中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (4): 373-387 DOI: 10.7536/PC161019 Previous Articles   Next Articles

• Review •

Lithium-Rich Layered Oxides as Cathode Materials: Structures, Capacity Origin Mechanisms and Modifications

Ning Zhang1,2, Ying Li1,2*   

  1. 1. School of Metallurgy, Northeastern University, Shenyang 110819, China;
    2. Liaoning Key Laboratory for Metallurgical Sensor and Technology, Northeastern University, Shenyang 110819, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51274057, 51474057).
PDF ( 2354 ) Cited
Export

EndNote

Ris

BibTeX

The lithium-ion battery has mitigated the reliance on fossil fuels and alleviated the increasing pressure on environment as a new form of energy storage. Compared with other conventional cathodes, lithium-rich layered oxide is considered to be one of the most potential candidates for the next generation cathode materials due to its low cost and higher reversible capacity, which is a promising application especially in the fields of electric vehicles and large-scale energy storage grids. In this review, we start from the point of the structures of lithium-rich layered oxides then mainly focus on the differences of lattice configuration between a solid solution structure and a "composite" structure. Various characterization methods which are used to identify these differences are introduced as well. The origins of the 4.5 V plateau and several representative mechanisms proposed in recent years are summarized. From different perspective, these mechanisms explain the origin of the abnormal capacity of lithium-rich layered oxides when they are charged-discharged at the first cycle. According to the current research, the validity of these mechanisms is elaborated. Meanwhile, some major problems which hinder the further development of lithium-rich layered oxides, including irreversible capacity loss at first cycle, cycle performance, rate capability, are introduced. At the same time, the effects generated by the surface spinel phase and several typical modification methods are elaborated. Finally, the future development and the prospects of lithium-rich layered oxides as cathode materials for lithium-ion batteries are also proposed.

Contents
1 Introduction
2 Structures
2.1 Solid solution structure
2.2 “Composite” structure
3 Origins of the 4.5 V plateau
3.1 “Oxygen loss” mechanism
3.2 “Reversible oxygen redox” mechanism
3.3 “Proton exchange” mechanism
3.4 Other mechanisms
4 Capacity loss mechanisms and modifications
4.1 Reasons and modifications of irreversible capacity loss during first cycle
4.2 Reasons and modifications of voltage decay upon cycles
4.3 Reasons and modifications of poor C-rate capability
5 Conclusion

CLC Number: 

