中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (2/3): 204-218 DOI: 10.7536/PC150816 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review and comments •

Lithium-Ion Full Batteries Based on the Anode of Non-Metallic Lithium

Ming Hai1, Ming Jun3, Qiu Jingyi1*, Yu Zhongbao1, Li Meng1, ZhengJunwei2*   

  1. 1. Research Institute of Chemical Defense, Beijing 100191, China;
    2. College of Physical, Optoelectronics and Energy, Soochow University, Suzhou 215003, China;
    3. King Abdullah University of Science & Technology, Kingdom of Saudi Arabia
  • Received: Revised: Online: Published:
PDF ( 3432 ) Cited
Export

EndNote

Ris

BibTeX

Rechargeable lithium-ion batteries are vital for developing the electronic devices especially for the portable devices, as well as for the rapid development of plug-in hybrid-electric vehicle (PHEV)/electric vehicle (EV). And also, they are good choices for the deployment of power system (peak clipping and valley filling) and introducing the electric power into power system from the renewable energy sources. However, the disadvantages of low energy capacity are often reviled for the traditional lithium-ion batteries. In the past few decades, the researches of seeking substitutes for the traditional graphite anode material, including metal oxide, titanium-, tin- and silicon-based anode materials, have been widely investigated, and their positive effects on the high capacity and rate capability in the lithium half batteries have been demonstrated repeatedly. But to date, there is insufficient data to confirm these effects in lithium-ion full batteries, and very few kinds of anode materials were successfully utilized in commercialization. Thus, the questions of how the development of new anode-based lithium-ion full battery and whether it could be truly commercialized need to be well considered and discussed urgently, as many researchers concerned. At this stage, this review mainly discusses the development of lithium-ion full batteries starting from the irreversible capacity characteristics of anodes (graphite,Li4Ti5O12, TiO2, GeOx,FeOx,Sn- and Si-based,etc.) in initial cycles.

Contents
1 Introduction
2 Lithium-ion full batteries based on different anodes
2.1 Anode materials with initial revisable capacity
2.2 Anode materials with initial irrevisable capacity
3 Conclusion

CLC Number: 

