中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (11): 2489-2502 DOI: 10.7536/PC220335 Previous Articles   Next Articles

• Review •

Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy

Lingxiang Guo1, Juping Li1, Zhiyang Liu1,2(), Quan Li1,2()   

  1. 1 College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
    2 Institute of Advanced Materials, Southeast University, Nanjing 211189, China
  • Received: Revised: Online: Published:
  • Contact: Zhiyang Liu, Quan Li
Richhtml ( 62 ) PDF ( 671 ) Cited
Export

EndNote

Ris

BibTeX

Photodynamic therapy is a safe and noninvasive treatment method based on photosensitizers and light. It has broad application prospects in cancer treatment and sterilization. Photosensitizers react with oxygen under light excitation to produce reactive oxygen species with high reactivity. Excessive reactive oxygen species in cells can oxidize and damage cellular components such as proteins, nucleic acids and lipids, and induce cell apoptosis or necrosis. The emerging photosensitizers with aggregation-induced emission (AIE) characteristics can emit strong fluorescence under light excitation in the aggregate state, and efficiently produce reactive oxygen species at the same time, which solves the problem of fluorescence quenching of traditional photosensitizers in the aggregate state. AIE photosensitizers are easy to realize image-guided photodynamic therapy, which has attracted much attention in recent years. Mitochondria, as cell energy factories, are rich in oxygen and are ideal targets for photodynamic therapy. Mitochondria are more numerous in cancer cells and play an important role in both tumorization and programmed cell death. Currently, the AIE photosensitizers targeting the mitochondria of cancer cells are mainly cationic compounds, including pyridium ions, quinolinium ions, isoquinolinium ions and triphenylphosphenonium ions. This review summarizes the molecular types and design strategies of AIE photosensitizers targeting the mitochondria of cancer cells, as well as their applications in photodynamic therapy of tumors.

Contents

1 Introduction

2 Mitochondrion-targeting ionic AIE photosensitizers

2.1 Quinolinium and isoquinolinium-based ionic AIE photosensitizers

2.2 Triphenylphosphenonium-based ionic AIE photosensitizers

2.3 Pyridium-based ionic AIE photosensitizers

2.4 Other types of ionic AIE photosensitizers

3 Mitochondrion-targeting non-ionic AIE photosensitizers

4 Conclusion and outlook

Fig. 1 Schematic diagram of reactive oxygen species generation principle
Fig.2 Molecular structures of quinolinium and isoquinolinium ionic AIE photosensitizers
Fig.3 Molecular structures of triphenylphosphinium ionic AIE photosensitizers
Fig.4 Molecular structures of pyridinium ionic AIE photosensitizers
Fig.5 Molecular structures of other types of ionic AIE photosensitizers
Fig.6 Molecular structure of AIE photosensitizer 63
Table 1 Optical properties of AIE photosensitizers
[1]
Dougherty T J, Gomer C J, Henderson B W, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. J. Natl. Cancer Inst., 1998, 90(12): 889.

doi: 10.1093/jnci/90.12.889 pmid: 9637138
[2]
Cheng W Y, Chen H T, Liu C, Ji C D, Ma G P, Yin M Z. VIEW, 2020, 1(4): 20200055.

doi: 10.1002/VIW.20200055
[3]
Ochsner M. J. Photochem. Photobiol., B, 1997, 39(1): 1.

doi: 10.1016/S1011-1344(96)07428-3
[4]
Chen J M, Fan T J, Xie Z J, Zeng Q Q, Xue P, Zheng T T, Chen Y, Luo X L, Zhang H. Biomaterials, 2020, 237: 119827.

doi: 10.1016/j.biomaterials.2020.119827
[5]
Green B, Cobb A R M, Hopper C. Br. J. Oral Maxillofac. Surg., 2013, 51(4): 283.

doi: 10.1016/j.bjoms.2012.11.011 pmid: 23245464
[6]
Dolmans D E J G J, Fukumura D, Jain R K. Nat. Rev. Cancer, 2003, 3(5): 380.