[1] Armand M, Tarascon J M. Nature, 2008, 451(7179): 652.
[2] Goodenough J B, Park K S. J. Am. Chem. Soc., 2013, 135(4): 1167.
[3] Ellis B L, Lee K T, Nazar L F. Chem. Mater., 2010, 22(3): 691.
[4] Dunn B, Kamath H, Tarascon J M. Science, 2011, 334(6058): 928.
[5] Dou S. J. Solid State Electro., 2013, 17(4): 911.
[6] Park J S, Mane A U, Elam J W, Croy J R. Chem. Mater., 2015, 27(6): 1917.
[7] Fu Y, Jiang H, Hu Y, Dai Y, Zhang L, Li C. Ind. Eng. Chem. Res., 2015, 54(15): 3800.
[8] Ha S H, Lee Y J. Chem.-Eur. J., 2015, 21(5): 2132.
[9] Fan J, Li G, Luo D, Fu C, Li Q, Zheng J, Li L. Electrochim. Acta, 2015, 173: 7.
[10] Shunmugasundaram R, Senthil Arumugam R, Dahn J R. Chem. Mater., 2015, 27(3): 757.
[11] Rozier P, Tarascon J M. J. Electrochem. Soc., 2015, 162(14): A2490.
[12] Hy S, Liu H, Zhang M, Qian D, Hwang B J, Meng Y S. Energy Environ. Sci., 2016, 9(6): 1931.
[13] Ammundsen B, Paulsen J. Adv. Mater., 2001, 13(12/13): 943.
[14] Johnson C S, Kim J S, Lefief C, Li N, Vaughey J T, Thackeray M M. Electrochem. Commun., 2004, 6(10): 1085.
[15] Thackeray M M, Johnson C S, Vaughey J T, Li N, Hackney S A. J. Mater. Chem., 2005, 15(23): 2257.
[16] Shen C H, Huang L, Lin Z, Shen S Y, Wang Q, Su H, Fu F, Zheng X M. ACS Appl. Mater. Inter., 2014, 6(15): 13271.
[17] Xia Q, Zhao X, Xu M, Ding Z, Liu J, Chen L, Ivey D G, Wei W. J. Mater. Chem. A, 2015, 3(7): 3995.
[18] Ates M N, Mukerjee S, Abraham K M. RSC Adv., 2015, 5(35): 27375.
[19] Lu Z, Chen Z, Dahn J. Chem. Mater., 2003, 15(16): 3214.
[20] Koyama Y, Yabuuchi N, Tanaka I, Adachi H, Ohzuku T. J. Electrochem. Soc., 2004, 151(10): A1545.
[21] Meng Y S, Ceder G, Grey C P, Yoon W S, Shao-Horn Y. Electrochem. Solid-State Lett., 2004, 7(6): A155.
[22] Boulineau A, Simonin L, Colin J F, Canévet E, Daniel L, Patoux S. Chem. Mater., 2012, 24(18): 3558.
[23] Lu Z, MacNeil D D, Dahn J R. Electrochem. Solid-State Lett., 2001, 4(11): A191.
[24] Lu Z, Beaulieu L Y, Donaberger R A, Thomas C L, Dahn J R. J. Electrochem. Soc., 2002, 149(6): A778.
[25] Mohanty D, Gabrisch H. J. Power Sources, 2012, 220: 405.
[26] Wen J G, Bareño J, Lei C H, Kang S H, Balasubramanian M, Petrov I, Abraham D P. Solid State Ionics, 2011, 182(1): 98.
[27] Gu M, Genc A, Belharouak I, Wang D, Amine K, Thevuthasan S, Baer D R, Zhang J G, Browning N D, Liu J, Wang C. Chem. Mater., 2013, 25(11): 2319.
[28] Kim J S, Johnson C S, Vaughey J T, Thackeray M M, Hackney S A, Yoon W, Grey C P. Chem. Mater., 2004, 16(10): 1996.
[29] Park K S, Cho M H, Jin S J, Song C H, Nahm K S. J. Power Sources, 2005, 146(1/2): 281.
[30] Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A. J. Mater. Chem., 2007, 17(30): 3112.
[31] Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Hackney S A. Electrochem. Commun., 2006, 8(9): 1531.