[1] Scrosati B, Abraham K, van Schalkwijk W A, Hassoun J. Lithium Batteries:Advanced Technologies and Applications. John Wiley & Sons, 2013, 58.
[2] Tarascon J M, Armand M. Nature, 2001, 414:359.
[3] Dunn B, Kamath H, Tarascon J M. Science, 2011, 334:928.
[4] Winter M, Brodd R J. Chem. Rev., 2004, 104:4245.
[5] Armand M, Tarascon J M. Nature, 2008, 451:652.
[6] Ding F, Xu W, Choi D, Wang W, Li X, Engelhard M H, Chen X, Yang Z, Zhang J G. J. Mater. Chem., 2012, 22:12745.
[7] 张临超(Zhang L C), 陈春华(Chen C H). 化学进展(Progress in Chemistry), 2011, 23(2/3):276.
[8] Ren G, Ma G, Cong N. Renew. Sustain. Energy Rev., 2015, 41:225.
[9] Son B, Ryou M H, Choi J, Kim S H, Ko J M, Lee Y M. J. Power Sources, 2013, 243:641.
[10] Loeffler N, von Zamory J, Laszczynski N, Doberdo I, Kim G T, Passerini S. J. Power Sources, 2014, 248:915.
[11] Chong J, Xun S, Zheng H, Song X, Liu G, Ridgway P, Wang J Q, Battaglia V S. J. Power Sources, 2011, 196:7707.
[12] 刘欣(Liu X), 赵海雷(Zhao H L), 解晶莹(Xie J Y), 汤卫平(Tang W P), 潘延林(Pan Y L), 吕鹏鹏(Lv P P). 化学进展(Progress in Chemistry), 2013, 25(8):1402.
[13] Pei L, Wang T, Lu R, Zhu C. J. Power Sources, 2014, 253:412.
[14] Reimers J N, Shoesmith M, Lin Y S, Valøen L O. J. Electrochem. Soc., 2013, 160:A1870.
[15] 张玲玲(Zhang L L), 马玉林(Ma Y L), 杜春雨(Du C Y), 尹鸽平(Yin G P). 化学进展(Progress in Chemistry), 2014, 26(4):553.
[16] 尹成果(Yin C G),马玉林(Ma Y L),程新群(Chen X Q),尹鸽平(Yin G P). 化学进展(Progress in Chemistry), 2013, 25(1):55.
[17] Petibon R, Sinha N N, Burns J C, Aiken C P, Ye H, van Elzen C M, Jain G, Trussler S, Dahn J R. J. Power Sources, 2014, 251:187.
[18] Smith A J, Sinha N N, Dahn J R. J. Electrochem. Soc., 2013, 160:A235.
[19] Arbizzani C, de Giorgio F, Porcarelli L, Mastragostino M, Khomenko V, Barsukov V, Bresser D, Passerini S. J. Power Sources, 2013, 238:17.
[20] Ciosek H K, Lundgren H, Wilken S, Zavalis T G, Behm M, Edström K, Jacobsson P, Johansson P, Lindbergh G. J. Power Sources, 2014, 256:430.
[21] Yong T, Wang J, Mai Y, Zhao X, Luo H, Zhang L. J. Power Sources, 2014, 254:29.
[22] 秦雪英(Qin X Y), 汪靖伦(Wang J L), 张灵志(Zhang L Z). 化学进展(Progress in Chemistry), 2012, 24(5):811.
[23] Zhan C, Lu J, Jeremy Kropf A, Wu T, Jansen A N, Sun Y K, Qiu X, Amine K. Nat. Commun., 2013, 4:2437.
[24] Krueger S, Kloepsch R, Li J, Nowak S, Passerini S, Winter M. J. Electrochem. Soc., 2013, 160:A542.
[25] Yang H, Prakash J. J. Electrochem. Soc., 2004, 151:A1222.
[26] Lee B R, Noh H J, Myung S T, Amine K, Sun Y K. J. Electrochem. Soc., 2011, 158:A180.
[27] Zaghib K, Simoneau M, Armand M, Gauthier M. J. Power Sources, 1999, 81:300.
[28] 杨立(Yang L), 陈继章(Chen J Z), 唐宇峰(Tang Y F), 房少华(Fang S H). 化学进展(Progress in Chemistry), 2011, 23(2/3):311.
[29] Jung H G, Jang M W, Hassoun J, Sun Y K, Scrosati B. Nat. Commun., 2011, 2:516.