pmid: 12724736
[7]
Solban N, Rizvi I, Hasna T. Lasers Surg. Med., 2006, 38(5): 522.

doi: 10.1002/lsm.20345
[8]
Zhang M, Cui Z W, Song R X, Lv B, Tang Z M, Meng X F, Chen X Y, Zheng X P, Zhang J W, Yao Z W, Bu W B. Biomaterials, 2018, 155: 135.

doi: S0142-9612(17)30742-1 pmid: 29175082
[9]
Li Y, Zhang W, Niu J F, Chen Y S. ACS Nano, 2012, 6(6): 5164.

doi: 10.1021/nn300934k
[10]
Cheng P, Li G, Zhan X W, Yang Y. Nat. Photonics., 2018, 12: 131.

doi: 10.1038/s41566-018-0104-9
[11]
Nakanishi W, Minami K, Shrestha L K, Ji Q M, Hill J P, Ariga K. Nano Today, 2014, 9(3): 378.

doi: 10.1016/j.nantod.2014.05.002
[12]
Gupta V K, Saleh T A. Environ. Sci. Pollut. Res., 2013, 20(5): 2828.

doi: 10.1007/s11356-013-1524-1
[13]
Ge J C, Lan M H, Zhou B J, Liu W M, Guo L, Wang H, Jia Q Y, Niu G L, Huang X, Zhou H Y, Meng X M, Wang P F, Lee C S, Zhang W J, Han X D. Nat. Commun., 2014, 5: 4596.

doi: 10.1038/ncomms5596
[14]
Dreyer D R, Park S, Bielawski C W, Ruoff R S. Chem. Soc. Rev., 2010, 39(1): 228.

doi: 10.1039/B917103G
[15]
Lucky S S, Soo K C, Zhang Y. Chem. Rev., 2015, 115(4): 1990.

doi: 10.1021/cr5004198
[16]
Kou J Y, Dou D, Yang L M. Oncotarget, 2017, 8(46): 81591.

doi: 10.18632/oncotarget.20189
[17]
Wong R C H, Lo P C, Ng D K P. Coord. Chem. Rev., 2019, 379: 30.

doi: 10.1016/j.ccr.2017.10.006
[18]
Dichiara M, Prezzavento O, Marrazzo A, Pittalà V, Salerno L, Rescifina A, Amata E. Eur. J. Med. Chem., 2017, 142: 459.

doi: S0223-5234(17)30681-5 pmid: 28943196
[19]
Li X S, Zheng B D, Peng X H, Li S Z, Ying J W, Zhao Y Y, Huang J D, Yoon J Y. Coord. Chem. Rev., 2019, 379: 147.

doi: 10.1016/j.ccr.2017.08.003
[20]
Luo J D, Xie Z L, Lam J W Y, Cheng L, Chen H Y, Qiu C F, Kwok H S, Zhan X W, Liu Y Q, Zhu D B, Tang B Z. Chem. Commun., 2001, (18): 1740.
[21]
Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z. Chem. Rev., 2015, 115(21): 11718.

doi: 10.1021/acs.chemrev.5b00263 pmid: 26492387
[22]
Hu F, Huang Y Y, Zhang G X, Zhao R, Yang H, Zhang D Q. Anal. Chem., 2014, 86(15): 7987.

doi: 10.1021/ac502103t
[23]
Yuan Y Y, Feng G X, Qin W, Tang B Z, Liu B. Chem. Commun., 2014, 50(63): 8757.

doi: 10.1039/C4CC02767A
[24]
Kang M M, Gu X H, Kwok R T K, Leung C W T, Lam J W Y, Li F, Tang B Z. Chem. Commun., 2016, 52(35): 5957.

doi: 10.1039/C6CC01797E
[25]
Tan P, Zhuang W H, Li S F, Zhang J P, Xu H, Yang L, Liao Y B, Chen M, Wei Q. Chem. Commun., 2021, 57(8): 1046.

doi: 10.1039/D0CC07336A
[26]
Dai Y P, Zhao X X, Ji H F, Zhang D D, Zhang P, Xue K, Misal S, Zhu H Y, Qi Z J. Chem. Eng. J., 2021, 410: 128186.

