中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (9): 2051-2062 DOI: 10.7536/PC220121 Previous Articles   Next Articles

• Review •

Recent Advances of the Electrode Materials for Sodium-Ion Capacitors

Qi Qi1(), Peizhu Xu1, Zhidong Tian2, Wei Sun2, Yangjie Liu2, Xiang Hu2()   

  1. 1 School of Chemistry and Chemical Engineering, Gannan Normal University,Ganzhou 341000, China
    2 Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences,Fuzhou 350002, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: qiqichem@163.com(Qi Qi);huxiang@fjirsm.ac.cn(Xiang Hu)
  • Supported by:
    National Natural Science Foundation of China(21875253); Scientific Research and Equipment Development Project of CAS(YJKYYQ20190007); CAS-Commonwealth Scientific and Industrial Research Organization (CSIRO) Joint Research Projects(121835KYSB20200039); China Postdoctoral Science Foundation(2021TQ0331); China Postdoctoral Science Foundation(2021M700147)
Richhtml ( 47 ) PDF ( 641 ) Cited
Export

EndNote

Ris

BibTeX

Sodium ion hybrid capacitors (SIHCs) have been considered to be one of the most promising electrochemical energy storage devices because of the abundant and low cost of sodium resources, and their similar physical and chemical properties to that of the lithium. SIHCs are usually assembled with high-energy anode and high-power cathode, which can bridge the energy and power gaps between sodium-ion batteries and supercapacitors. However, their large-scale application is strongly impeded by the kinetics and capacity imbalance between capacitive-type cathode and battery-type anode. In this paper, the working principle of SIHCs and the research progress of various anode and cathode materials are summarized. The development trend of SIHCs is reviewed emphatically from the aspects of controlled preparation and modification of material structure. The main challenges encountered in the development of SIHCs are discussed and the future research direction of the electrode materials in this field is prospected.

Contents

1 Introduction

2 Operating principle

3 Cathode materials

3.1 Activated carbon

3.2 Carbon nanotube

3.3 Graphene

3.4 MXene

4 Anode materials

4.1 Intercalation materials

4.2 Conversion materials

4.3 Alloying materials

5 Conclusion and outlook

Fig. 1 Working principle illustration of typical SIHCs
Fig.2 (a, b) TEM and elemental mapping images of the ANCN[26]; (c) TEM image of the N/S-HCNs, (d, e) the comparison of ion adsorption energy for HCN, N-HCN, S-HCN and N/S-HCN, and the charge density difference for PF6-[27]
Table 1 The electrochemical performance comparison of different cathode materials
Fig. 3 (a) Schematic illustration of the synthesis of V2CTx and its sodium intercalation, (b) schematic illustration of the charge-storage mechanisms for HC/V2CTx SIHCs device and (c) galvanostatic charge-discharge profiles at different current densities[37]
Fig. 4 (a) Schematic diagram of Na+ diffusion in TiO2. (b) Galvanostatic charge-discharge profiles at different current densities of TiO2@PBC//AC SIHCs device[50];(c) SEM and TEM images of the TiO2@CNT@C, (d) performance comparison for the TiO2@CNT@C//BAC SIHCs device and currently available energy-storage systems, (e) long-term cycle performance of TiO2@CNT@C//BAC SIHCs device[51]
Fig. 5 (a, b) SEM and TEM images of the 3D-IO FeS-QDs@NC[57]; (c, d) SEM images of the SnS2/GCA[59]; (e, f) TEM images of the MoSe2/G[13]
Fig. 6 Ragone plots of the SIHCs device compared with previously reported SIHCs
Table 2 The electrochemical performance comparison based on different anode/cathode SHICs devices
[1]
Tarascon J M, Armand M. Nature, 2001, 414(6861): 359.

doi: 10.1038/35104644
[2]
Sun H T, Mei L, Liang J F, Zhao Z P, Lee C, Fei H L, Ding M N, Lau J, Li M F, Wang C, Xu X, Hao G L, Papandrea B, Shakir I, Dunn B, Huang Y, Duan X F. Science, 2017, 356(6338): 599.

doi: 10.1126/science.aam5852
[3]
Ge J M, Fan L, Rao A M, Zhou J, Lu B G. Nat. Sustain., 2022, 5(3): 225.