[32] Ammundsen B, Paulsen J, Davidson I, Liu R S, Shen C H, Chen J M, Jang L Y, Lee J F. J. Electrochem. Soc., 2002, 149(4): A431.
[33] Jarvis K, Deng Z, Allard L, Manthiram A, Ferreira P. Microsc. Microanal., 2011, 17(S2): 1578.
[34] Jarvis K A, Deng Z, Allard L F, Manthiram A, Ferreira P J. Chem. Mater., 2011, 23(16): 3614.
[35] Koga H, Croguennec L, Mannessiez P, Ménétrier M, Weill F, Bourgeois L, Duttine M, Suard E, Delmas C. J. Phys. Chem. C, 2012, 116(25): 13497.
[36] Genevois C, Koga H, Croguennec L, Ménétrier M, Delmas C, Weill F. J. Phys. Chem. C, 2015, 119(1): 75.
[37] Pan C, Lee Y J, Ammundsen B, Grey C P. Chem. Mater., 2002, 14(5): 2289.
[38] Kikkawa J, Akita T, Tabuchi M, Shikano M, Tatsumi K, Kohyama M. Appl. Phys. Lett., 2007, 91(5): 054103.
[39] Kikkawa J, Akita T, Tabuchi M, Shikano M, Tatsumi K, Kohyama M. J. Appl. Phys., 2008, 103(10): 104911.
[40] Kikkawa J, Akita T, Tabuchi M, Shikano M, Tatsumi K, Kohyama M. Electrochem. Solid-State Lett., 2008, 11(11): A183.
[41] Santhanam R, Jones P, Sumana A, Rambabu B. J. Power Sources, 2010, 195(21): 7391.
[42] Yu X, Lyu Y, Gu L, Wu H, Bak S M, Zhou Y, Amine K, Ehrlich S N, Li H, Nam K W, Yang X Q. Adv. Energy Mater., 2014, 4(5): 1300950.
[43] Bareño J, Balasubramanian M, Kang S H, Wen J G, Lei C H, Pol S V, Petrov I, Abraham D P. Chem. Mater., 2011, 23(8): 2039.
[44] Yu H, So Y G, Kuwabara A, Tochigi E, Shibata N, Kudo T, Zhou H, Ikuhara Y. Nano Lett., 2016, 16(5): 2907.
[45] Robertson A D, Bruce P G. Electrochem. Solid-State Lett., 2004, 7(9): A294.
[46] Saint J A, Doeff M M, Reed J. J. Power Sources, 2007, 172(1): 189.
[47] Wang R, He X, He L, Wang F, Xiao R, Gu L, Li H, Chen L. Adv. Energy Mater., 2013, 3(10): 1358.
[48] Croy J R, Park J S, Dogan F, Johnson C S, Key B, Balasubramanian M. Chem. Mater., 2014, 26(24): 7091.
[49] Jacob C, Jian J, Su Q, Verkhoturov S, Guillemette R, Wang H. ACS Appl. Mater. Inter., 2015, 7(4): 2433.
[50] Ruther R E, Dixit H, Pezeshki A M, Sacci R L, Cooper V R, Nanda J, Veith G M. J. Phys. Chem. C, 2015, 119(32): 18022.
[51] Yu H, Kim H, Wang Y, He P, Asakura D, Nakamura Y, Zhou H. Phys. Chem. Chem. Phys., 2012, 14(18): 6584.
[52] Li Q, Li G, Fu C, Luo D, Fan J, Xie D, Li L. J. Mater. Chem. A, 2015, 3(19): 10592.
[53] Dai D, Li B, Tang H, Chang K, Jiang K, Chang Z, Yuan X. J. Power Sources, 2016, 307: 665.
[54] Shimoda K, Minato T, Nakanishi K, Komatsu H, Matsunaga T, Tanida H, Arai H, Ukyo Y, Uchimoto Y, Ogumi Z. J. Mater. Chem. A, 2016, 4(16): 5909.
[55] Kalyani P, Chitra S, Mohan T, Gopukumar S. J. Power Sources, 1999, 80(1): 103.
[56] Ohzuku T, Nagayama M, Tsuji K, Ariyoshi K. J. Mater. Chem., 2011, 21(27): 10179.
[57] Lu Z, Dahn J R. J. Electrochem. Soc., 2002, 149 (7): A815.