doi: 10.1016/j.cej.2020.128186
[27]
Leung C W T, Wang Z M, Zhao E G, Hong Y N, Chen S J, Kwok R T K, Leung A C S, Wen R S, Li B S, Lam J W Y, Tang B Z. Adv. Healthcare Mater., 2016, 5(4): 427.

doi: 10.1002/adhm.201500674
[28]
Yang M Q, Deng J R, Su H F, Gu S X, Zhang J, Zhong A G, Wu F S. Mater. Chem. Front., 2021, 5(1): 406.

doi: 10.1039/D0QM00536C
[29]
Shi L L, Wu W B, Duan Y K, Xu L, Xu Y Y, Hou L D, Meng X J, Zhu X Y, Liu B. Angew. Chem., Int. Ed., 2020, 59(43): 19168.

doi: 10.1002/anie.202006890
[30]
Li D Y, Ni X, Zhang X Y, Liu L W, Qu J L, Ding D, Qian J. Nano Res., 2018, 11(11): 6023.

doi: 10.1007/s12274-018-2118-5
[31]
Kong Q, Ma B X, Yu T, Hu C, Li G C, Jiang Q, Wang Y B. New J. Chem., 2020, 44(22): 9355.

doi: 10.1039/D0NJ00822B
[32]
Vyas S, Zaganjor E, Haigis M C. Cell, 2016, 166(3): 555.

doi: 10.1016/j.cell.2016.07.002
[33]
Weinberg S E, Chandel N S. Nat. Chem. Biol., 2015, 11(1): 9.

doi: 10.1038/nchembio.1712 pmid: 25517383
[34]
Wallace D C. Science, 1999, 283(5407): 1482.

doi: 10.1126/science.283.5407.1482 pmid: 10066162
[35]
Eng C, Kiuru M, Fernandez M J, Aaltonen L A. Nat. Rev. Cancer, 2003, 3(3): 193.

doi: 10.1038/nrc1013
[36]
Jeronimo C, Nomoto S, Caballero O L, Usadel H, Henrique R, Varzim G, Oliveira J, Lopes C, Fliss M S, Sidransky D. Oncogene, 2001, 20(37): 5195.

doi: 10.1038/sj.onc.1204646
[37]
Sabharwal S S, Schumacker P T. Nat. Rev. Cancer, 2014, 14(11): 709.

doi: 10.1038/nrc3803 pmid: 25342630
[38]
Waris G, Ahsan H. J. Carcinog., 2006, 5: 14.

doi: 10.1186/1477-3163-5-14
[39]
Sena L A, Chandel N S. Mol. Cell, 2012, 48(2): 158.

doi: 10.1016/j.molcel.2012.09.025
[40]
Tait S W G, Green D R. Cold Spring Harb. Perspect. Biol., 2013, 5(9): a008706.

doi: 10.1101/cshperspect.a008706
[41]
Shimizu S, Narita M, Tsujimoto Y. Nature, 1999, 399(6735): 483.

doi: 10.1038/20959
[42]
Sullivan L B, Gui D Y, Heiden M G V. Nat. Rev. Cancer, 2016, 16(11): 680.

doi: 10.1038/nrc.2016.85 pmid: 27658530
[43]
Gaude E, Frezza C. Diabetes Metab., 2014, 2(10): 1.
[44]
Dong C K, Masutomi K, Hahn W C. Crit. Rev. Oncol. Hematol., 2005, 54(2): 85.

doi: 10.1016/j.critrevonc.2004.12.005
[45]
Haendeler J, Dröse S, Bu¨chner N, Jakob S, Altschmied J, Goy C, Spyridopoulos I, Zeiher A M, Brandt U, Dimmeler S. Arterioscler. Thromb. Vasc. Biol., 2009, 29(6): 929.

doi: 10.1161/ATVBAHA.109.185546 pmid: 19265030
[46]
Chen L B. Annu. Rev. Cell Dev. Biol., 1988, 4(1): 155.

