang T Y, Liu M H, Angew. Chem. Int. Ed., 2014, 53:13424.
[48] Gao Y X, Hao J, Wu J D, Zhang X, Hu J, Ju Y. Nanoscale, 2015, 7:13568.
[1] Lu Tao-Tao, Liu Juan, Li Hui, Wei Tai-Bao, Zhang You-Ming, Lin Qi. Stimulus-Responsive Supramolecular Gels [J]. Progress in Chemistry, 2016, 28(10): 1541-1549.
[2] Jin Qingxian, Li Jing, Li Xiaogang, Zhang Li, Fang Shaoming, Liu Minghua. Function and Application of Supramolecular Gels:Chiral Molecular Recognition and Asymmetric Catalysis [J]. Progress in Chemistry, 2014, 26(06): 919-930.
[3] Wang Sai, Wu Bin, Duan Junfei, Fang Jianglin*, Chen Dongzhong. Functional Supramolecular Gels Self-Assembled by Hydrogen Bonding Among Urea-Based Gelators [J]. Progress in Chemistry, 2014, 26(01): 125-139.
[4] Wu Jindan, Ju Yong. Molecular and Ion Recognition Molecules Based on Natural Products [J]. Progress in Chemistry, 2013, 25(11): 1888-1897.
[5] Chen Dehao, Xu Changdeng, Liu Zili, Chen Ling, Zhen Chunhua, Sun Shigang. Mechanism of Functional Molecules in Shape-Control Synthesis of Noble Metal Nanocrystal Catalysts [J]. Progress in Chemistry, 2013, 25(10): 1667-1680.
[6] Zhang Helan, Peng Junxia, Liu Kaiqiang, Fang Yu. Supramolecular Gels ofCholic Acids and Their Derivatives [J]. Progress in Chemistry, 2011, 23(8): 1591-1597.
[7] Hu Jun, Ju Yong. Novel Functional Molecules Containing Triterpenoid Units [J]. Progress in Chemistry, 2011, 23(01): 181-191.
[8] Guo Jian Zhuang Shun Wu Kaiqiang Yuan Yaofeng. Ferroceneacetylene: a Versatile Building Block in Optoelectronic Molecules [J]. Progress in Chemistry, 2009, 21(12): 2589-2594.