[30] Wu H, Belharouak I, Deng H, Abouimrane A, Sun Y K, Amine K. J. Electrochem. Soc., 2009, 156:A1047.
[31] Li S, Chen C, Xia X, Dahn J. J. Electrochem. Soc., 2013, 160:A1524.
[32] Xi L J, Wang H K, Yang S L, Ma R G, Lu Z G, Cao C W, Leung K L, Deng J Q, Rogach A L, Chung C Y. J. Power Sources, 2013, 242:222.
[33] Mahmoud A, Amarilla J M, Lasri K, Saadoune I. Electrochim. Acta, 2013, 93:163.
[34] Takami N, Inagaki H, Tatebayashi Y, Saruwatari H, Honda K, Egusa S. J. Power Sources, 2013, 244:469.
[35] Jaiswal A, Horne C, Chang O, Zhang W, Kong W, Wang E, Chern T, Doeff M. J. Electrochem. Soc., 2009, 156:A1041.
[36] Martha S K, Haik O, Borgel V, Zinigrad E, Exnar I, Drezen T, Miners J H, Aurbach D. J. Electrochem. Soc., 2011, 158:A790.
[37] Cheah Y L, Aravindan V, Madhavi S. ACS Appl. Mater. Interfaces, 2013, 5:3475.
[38] Mao W F, Zhang N N, Tang Z Y, Feng Y Q, Ma C X. J. Alloy Compd., 2014, 588:25.
[39] 王倩(Wang Q), 张竞择(Zhang J Z), 娄豫皖(Lou Y W), 夏保佳(Xia B J). 化学进展(Progress in Chemistry), 2014, 26(11):1772.
[40] 徐淑银(Xu S Y), 刘燕燕(Liu Y Y), 高飞(Gao F), 杨凯(Yang K), 王绥军(Wang S J), 胡勇胜(Hu Y S). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2015, 43(5):657.
[41] He Y B, Li B, Liu M, Zhang C, Lv W, Yang C, Li J, Du H, Zhang B, Yang Q H, Kim J K, Kang F. Sci. Rep., 2012, 2:1.
[42] 张双虎(Zhang S H), 迟彩霞(Chi C X), 张盛武(Zhang S W). 电源技术(Chinese Journal of Power Sources), 2015, 39(7):1543.
[43] Weng Z, Guo H, Liu X, Wu S, Yeung K, Chu P K. RSC Adv., 2013, 3:24758.
[44] Zhu G N, Wang Y G, Xia Y Y. Energy Environ. Sci., 2012, 5:6652.
[45] Cheng J, Wang B, Xin H L, Kim C, Nie F, Li X, Yang G, Huang H. J. Mater. Chem. A, 2014, 2:2701.
[46] Cao F F, Wu X L, Xin S, Guo Y G, Wan L J. J. Phys. Chem. C, 2010, 114:10308.
[47] Aravindan V, Shubha N, Cheah Y L, Prasanth R, Chuiling W, Prabhakar R R, Madhavi S. J. Mater. Chem. A, 2013, 1:308.
[48] Moretti A, Kim G T, Bresser D, Renger K, Paillard E, Marassi R, Winter M, Passerini S. J. Power Sources, 2013, 221:419.
[49] Ming H, Ming J, Oh S, Lee E, Huang H, Zhou Q, Zheng J, Sun Y. J. Mater. Chem. A, 2014:2, 18938.
[50] Reddy M, Subba R G, Chowdari B. Chem. Rev., 2013, 113:5364.
[51] 张晶晶(Zhang J J),余爱水(Yu A S). 科学通报(英文版)(Chinese Science Bulletin), 2015, 60(9):823.
[52] Xiao J, Choi D, Cosimbescu L, Koech P, Liu J, Lemmon J P. Chem. Mater., 2010, 22:4522.
[53] 陈汝文(Chen R W), 涂新满(Tu X M), 陈德志(Chen D Z). 化学进展(Progress in Chemistry), 2015, 27(4):416.
[54] Goriparti S, Miele E, de Angelis F, di Fabrizio E, Zaccaria R P, Capiglia C. J. Power Sources, 2014, 257:421.
[55] Lv D, Gordin M L, Yi R, Xu T, Song J, Jiang Y B, Choi D, Wang D. Adv. Funct. Mater., 2014, 24:1059.
[56] Yuan F W, Tuan H Y. Chem. Mater., 2014, 26:2172.
[57] Hariharan S, Ramar V, Joshi S P, Balaya P. RSC Adv., 2013, 3:6386.