doi: 10.1146/annurev.cb.04.110188.001103
[47]
Zhao E G, Deng H Q, Chen S J, Hong Y N, Leung C W T, Lam J W Y, Tang B Z. Chem. Commun., 2014, 50(92): 14451.

doi: 10.1039/C4CC07128J
[48]
Gui C, Zhao E G, Kwok R T K, Leung A C S, Lam J W Y, Jiang M J, Deng H Q, Cai Y J, Zhang W J, Su H F, Tang B Z. Chem. Sci., 2017, 8(3): 1822.

doi: 10.1039/C6SC04947H
[49]
Jiang M J, Kwok R T K, Li X S, Gui C, Lam J W Y, Qu J N, Tang B Z. J. Mater. Chem. B, 2018, 6(17): 2557.

doi: 10.1039/C7TB02609A
[50]
Chen K Q, Zhang R Y, Wang Z M, Zhang W J, Tang B Z. Adv. Optical Mater., 2020, 8(2): 1901433.

doi: 10.1002/adom.201901433
[51]
Lee M M S, Zheng L, Yu B R, Xu W H, Kwok R T K, Lam J W Y, Xu F J, Wang D, Tang B Z. Mater. Chem. Front., 2019, 3(7): 1454.

doi: 10.1039/C9QM00242A
[52]
Zheng Z, Liu H X, Zhai S D, Zhang H K, Shan G G, Kwok R T K, Ma C, Sung H H Y, Williams I D, Lam J W Y, Wong K S, Hu X L, Tang B Z. Chem. Sci., 2020, 11(9): 2494.

doi: 10.1039/c9sc06441a pmid: 34084415
[53]
Yang H X, Zhuang J B, Li N, Li Y, Zhu S Y, Hao J X, Xin J Y, Zhao N. Mater. Chem. Front., 2020, 4(7): 2064.

doi: 10.1039/D0QM00170H
[54]
Zielonka J, Joseph J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Chem. Rev., 2017, 117(15): 10043.

doi: 10.1021/acs.chemrev.7b00042 pmid: 28654243
[55]
Zhang C J, Hu Q L, Feng G X, Zhang R Y, Yuan Y Y, Lu X M, Liu B. Chem. Sci., 2015, 6(8): 4580.

doi: 10.1039/C5SC00826C
[56]
Zou J L, Lu H G, Zhao X W, Li W, Guan Y, Zheng Y D, Zhang L J, Gao H. Dyes Pigm., 2018, 151: 45.

doi: 10.1016/j.dyepig.2017.12.044
[57]
Zhang J, Wang Q, Guo Z Q, Zhang S Z, Yan C X, Tian H, Zhu W H. Adv. Funct. Mater., 2019, 29(16): 1808153.

doi: 10.1002/adfm.201808153
[58]
Zhang Y J, Huang W D, Tan X Y, Wang J H, Zhao Y F, Hu J B, Wang S H. Biomater. Sci., 2021, 9(4): 1232.

doi: 10.1039/D0BM02099K
[59]
Zhao D, Han H H, Zhu L, Xu F Z, Ma X Y, Li J, James T D, Zhang Y, He X P, Wang C Y. ACS Appl. Bio Mater., 2021, 4(9): 7016.

doi: 10.1021/acsabm.1c00673 pmid: 35006934
[60]
Feng G X, Qin W, Hu Q L, Tang B Z, Liu B. Adv. Healthcare Mater., 2015, 4(17): 2667.

doi: 10.1002/adhm.201500431
[61]
Gao M, Sim C K, Leung C W T, Hu Q L, Feng G X, Xu F, Tang B Z, Liu B. Chem. Commun., 2014, 50(61): 8312.

doi: 10.1039/C4CC00452C
[62]
Gu X G, Zhao E G, Lam J W Y, Peng Q, Xie Y J, Zhang Y L, Wong K S, Sung H H Y, Williams I D, Tang B Z. Adv. Mater., 2015, 27(44): 7093.