[58] Arunkumar T, Wu Y, Manthiram A. Chem. Mater., 2007, 19(12): 3067.
[59] Armstrong A R, Holzapfel M, Novák P, Johnson C S, Kang S H, Thackeray M M, Bruce P G. J. Am. Chem. Soc., 2006, 128(26): 8694.
[60] Xu B, Fell C R, Chi M, Meng Y S. Energ. Environ. Sci., 2011, 4(6): 2223.
[61] Johnson C S, Li N, Lefief C, Vaughey J T, Thackeray M M. Chem. Mater., 2008, 20(19): 6095.
[62] Wu Y, Manthiram A. Electrochem. Solid-State Lett., 2007, 10(6): A151.
[63] Wu Y, Vadivel Murugan A, Manthiram A. J. Electrochem. Soc., 2008, 155(9): A635.
[64] Wu Y, Manthiram A. Solid State Ionics, 2009, 180(1): 50.
[65] Deng Z Q, Manthiram A. J. Phys. Chem. C, 2011, 115(14): 7097.
[66] Wang C C, Manthiram A. J. Mater. Chem. A, 2013, 1(35): 10209.
[67] Xiang X, Knight J C, Li W, Manthiram A. J. Phys. Chem. C, 2014, 118(38): 21826.
[68] Knight J C, Nandakumar P, Kan W H, Manthiram A. J. Mater. Chem. A, 2015, 3(5): 2006.
[69] Johnson C S, Li N, Lefief C, Thackeray M M. Electrochem. Commun., 2007, 9(4): 787.
[70] Koyama Y, Tanaka I, Nagao M, Kanno R. J. Power Sources, 2009, 189(1): 798.
[71] Shin Y, Ding H, Persson K A. Chem. Mater., 2016, 28(7): 2081.
[72] Yabuuchi N, Yoshii K, Myung S T, Nakai I, Komaba S. J. Am. Chem. Soc., 2011, 133(12): 4404.
[73] Hong J, Lim H D, Lee M, Kim S W, Kim H, Oh S T, Chung G C, Kang K. Chem. Mater., 2012, 24(14): 2692.
[74] Ito A, Sato Y, Sanada T, Hatano M, Horie H, Ohsawa Y. J. Power Sources, 2011, 196(16): 6828.
[75] Koga H, Croguennec L, Ménétrier M, Mannessiez P, Weill F, Delmas C. J. Power Sources, 2013, 236: 250.
[76] Koga H, Croguennec L, Menetrier M, Douhil K, Belin S, Bourgeois L, Suard E, Weill F, Delmas C. J. Electrochem. Soc., 2013, 160(6): A786.
[77] Koga H, Croguennec L, Ménétrier M, Mannessiez P, Weill F, Delmas C, Belin S. J. Phys. Chem. C, 2014, 118(11): 5700.
[78] Oishi M, Yogi C, Watanabe I, Ohta T, Orikasa Y, Uchimoto Y, Ogumi Z. J. Power Sources, 2015, 276: 89.
[79] Sathiya M, Rousse G, Ramesha K, Laisa C P, Vezin H, Sougrati M T, Doublet M L, Foix D, Gonbeau D, Walker W, Prakash A S, Ben Hassine M, Dupont L, Tarascon J M. Nat. Mater., 2013, 12(9): 827.
[80] Sathiya M, Ramesha K, Rousse G, Foix D, Gonbeau D, Prakash A S, Doublet M L, Hemalatha K, Tarascon J M. Chem. Mater., 2013, 25(7): 1121.
[81] McCalla E, Abakumov A M, Saubanère M, Foix D, Berg E J, Rousse G, Doublet M L, Gonbeau D, Novák P, Van Tendeloo G. Dominko R, Tarascon J M. Science, 2015, 350(6267): 1516.
[82] Robertson A D, Bruce P G. Chem. Commun., 2002, (23): 2790.
[83] Rossouw M, Thackeray M. Mater. Res. Bull., 1991, 26(6): 463.
[84] Robertson A D, Bruce P G. Chem. Mater., 2003, 15(10): 1984.
[85] Armstrong A R, Robertson A D, Bruce P G. J. Power Sources, 2005, 146(1/2): 275.