[58] Wang Y, Wang Y, Jia D, Peng Z, Xia Y, Zheng G. Nano Lett., 2014, 14:1080.
[59] Ming J, Kwak W J, Youn S J, Ming H, Hassoun J, Sun Y K. Energy Technol., 2014, 2:778.
[60] Verrelli R, Hassoun J, Farkas A, Jacob T, Scrosati B. J. Mater. Chem. A, 2013, 1:15329.
[61] Hwang H, Kim H, Cho J P. Nano Lett., 2011, 11:4826.
[62] Ming H, Ming J, Tian S, Zhou Q, Huang H, Sun Y, Zheng J, Oh S M. ACS Appl. Mater. Interfaces, 2014, 6:15499.
[63] Ming H, Ming J, Kwak W, Yang W, Zhou Q, Zheng J, Sun Y K. Electrochim. Acta, 2015, 169:291.
[64] Liang C, Gao M, Pan H, Liu Y, Yan M. J. Alloy Compd., 2013, 575:246.
[65] Kim H, Lee J T, Lee D C, Oschatz M, Cho W I, Kaskel S, Yushin G. Electrochem. Commun., 2013, 36:38.
[66] 褚道葆(Chu D B), 李建(Li J), 袁希梅(Yuan X M), 李自龙(Li Z L), 魏旭(Wei X), 万勇(Wan Y). 化学进展(Progress in Chemistry), 2012, 24(8):1467.
[67] Kataoka R, Mukai T, Yoshizawa A, Sakai T. J. Electrochem. Soc., 2013, 160:A1684.
[68] Liu B, Abouimrane A, Ren Y, Neuefeind J, Fang Z Z, Amine K. J. Electrochem. Soc., 2013, 160:A882.
[69] Brutti S, Hassoun J, Scrosati B, Lin C Y, Wu H, Hsieh H W. J. Power Sources, 2012, 217:72.
[70] Xia Y, Sakai T, Fujieda T, Wada M, Yoshinaga H. Electrochem. Solid-State Lett., 2001, 4:A9.
[71] 孟浩文(Meng H W), 马大千(Ma D Q), 俞晓辉(Yu X H), 杨红艳(Yang H Y), 孙艳丽(Sun Y L), 许鑫华(Xu X H). 化学进展(Progress in Chemistry), 2015, 27(8):1110.
[72] Wu H, Cui Y. Nano Today, 2012, 7(5):414.
[73] 牛津(Niu J), 张苏(Zhang S), 牛越(Niu Y), 宋怀河(Song H H), 陈晓红(Chen X H), 周继升(Zhou J X). 化学进展(Progress in Chemistry), 2015, 27(9):1275.
[74] Beaulieu L, Eberman K, Turner R, Krause L, Dahn J. Electrochem. Solid-State Lett., 2001, 4:A137.
[75] Park C M, Kim J H, Kim H, Sohn H J. Chem. Soc. Rev., 2010, 39:3115.
[76] Eom K, Joshi T, Bordes A, Do I, Fuller T F. J. Power Sources, 2014, 249:118.
[77] Markevich E, Fridman K, Sharabi R, Elazari R, Salitra G, Gottlieb H, Gershinsky G, Garsuch A, Semrau G, Schmidt M. J. Electrochem. Soc., 2013, 160:A1824.
[78] Yin J, Wada M, Yamamoto K, Kitano Y, Tanase S, Sakai T. J. Electrochem. Soc., 2006, 153:A472.
[79] Fridman K, Sharabi R, Markevich E, Elazari R, Salitra G, Gershinsky G, Aurbach D, Lampert J, Schulz-Dobrick M. ECS Electrochem. Lett., 2013, 2:A84.
[80] Chae C, Noh H J, Lee J K, Scrosati B, Sun Y K. Adv. Funct. Mater., 2014, 24:3036.
[81] Ming H, Zhou Q, Zheng J W. The 8th Asian Conference on Electrochemical Power Sources (ACEPS-8), 2015, Kunming, China.
[82] Kim C, Ko M, Yoo S, Chae S, Choi S, Lee E H, Ko S, Lee S Y, Cho J P, Park S. Nanoscale, 2014, 6:10604.
[83] Son I H, Park J H, Kwon S, Park S, Rümmeli M H, Bachmatiuk A, Song H J, Ku J, Choi J W, Choi J, Doo S G, Chang H. Nat. Commun., 2015, 6:1.
[84] 刘欣(Liu X), 赵海雷(Zhao H L), 解晶莹(Xie J Y), 吕鹏鹏(Lv P P), 王可(Wang K), 崔佳佳(Cui J J). 化学进展(Progress in Chemistry), 2015, 27(4):336.