doi: 10.1002/adma.201503751
[63]
Zhang W J, Kwok R T K, Chen Y L, Chen S J, Zhao E G, Yu C Y Y, Lam J W Y, Zheng Q C, Tang B Z. Chem. Commun., 2015, 51(43): 9022.

doi: 10.1039/C5CC02486B
[64]
Huang Y Y, Zhang G X, Hu F, Jin Y L, Zhao R, Zhang D Q. Chem. Sci., 2016, 7(12): 7013.

doi: 10.1039/C6SC02395A
[65]
Huang Y Y, You X, Wang L N, Zhang G X, Gui S L, Jin Y L, Zhao R, Zhang D Q. Angew. Chem. Int. Ed., 2020, 59(25): 10042.

doi: 10.1002/anie.202001906
[66]
Zhan C, Zhang G X, Zhang D Q. ACS Appl. Mater. Interfaces, 2018, 10(15): 12141.

doi: 10.1021/acsami.7b14446
[67]
Kang M M, Kwok R T K, Wang J G, Zhang H, Lam J W Y, Li Y, Zhang P F, Zou H, Gu X H, Li F, Tang B Z. J. Mater. Chem. B, 2018, 6(23): 3894.

doi: 10.1039/C8TB00572A
[68]
Wang D, Lee M M S, Shan G G, Kwok R T K, Lam J W Y, Su H F, Cai Y C, Tang B Z. Adv. Mater., 2018, 30(39):1802105.

doi: 10.1002/adma.201802105
[69]
Zheng Z, Zhang T F, Liu H X, Chen Y C, Kwok R T K, Ma C, Zhang P F, Sung H H Y, Williams I D, Lam J W Y, Wong K S, Tang B Z. ACS Nano, 2018, 12(8): 8145.

doi: 10.1021/acsnano.8b03138 pmid: 30074773
[70]
Zhang T F, Li Y Y, Zheng Z, Ye R Q, Zhang Y R, Kwok R T K, Lam J W Y, Tang B Z. J. Am. Chem. Soc., 2019, 141(14): 5612.

doi: 10.1021/jacs.9b00636
[71]
Zhao N, Li P F, Zhuang J B, Liu Y Y, Xiao Y X, Qin R L, Li N. ACS Appl. Mater. Interfaces, 2019, 11(12): 11227.

doi: 10.1021/acsami.9b01655
[72]
Zhuang W H, Yang L, Ma B X, Kong Q S, Li G C, Wang Y B, Tang B Z. ACS Appl. Mater. Interfaces, 2019, 11(23): 20715.

doi: 10.1021/acsami.9b04813
[73]
Liu Z Y, Zou H, Zhao Z, Zhang P F, Shan G G, Kwok R T K, Lam J W Y, Zheng L, Tang B Z. ACS Nano, 2019, 13(10): 11283.

doi: 10.1021/acsnano.9b04430
[74]
He X J, Situ B, Gao M, Guan S J, He B R, Ge X X, Li S W, Tao M L, Zou H, Tang B Z, Zheng L. Small, 2019, 15(50): 1905080.

doi: 10.1002/smll.201905080
[75]
Chen C, Ni X, Jia S R, Liang Y, Wu X L, Kong D L, Ding D. Adv. Mater., 2019, 31(52): 1904914.

doi: 10.1002/adma.201904914
[76]
Xiong W, Wang L Y, Chen X L, Tang H, Cao D R, Zhang G Z, Chen W. J. Mater. Chem. B, 2020, 8(24): 5234.

doi: 10.1039/d0tb00888e pmid: 32432307
[77]
Zhang Y Y, Wang L K, Rao Q P, Bu Y C, Xu T R, Zhu X J, Zhang J, Tian Y P, Zhou H P. Sens. Actuators B Chem., 2020, 321: 128460.

doi: 10.1016/j.snb.2020.128460
[78]
Xu W H, Lee M M S, Nie J J, Zhang Z H, Kwok R T K, Lam J W Y, Xu F J, Wang D, Tang B Z. Angew. Chem. Int. Ed., 2020, 132(24): 9697.