[86] Choi J, Alvarez E, Arunkumar T A, Manthiram A. Electrochem. Solid-State Lett., 2006, 9(5): A241.
[87] Rana J, Stan M, Kloepsch R, Li J, Schumacher G, Welter E, Zizak I, Banhart J, Winter M. Adv. Energy Mater., 2014, 4(5): 1300998.
[88] Hong Y S, Park Y J, Ryu K S, Chang S H, Kim M G. J. Mater. Chem., 2004, 14(9): 1424.
[89] Pasero D, McLaren V, De Souza S, West A. Chem. Mater., 2005, 17(2): 345.
[90] Jain G, Yang J, Balasubramanian M, Xu J J. Chem. Mater., 2005, 17(15): 3850.
[91] Kim J S, Johnson C S, Vaughey J T, Thackeray M M. J. Power Sources, 2006, 153(2): 258.
[92] Kang S H, Thackeray M M. J. Electrochem. Soc., 2008, 155(4): A269.
[93] Li G R, Feng X, Ding Y, Ye S H, Gao X P. Electrochim. Acta, 2012, 78: 308.
[94] Zhao Y, Zhao C, Feng H, Sun Z, Xia D. Electrochem. Solid-State Lett., 2011, 14(1): A1.
[95] Zhang X, Belharouak I, Li L, Lei Y, Elam J W, Nie A, Chen X, Yassar R S, Axelbaum R L. Adv. Energy Mater., 2013, 3(10): 1299.
[96] Yu R, Lin Y, Huang Z. Electrochim. Acta, 2015, 173: 515.
[97] Liu X, Liu J, Huang T, Yu A. Electrochim. Acta, 2013, 109: 52.
[98] Qiao Q Q, Zhang H Z, Li G R, Ye S H, Wang C W, Gao X P. J. Mater. Chem. A, 2013, 1(17): 5262.
[99] Wu F, Zhang X, Zhao T, Li L, Xie M, Chen R. ACS Appl. Mater. Inter., 2015, 7(6): 3773.
[100] Zhang X, Sun S, Wu Q, Wan N, Pan D, Bai Y. J. Power Sources, 2015, 282: 378.
[101] Cong L N, Gao X G, Ma S C, Guo X, Zeng Y P, Tai L H, Wang R S, Xie H M, Sun L Q. Electrochim. Acta, 2014, 115: 399.
[102] Shi S J, Tu J P, Zhang Y J, Zhang Y D, Zhao X Y, Wang X L, Gu C D. Electrochim. Acta, 2013, 108: 441.
[103] Wu F, Wang Z, Su Y, Yan N, Bao L, Chen S. J. Power Sources, 2014, 247: 20.
[104] Meng H, Jin H, Gao J, Zhang L, Xu Q. J. Electrochem. Soc., 2014, 161(10): A1564.
[105] Martha S K, Nanda J, Kim Y, Unocic R R, Pannala S, Dudney N J. J. Mater. Chem. A, 2013, 1(18): 5587.
[106] Sun Y Y, Li F, Qiao Q Q, Cao J S, Wang Y L, Ye S H. Electrochim. Acta, 2015, 176: 1464.
[107] Kim I T, Knight J C, Celio H, Manthiram A. J. Mater. Chem. A, 2014, 2(23): 8696.
[108] Shi S, Tu J, Tang Y, Liu X, Zhang Y, Wang X, Gu C. Electrochim. Acta, 2013, 88: 671.
[109] Wang Z, Liu E, Guo L, Shi C, He C, Li J, Zhao N. Surf. Coat. Technol., 2013, 235: 570.
[110] Gao J, Kim J, Manthiram A. Electrochem. Commun., 2009, 11(1): 84.
[111] Gao J, Manthiram A. J. Power Sources, 2009, 191(2): 644.
[112] Lee E S, Manthiram A. J. Electrochem. Soc., 2011, 158(1): A47.
[113] Laszczynski N, von Zamory J, Kalhoff J, Loeffler N, Chakravadhanula V S K, Passerini S. ChemElectroChem, 2015, 2(11): 1768.
[114] Song B, Liu Z, Lai M O, Lu L. Phys. Chem. Chem. Phys., 2012, 14(37): 12875.
[115] Yu S H, Yoon T, Mun J, Park S, Kang Y S, Park J H, Oh S M, Sung Y E. J. Mater. Chem. A, 2013, 1(8): 2833.