doi: 10.1038/s41893-021-00810-7
[4]
Cai K D, Yan S, Xu T Y, Lang X S, Wang Z H. Prog. Chem., 2021, 33(8): 1404.
( 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 化学进展, 2021, 33 (8): 1404.).

doi: 10.7536/PC200764
[5]
Dubal D P, Ayyad O, Ruiz V, GÓmez-Romero P. Chem. Soc. Rev., 2015, 44(7): 1777.

doi: 10.1039/c4cs00266k pmid: 25623995
[6]
Amatucci G G, Badway F, du Pasquier A, Zheng T. J. Electrochem. Soc., 2001, 148(8): A930.

doi: 10.1149/1.1383553
[7]
Ding J, Hu W B, Paek E, Mitlin D. Chem. Rev., 2018, 118(14): 6457.

doi: 10.1021/acs.chemrev.8b00116 pmid: 29953230
[8]
Cai P, Zou K Y, Deng X L, Wang B W, Zheng M, Li L H, Hou H S, Zou G Q, Ji X B. Adv. Energy Mater., 2021, 11(16): 2003804.

doi: 10.1002/aenm.202003804
[9]
Chen Z, Augustyn V, Jia X L, Xiao Q F, Dunn B, Lu Y F. ACS Nano, 2012, 6(5): 4319.

doi: 10.1021/nn300920e
[10]
Yuan Y, Wang C C, Lei K X, Li H X, Li F J, Chen J. ACS Cent. Sci., 2018, 4(9): 1261.

doi: 10.1021/acscentsci.8b00437
[11]
Wang X G, Li Q C, Zhang L, Hu Z L, Yu L H, Jiang T, Lu C, Yan C L, Sun J Y, Liu Z F. Adv. Mater., 2018, 30(26): 1800963.

doi: 10.1002/adma.201800963
[12]
Li Y Z, Wang H W, Huang B J, Wang L B, Wang R, He B B, Gong Y S, Hu X L. J. Mater. Chem. A, 2018, 6(30): 14742.

doi: 10.1039/C8TA04597F
[13]
Zhao X, Cai W, Yang Y, Song X D, Neale Z, Wang H E, Sui J H, Cao G Z. Nano Energy, 2018, 47: 224.

doi: 10.1016/j.nanoen.2018.03.002
[14]
Yuan J, Hu X, Liu Y J, Zhong G B, Yu B, Wen Z H. Chem. Commun., 2020, 56(90): 13933.

doi: 10.1039/D0CC05476C
[15]
Su F, Qin J Q, Das P, Zhou F, Wu Z S. Energy Environ. Sci., 2021, 14(4): 2269.

doi: 10.1039/D1EE00317H
[16]
Liu S D, Kang L, Zhang J, Jun S C, Yamauchi Y. ACS Energy Lett., 2021, 6(11): 4127.

doi: 10.1021/acsenergylett.1c01855
[17]
Wang T, Sun Y, Zhang L L, Li K Q, Yi Y K, Song S Y, Li M T, Qiao Z A, Dai S. Adv. Mater., 2019, 31(16): 1807876.

doi: 10.1002/adma.201807876
[18]
Zhang L P, Wang W A, Lu S F, Xiang Y. Adv. Energy Mater., 2021, 11(11): 2003640.

doi: 10.1002/aenm.202003640
[19]
Yang B J, Chen J T, Lei S L, Guo R S, Li H X, Shi S Q, Yan X B. Adv. Energy Mater., 2018, 8(10): 1702409.

doi: 10.1002/aenm.201702409
[20]
Li H X, Lang J W, Lei S L, Chen J T, Wang K J, Liu L Y, Zhang T Y, Liu W S, Yan X B. Adv. Funct. Mater., 2018, 28(30): 1800757.

doi: 10.1002/adfm.201800757
[21]
Liu L T, Sun X Y, Dong Y, Wang D K, Wang Z, Jiang Z J, Li A, Chen X H, Song H H. J. Power Sources, 2021, 506: 230170.

doi: 10.1016/j.jpowsour.2021.230170
[22]
Hu X, Wang G X, Li J W, Huang J H, Liu Y J, Zhong G B, Yuan J, Zhan H B, Wen Z H. Energy Environ. Sci., 2021, 14(8): 4564.

doi: 10.1039/D1EE00370D
[23]
Kim J, Choi M S, Shin K H, Kota M, Kang Y B, Lee S, Lee J Y, Park H S. Adv. Mater., 2019, 31(34): 1803444.