doi: 10.1002/ange.202000740
[79]
Guo B, Wu M, Shi Q, Dai T J, Xu S D, Jiang J W, Liu B. Chem. Mater., 2020, 32(11): 4681.

doi: 10.1021/acs.chemmater.0c01187
[80]
Zhou T, Zhu J F, Shang D, Chai C X, Li Y Z, Sun H Y, Li Y Q, Gao M, Li M. Mater. Chem. Front., 2020, 4(11): 3201.

doi: 10.1039/D0QM00503G
[81]
Wang J J, Zhu X J, Zhang J, Wang H Y, Liu G, Bu Y C, Yu J H, Tian Y P, Zhou H P. ACS Appl. Mater. Interfaces, 2020, 12(2): 1988.

doi: 10.1021/acsami.9b15577
[82]
Wang Y B, Xu S D, Shi L L, Teh C, Qi G B, Liu B. Angew. Chem. Int. Ed., 2021, 133(27): 15072.

doi: 10.1002/ange.202017350
[83]
Wang C, Zhao X H, Jiang H Y, Wang J X, Zhong W X, Xue K, Zhu C L. Nanoscale, 2021, 13(2): 1195.

doi: 10.1039/D0NR07342C
[84]
Yang Z M, Yin W D, Zhang S X, Shah I, Zhang B, Zhang S J, Li Z, Lei Z Q, Ma H C. ACS Appl. Bio Mater., 2020, 3(2): 1187.

doi: 10.1021/acsabm.9b01094
[85]
Yu C Y Y, Xu H E, Ji S L, Kwok R T K, Lam J W Y, Li X L, Krishnan S, Ding D, Tang B Z. Adv. Mater., 2017, 29(15): 1606167.

doi: 10.1002/adma.201606167
[86]
Feng G X, Liu J, Zhang C J, Liu B. ACS Appl. Mater. Interfaces, 2018, 10(14): 11546.

doi: 10.1021/acsami.8b01960
[87]
Chen Y Z, Ai W T, Guo X, Li Y W, Ma Y F, Chen L F, Zhang H, Wang T X, Zhang X, Wang Z. Small, 2019, 15(30): 1902352.

doi: 10.1002/smll.201902352
[88]
Liu J P, Jin C Z, Yuan B, Liu X G, Chen Y, Ji L N, Chao H. Chem. Commun., 2017, 53(12): 2052.

doi: 10.1039/C6CC10015E
[89]
Qiu K Q, Ouyang M, Liu Y K, Huang H Y, Liu C F, Chen Y, Jia L N, Chao H. J. Mater. Chem. B, 2017, 5(27): 5488.

doi: 10.1039/C7TB00731K
[90]
Ou Y Y, Luo Y H, Lu N, Hu R T, Zhang P Y, Zhang Q L. Chin. J. Inorg. Chem., 2021, 37(3): 401.
(欧阳艾, 罗雨珩, 陆农, 胡仁涛, 张平玉, 张黔玲. 无机化学学报, 2021, 37(3):401).
[91]
Wang E J, Zhao E G, Hong Y N, Lam J W Y, Tang B Z. J. Mater. Chem. B, 2014, 2(14): 2013.

doi: 10.1039/C3TB21675F
[92]
Zhang Y, Wang C X, Huang S W. Nanomaterials, 2018, 8(11): 921.