[116] Zheng J, Gu M, Xiao J, Zuo P, Wang C, Zhang J G. Nano Lett., 2013, 13(8): 3824.
[117] Boulineau A, Simonin L, Colin J F, Bourbon C, Patoux S. Nano Lett., 2013, 13(8): 3857.
[118] Bettge M, Li Y, Gallagher K, Zhu Y, Wu Q, Lu W, Bloom I, Abraham D P. J. Electrochem. Soc., 2013, 160(11): A2046.
[119] Sathiya M, Abakumov A M, Foix D, Rousse G, Ramesha K, Saubanère M, Doublet M L, Vezin H, Laisa C P, Prakash A.S, Goubeau D, VanTendeloo G, Tarascon J M. Nat. Mater., 2015, 14(2): 230.
[120] Zheng F, Yang C, Xiong X, Xiong J, Hu R, Chen Y, Liu M. Angew. Chem. Int. Ed. Engl., 2015, 54(44): 13058.
[121] Gu M, Belharouak I, Zheng J, Wu H, Xiao J, Genc A, Amine K, Thevuthasan S, Baer D R, Zhang J G, Browning N D, Wang C. ACS Nano, 2012, 7(1): 760.
[122] Wang Y, Bie X, Nikolowski K, Ehrenberg H, Du F, Hinterstein M, Wang C, Chen G, Wei Y. J. Phys. Chem. C, 2013, 117(7): 3279.
[123] Ates M N, Jia Q, Shah A, Busnaina A, Mukerjee S, Abraham K M. J. Electrochem. Soc., 2013, 161(3): A290.
[124] Yu D Y W, Yanagida K, Nakamura H. J. Electrochem. Soc., 2010, 157(11): A1177.
[125] Ito A, Li D, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y. J. Power Sources, 2010, 195(2): 567.
[126] Ito A, Shoda K, Sato Y, Hatano M, Horie H, Ohsawa Y. J. Power Sources, 2011, 196(10): 4785.
[127] Song B, Liu H, Liu Z, Xiao P, Lai M O, Lu L. Sci. Rep., 2013, 3: 3094.
[128] Song B, Lai M O, Liu Z, Liu H, Lu L. J. Mater. Chem. A, 2013, 1(34): 9954.
[129] Luo D, Li G, Fu C, Zheng J, Fan J, Li Q, Li L. Adv. Energy Mater., 2014, 4(11): 1400062.
[1] Zenghua Chang, Jiantao Wang, Zhaohui Wu, Jinling Zhao, Shigang Lu. Concentrated Electrolyte for Lithium/Li-Ion Batteries [J]. Progress in Chemistry, 2018, 30(12): 1960-1974.
[2] Wang Fuqing, Chen Jian, Zhang Feng, Yi Baolian. Polyanion-Type Cathode Materials for Li-Ion Batteries [J]. Progress in Chemistry, 2012, 24(08): 1456-1465.
[3] Li Yuejiao, Hong Liang, Wu Feng. Preparation of Li3V2(PO4)3 Cathode Material for Power Li-Ion Batteries [J]. Progress in Chemistry, 2012, 24(01): 47-53.
[4] gepin yin pengjian zuo. Progress on First Principle Calculations of Cathode in Li-Ion Batteries [J]. Progress in Chemistry, 2008, 20(11): 1827-1833.
[5] Ximin Wang Xianyou Wang Xufang Luo Li Liao . Progress on LiCo1/3Ni1/3Mn1/3O2 as Cathode Materials of Lithium-Ion Battery [J]. Progress in Chemistry, 2006, 18(12): 1720-1724.
[6] Xue Zhaoming1,2**,Chen Chunhua1. Progress in Studies of Lithium Salts for Li-Ion Battery in Nonaqueous Electrolytes [J]. Progress in Chemistry, 2005, 17(03): 399-405.
[7] Zuo Xiaoxi*,Li Weishan,Liu Jiansheng. Research Progress on Compatibility of Non-aqueous Electrolytes with Electrodes in Li-ion Battery [J]. Progress in Chemistry, 2003, 15(06): 441-.