doi: 10.1002/adma.201803444
[24]
Futaba D N, Hata K J, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S. Nat. Mater., 2006, 5(12): 987.

pmid: 17128258
[25]
Kim B, Chung H, Kim W. J. Phys. Chem. C, 2010, 114(35): 15223.

doi: 10.1021/jp105498d
[26]
Li Y J, Yang Y, Zhou J H, Lin S Y, Xu Z K, Xing Y, Zhang Y L, Feng J R, Mu Z J, Li P H, Chao Y G, Guo S J. Energy Storage Mater., 2019, 23: 530.
[27]
Cui C Y, Wang H, Wang M, Ou X W, Wei Z X, Ma J M, Tang Y B. Small, 2019, 15(34): 1902659.

doi: 10.1002/smll.201902659
[28]
Li D, Müller M B, Gilje S, Kaner R B, Wallace G G. Nat. Nanotechnol., 2008, 3(2): 101.

doi: 10.1038/nnano.2007.451
[29]
Hu X, Zeng G, Chen J X, Lu C Z, Wen Z H. J. Mater. Chem. A, 2017, 5(9): 4535.

doi: 10.1039/C6TA10301D
[30]
Dong S Y, Xu Y L, Wu L Y, Dou H, Zhang X G. Energy Storage Mater., 2018, 11: 8.
[31]
Hummers W S Jr, Offeman R E. J. Am. Chem. Soc., 1958, 80(6): 1339.

doi: 10.1021/ja01539a017
[32]
Wang F X, Wang X W, Chang Z, Wu X W, Liu X, Fu L J, Zhu Y S, Wu Y P, Huang W. Adv. Mater., 2015, 27(43): 6962.

doi: 10.1002/adma.201503097
[33]
Zhao M Q, Xie X Q, Ren C G, Makaryan T, Anasori B, Wang G X, Gogotsi Y. Adv. Mater., 2017, 29(37): 1702410.

doi: 10.1002/adma.201702410
[34]
Pomerantseva E, Gogotsi Y. Nat. Energy, 2017, 2(7): 17089.

doi: 10.1038/nenergy.2017.89
[35]
Zhu K, Zhang H Y, Ye K, Zhao W B, Yan J, Cheng K, Wang G L, Yang B F, Cao D X. ChemElectroChem, 2017, 4(11): 3018.

doi: 10.1002/celc.201700523
[36]
Li Y, Pan C P, Kamdem P, Jin X J. Energy Fuels, 2020, 34(8): 10120.

doi: 10.1021/acs.energyfuels.0c01352
[37]
Dall’Agnese Y, Taberna P L, Gogotsi Y, Simon P. J. Phys. Chem. Lett., 2015, 6(12): 2305.

doi: 10.1021/acs.jpclett.5b00868
[38]
Park G D, Park J S, Kim J K, Kang Y C. Adv. Energy Mater., 2021, 11(27): 2003058.

doi: 10.1002/aenm.202003058
[39]
Chu C X, Li R, Cai F P, Bai Z C, Wang Y X, Xu X, Wang N N, Yang J, Dou S X. Energy Environ. Sci., 2021, 14: 4318.

doi: 10.1039/D1EE01341F
[40]
Li Z P, Zhu K J, Liu P, Jiao L F. Adv. Energy Mater., 2022, 12(4): 2100359.

doi: 10.1002/aenm.202100359
[41]
Rojo T, Hu Y S, Forsyth M, Li X L. Adv. Energy Mater., 2018, 8(17): 1800880.

doi: 10.1002/aenm.201800880
[42]
Cao Y L, Xiao L F, Sushko M L, Wang W, Schwenzer B, Xiao J, Nie Z M, Saraf L V, Yang Z G, Liu J. Nano Lett., 2012, 12(7): 3783.

doi: 10.1021/nl3016957
[43]
Ding J, Wang H L, Li Z, Cui K, Karpuzov D, Tan X H, Kohandehghan A, Mitlin D. Energy Environ. Sci., 2015, 8(3): 941.

doi: 10.1039/C4EE02986K
[44]
Wang H L, Mitlin D, Ding J, Li Z, Cui K. J. Mater. Chem. A, 2016, 4(14): 5149.

doi: 10.1039/C6TA01392A
[45]
Li D D, Ye C, Chen X Z, Wang S Q, Wang H H. J. Power Sources, 2018, 382: 116.