[1] Changhuan Zhang, Nianwu Li, Xiuqin Zhang. Electrode Materials for Flexible Lithium-Ion Battery [J]. Progress in Chemistry, 2021, 33(4): 633-648.
[2] Wei Zhang, Xiaopeng Qi, Sheng Fang, Jianhua Zhang, Bimeng Shi, Juanyu Yang. Effects of Carbon on Silicon-Carbon Composites in Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 454-466.
[3] Zhimin Jiang, Li Wang, Min Shen, Huichuang Chen, Guoqiang Ma, Xiangming He. Electrolyte Additives for Interfacial Modification of Cathodes in Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(5): 699-713.
[4] Zhenjie Li, Du Zhong, Jie Zhang, Jinwei Chen, Gang Wang, Ruilin Wang. Silicon Nanoparticles/Carbon Composites for Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(1): 201-209.
[5] Jiao Lin, Chunwei Liu, Hongbin Cao, Li Li, Renjie Chen, Zhi Sun. Recovery of Spent Lithium Ion Batteries Based on High Temperature Chemical Conversion [J]. Progress in Chemistry, 2018, 30(9): 1445-1454.
[6] Shuaijin Wu, Juanyu Yang, Bing Yu, Sheng Fang, Zhaohui Wu, Bimeng Shi. Nano/Micro Structured Silicon-Based Negative Materials [J]. Progress in Chemistry, 2018, 30(2/3): 272-285.
[7] Ma Guoqiang, Wang Li, Zhang Janjun, Chen Huichuang, He Xiangming, Ding Yuansheng. Lithium-Ion Battery Electrolyte Containing Fluorinated Solvent and Additive [J]. Progress in Chemistry, 2016, 28(9): 1299-1312.
[8] Niu Jin, Zhang Su, Niu Yue, Song Huaihe, Chen Xiaohong, Zhou Jisheng. Silicon-Based Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2015, 27(9): 1275-1290.
[9] Wang Qian, Zhang Jingze, Lou Yuwan, Xia Baojia. Characteristic of Gas Evolution in Lithium-Ion Batteries Using An Anode Based on Lithium Titanate [J]. Progress in Chemistry, 2014, 26(11): 1772-1780.
[10] Li Jian, Guan Yibiao, Fu Kai, Su Yuefeng, Bao Liying, Wu Feng. Applications of Carbon Nanotubes and Graphene in the Energy Storage Batteries [J]. Progress in Chemistry, 2014, 26(07): 1233-1243.
[11] Bai Ying, Li Yu, Zhong Yunxia, Chen Shi, Wu Feng, Wu Chuan. Li-Rich Transition Metal Oxide xLi2MnO3·(1-x)LiMO2 (M=Ni, Co or Mn) for Lithium Ion Batteries [J]. Progress in Chemistry, 2014, 26(0203): 259-269.
[12] Gong Xue, Yang Jinlong, Jiang Yulin, Mu Shichun. Application of Electrospinning Technique in Power Lithium-Ion Batteries [J]. Progress in Chemistry, 2014, 26(01): 41-47.
[13] Chen Xu, He Daping, Mu Shichun. Nitrogen-Doped Graphene [J]. Progress in Chemistry, 2013, 25(08): 1292-1301.
[14] Liu Xin, Zhao Hailei, Xie Jingying, Tang Weiping, Pan Yanlin, Lü Pengpeng. Polymer Binders for High Capacity Electrode of Lithium-Ion Battery [J]. Progress in Chemistry, 2013, 25(08): 1401-1410.
[15] Yin Chengguo, Ma Yulin*, Cheng Xinqun, Yin Geping. Elevated-Temperature Electrolytes for Li-Ion Batteries [J]. Progress in Chemistry, 2013, 25(01): 54-59.