doi: 10.3390/nano8110921
[1] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[2] Pengbo Han, He Xu, Zhongfu An, Zheyi Cai, Zhengxu Cai, Hui Chao, Biao Chen, Ming Chen, Yu Chen, Zhenguo Chi, Shuting Dai, Dan Ding, Yuping Dong, Zhiyuan Gao, Weijiang Guan, Zikai He, Jingjing Hu, Rong Hu, Yixiong Hu, Qiuyi Huang, Miaomiao Kang, Danxia Li, Jisen Li, Shuzhen Li, Wenlang Li, Zhen Li, Xinlin Lin, Huaying Liu, Peiying Liu, Xiaoding Lou, Chao Lu, Dongge Ma, Hanlin Ou, Juan Ouyang, Qian Peng, Jun Qian, Anjun Qin, Jiamin Qu, Jianbing Shi, Zhigang Shuai, Lihe Sun, Rui Tian, Wenjing Tian, Bin Tong, Huiliang Wang, Dong Wang, He Wang, Tao Wang, Xiao Wang, Yucheng Wang, Shuizhu Wu, Fan Xia, Yujun Xie, Kai Xiong, Bin Xu, Dongpeng Yan, Haibo Yang, Qingzheng Yang, Zhiyong Yang, Lizhen Yuan, Wangzhang Yuan, Shuangquan Zang, Fang Zeng, Jiajie Zeng, Zhuo Zeng, Guoqing Zhang, Xiaoyan Zhang, Xuepeng Zhang, Yi Zhang, Yufan Zhang, Zhijun Zhang, Juan Zhao, Zheng Zhao, Zihao Zhao, Zujin Zhao, Ben Zhong Tang. Aggregation-Induced Emission [J]. Progress in Chemistry, 2022, 34(1): 1-130.
[3] Zilin Zhu, Zhongxian Fan, Mengzhao Miao, Huaiyi Huang. Photodynamic Therapy of Hypoxic Tumors with Ir(Ⅲ) Complexes [J]. Progress in Chemistry, 2021, 33(9): 1473-1481.
[4] Fei Ren, Jianbing Shi, Bin Tong, Zhengxu Cai, Yuping Dong. Near Infrared Fluorescent Dyes with Aggregation-Induced Emission [J]. Progress in Chemistry, 2021, 33(3): 341-354.
[5] Andong Hu, Shungui Zhou, Jie Ye. The Mechanism, Progress and Prospect of Biohybrid Mediated Semi-Artificial Photosynthesis [J]. Progress in Chemistry, 2021, 33(11): 2103-2115.
[6] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[7] Xinyi Lai, Zhiyong Wang, Yongtai Zheng, Yongming Chen. Nanoscale Metal Organic Frameworks for Drug Delivery [J]. Progress in Chemistry, 2019, 31(6): 783-790.
[8] Yawen Li, Wantong Ao, Huilin Jin, Liping Cao. Aggregation-Induced Emission of Tetraphenylethene Derivatives with Macrocycles via Host-Guest Interactions [J]. Progress in Chemistry, 2019, 31(1): 121-134.
[9] Jinbo Fei, Qi Li, Jie Zhao, Junbai Li. Optical Properties and Potential Applications of Diphenylalanine Dipeptide-Based Assemblies [J]. Progress in Chemistry, 2019, 31(1): 30-37.
[10] Bingde Zheng, Yuanyuan Zhao, Hongcai Li, Biyuan Zheng, Meirong Ke, Jiandong Huang*. Activatable Photodynamic Anticancer Photosensitizers [J]. Progress in Chemistry, 2018, 30(9): 1403-1414.
[11] Liang He, Caiping Tan, Qian Cao, Zongwan Mao. Application of Phosphorescent Cyclometalated Iridium(Ⅲ) Complexes in Cancer Treatment [J]. Progress in Chemistry, 2018, 30(10): 1548-1556.
[12] Xiangmei Liu, Kang Tian, Chengfeng Xue, Yifan Han, Shujuan Liu, Qiang Zhao*. Application of X-Ray Excited Phosphors in Photodynamic Therapy [J]. Progress in Chemistry, 2017, 29(12): 1488-1498.
[13] Haidong Li, Jiangli Fan, Xiaojun Peng. Fluorescent Probes for the Recognition of Hypochlorous Acid [J]. Progress in Chemistry, 2017, 29(1): 17-35.
[14] Zhao Yanxia, He Shenggui. Reactivity of Heteronuclear Oxide Clusters with Small Molecules [J]. Progress in Chemistry, 2016, 28(4): 401-414.
[15] Peng Bangyin, Xu Shidang, Chi Zhenguo, Zhang Xiqi, Zhang Yi, Xu Jiarui. Piezochromic Aggregation-Induced Emission Materials [J]. Progress in Chemistry, 2013, 25(11): 1805-1820.