doi: 10.1016/j.jpowsour.2018.02.036
[46]
Zou K Y, Cai P, Liu C, Li J Y, Gao X, Xu L Q, Zou G Q, Hou H S, Liu Z M, Ji X B. J. Mater. Chem. A, 2019, 7(22): 13540.

doi: 10.1039/C9TA03797G
[47]
Xia Q B, Lin Z H, Lai W H, Wang Y F, Ma C, Yan Z C, Gu Q F, Wei W F, Wang J Z, Zhang Z Q, Liu H K, Dou S X, Chou S L. Angew. Chem. Int. Ed., 2019, 58(40): 14125.

doi: 10.1002/anie.201907189
[48]
Xu Y, Memarzadeh Lotfabad E, Wang H L, Farbod B, Xu Z W, Kohandehghan A, Mitlin D. Chem. Commun., 2013, 49(79): 8973.

doi: 10.1039/c3cc45254a
[49]
Que L F, Yu F D, Wang Z B, Gu D M. Small, 2018, 14(17): 1704508.

doi: 10.1002/smll.201704508
[50]
Huang L C, Zeng L C, Zhu J H, Sun L N, Yao L, Deng L B, Zhang P X. J. Power Sources, 2021, 493: 229678.

doi: 10.1016/j.jpowsour.2021.229678
[51]
Zhu Y E, Yang L P, Sheng J, Chen Y N, Gu H C, Wei J P, Zhou Z. Adv. Energy Mater., 2017, 7(22): 1701222.

doi: 10.1002/aenm.201701222
[52]
Zhang P P, Zhao X, Liu Z C, Wang F X, Huang Y, Li H Y, Li Y, Wang J H, Su Z Q, Wei G, Zhu Y S, Fu L J, Wu Y P, Huang W. NPG Asia Mater., 2018, 10(5): 429.

doi: 10.1038/s41427-018-0049-y
[53]
Niu J, Liang J J, Gao A, Dou M L, Zhang Z P, Lu X, Wang F. J. Mater. Chem. A, 2019, 7(38): 21711.

doi: 10.1039/C9TA06964J
[54]
Liu B B, Liu Y J, Hu X, Zhong G B, Li J W, Yuan J, Wen Z H. Adv. Funct. Mater., 2021, 31(31): 2101066.

doi: 10.1002/adfm.202101066
[55]
Hu X, Jia J C, Wang G X, Chen J X, Zhan H B, Wen Z H. Adv. Energy Mater., 2018, 8(25): 1801452.

doi: 10.1002/aenm.201801452
[56]
Yang C, Xin S, Mai L Q, You Y. Adv. Energy Mater., 2021, 11(2): 2000974.

doi: 10.1002/aenm.202000974
[57]
Hu X, Liu Y J, Chen J X, Jia J C, Zhan H B, Wen Z H. J. Mater. Chem. A, 2019, 7(3): 1138.

doi: 10.1039/C8TA10468A
[58]
Liu J, Xu Y G, Kong L B. Ionics, 2021, 27(4): 1781.

doi: 10.1007/s11581-021-03948-8
[59]
Cui J, Yao S S, Lu Z H, Huang J Q, Chong W G, Ciucci F, Kim J K. Adv. Energy Mater., 2018, 8(10): 1702488.

doi: 10.1002/aenm.201702488
[60]
Li Y J, Yang Y, Zhou P, Gao T T, Xu Z K, Lin S Y, Chen H, Zhou J H, Guo S J. Matter, 2019, 1(4): 893.

doi: 10.1016/j.matt.2019.04.003
[61]
Tang Y C, Wei Y, Hollenkamp A F, Musameh M, Seeber A, Jin T, Pan X, Zhang H, Hou Y N, Zhao Z B, Hao X J, Qiu J S, Zhi C Y. Nano Micro Lett., 2021, 13(1): 178.

doi: 10.1007/s40820-021-00686-4
[62]
Dong X T, Zhang W, Zhao S, Liu X L, Wang Y X. Prog. Chem., 2021, 33 (12): 2173.
( 董秀婷, 张文, 赵颂, 刘新磊, 王宇新. 化学进展, 2021, 33 (12): 2173.).

doi: 10.7536/PC201053
[63]
Wu H Y, Xu N, Jiang Z H, Zheng A Y, Shi Q F, Lv R G, Ni L B, Diao G W, Chen M. Chem. Eng. J., 2022, 427: 131002.

doi: 10.1016/j.cej.2021.131002
[64]
Gao J W, Zhang M X, Zhang X, Bai R J, Xin G Q, Wang G K. Chem. Eng. J., 2022, 433: 133521.

doi: 10.1016/j.cej.2021.133521
[65]
Zheng T T, Zhong X, Li M Q, Yan F, Cai S, Zhang W, Liu L Q, Wang D. J. Power Sources, 2021, 515: 230638.

doi: 10.1016/j.jpowsour.2021.230638
[1] Zhao Ding, Weijie Yang, Kaifu Huo, Leon Shaw. Thermodynamics and Kinetics Tuning of LiBH4 for Hydrogen Storage [J]. Progress in Chemistry, 2021, 33(9): 1586-1597.
[2] Huan Song, Qi Zou, Keding Lu. Parameterization and Application of Hydroperoxyl Radicals(HO2) Heterogeneous Uptake Coefficient [J]. Progress in Chemistry, 2021, 33(7): 1175-1187.
[3] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[4] Tingting Gu, Jian Gu, Yu Zhang, Hua Ren. Metal Borohydride-Based System for Solid-State Hydrogen Storage [J]. Progress in Chemistry, 2020, 32(5): 665-686.
[5] Ning Zhang, Ying Li. Lithium-Rich Layered Oxides as Cathode Materials: Structures, Capacity Origin Mechanisms and Modifications [J]. Progress in Chemistry, 2017, 29(4): 373-387.
[6] Ming Hai, Ming Jun, Qiu Jingyi, Yu Zhongbao, Li Meng, ZhengJunwei. Lithium-Ion Full Batteries Based on the Anode of Non-Metallic Lithium [J]. Progress in Chemistry, 2016, 28(2/3): 204-218.
[7] Li Chao, Fan Meiqiang, Chen Haichao, Chen Da, Tian Guanglei, Shu Kangying. Thermodynamics and Kinetics Modifications on the Li-Mg-N-H Hydrogen Storage System [J]. Progress in Chemistry, 2016, 28(12): 1788-1797.
[8] Chen Jun, Ding Nengwen, Li Zhifeng, Zhang Qian, Zhong Shengwen. Organic Cathode Material for Lithium Ion Battery [J]. Progress in Chemistry, 2015, 27(9): 1291-1301.
[9] Jiang Binbo, Yuan Shiling, Chen Nan, Wang Haibo, Wang Jingdai, Huang Zhengliang. Reaction Kinetics of n-Butane Oxidation on VPO Catalyst [J]. Progress in Chemistry, 2015, 27(11): 1679-1688.
[10] Bai Ying, Li Yu, Zhong Yunxia, Chen Shi, Wu Feng, Wu Chuan. Li-Rich Transition Metal Oxide xLi2MnO3·(1-x)LiMO2 (M=Ni, Co or Mn) for Lithium Ion Batteries [J]. Progress in Chemistry, 2014, 26(0203): 259-269.
[11] Liu Xin, Zhao Hailei, Xie Jingying, Tang Weiping, Pan Yanlin, Lü Pengpeng. Polymer Binders for High Capacity Electrode of Lithium-Ion Battery [J]. Progress in Chemistry, 2013, 25(08): 1401-1410.
[12] Chu Genbai, Chen Jun, Liu Fuyi, Sheng Liusi. Kinetics of Gas-Phase Radical Reactions Using Photoionization Mass Spectrometry with Synchrotron Source [J]. Progress in Chemistry, 2012, 24(11): 2097-2105.
[13] Ma Guanglu, Zhuang Dawei, Dai Hongbin, Wang Ping. Controlled Hydrogen Generation by Reaction of Aluminum with Water [J]. Progress in Chemistry, 2012, 24(04): 650-658.
[14] Wu Chengren, Zhao Changchun, Wang Zhaoxiang, Chen Liquan. Li-Rich Layer-Structured Cathode Materials for Li-Ion Batteries [J]. Progress in Chemistry, 2011, 23(10): 2038-2044.
[15] Jiang Junying Huang Zaiyin Mi Yan Li Yanfen Yuan Aiqun. Recent Development and Prospect of Thermodynamics of Nanomaterials [J]. Progress in Chemistry, 2010, 22(06): 1058-1067.