中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (11): 1679-1688 DOI: 10.7536/PC150535 Previous Articles   

• Review and comments •

Reaction Kinetics of n-Butane Oxidation on VPO Catalyst

Jiang Binbo1, Yuan Shiling1, Chen Nan1, Wang Haibo2, Wang Jingdai1, Huang Zhengliang1*   

  1. 1. State Key Laboratory of Chemical Engineering, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China;
    2. Fushun Research Institute of Petroleum and Petrochemicals, SINOPEC, Fushun 113001, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21176208).
PDF ( 1687 ) Cited
Export

EndNote

Ris

BibTeX

n-Butane selective oxidation to maleic anhydride on VPO catalyst is the only industrialized selective oxidation reaction of light alkanes. The catalytic mechanism and reaction network are introduced. The research progress of reaction kinetics at home and abroad is reviewed. Based on continuous knowledge of reaction mechanism and the integrity of the kinetics model, the development of reaction kinetics is divided into three periods for the first time, that is, the exploration period, the forming period and the further developing period. The features and the typical models of every period are introduced. The feature of the exploration period is that the model only takes reactants' adsorption behavior on the catalyst surface into account. The feature of the forming period is that the product inhibition on the reaction is taken fully into account. The feature of the further developing period is that the oxidation degree of the catalyst with time changes and conversion among different forms of oxygen is brought into the dynamic model. Finally, we point out that the research of n-butane selective oxidation reaction kinetics will focus on the research of the interaction between kinetics and transfer process in the perspective of space-time multiscale.

Contents
1 Introduction
2 Catalytic mechanism
3 Reaction network
3.1 Triangle reaction network
3.2 Reaction network involving furan route
3.3 Reaction network involving alkoxide route and furan route
4 Reaction kinetics
4.1 The exploration period
4.2 The forming period
4.3 The further developing period
5 Conclusion

CLC Number: 

[1] Ballarini N, Cavani F, Cortelli C, Ligi S, Pierelli F, Trifirò F, Fumagalli C, Mazzoni G, Monti T. Topics in Catalysis, 2006, 38(1/3):147.
[2] Frey J, Lieder C, Schölkopf T, Schleid T, Nieken U, Klemm E, Hunger M. Journal of Catalysis, 2010, 272(1):131.
[3] Shekari A. Doctoral Dissertation of University of Western Ontario, 2011.
[4] Shekari A, Patience G S. International Journal of Chemical Reactor Engineering, 2012, 10(1):1542.
[5] Eichelbaum M, Haevecker M, Heine C, Karpov A, Dobner C K, Rosowski F, Trunschke A, Schloegl R. Angewandte Chemie International Edition, 2012, 51(25):6246.
[6] Wilkinson S K, Simmons M J H, Stitt E H, Baucherel X, Watson M J. Journal of Catalysis, 2013, 299:249.
[7] Cheng M J, Goddard W R. Journal of American Chemical Society, 2013, 135(12):4600.
[8] Dietl N, Wende T, Chen K, Jiang L, Schlangen M, Zhang X H, Asmis K A, Schwarz H. Journal of American Chemical Society, 2013, 135(9):3711.
[9] Cheng M, Goddard W A, Fu R. Topics in Catalysis, 2014, 57(14/16):1171.
[10] Cheng M, Fu R, Goddard I W A. Chemical Communications, 2014, 50(14):1748.
[11] Pratibha L G, Kourtakis K. Science, 1995, 267(5198):661.
[12] Coulston G W, Bare S R, Kung H, Birkeland K, Bethke G K, Harlow R, Herron N, Lee P L. Science, 1997, 275(5297):191.
[13] Conte M, Budroni G, Bartley J K, Taylor S H, Carley A F, Schmidt A, Murphy D M, Girgsdies F, Ressler T, Schlogl R, Hutchings J G. Science, 2006, 313(5791):1270.
[14] Zhang J, Liu X, Blume R, Zhang A, Schlögl R, Su D S. Science, 2007, 317(5840):927.
[15] 汪佩(Wang P), 傅钢(Fu G), 万惠霖(Wan H L). The 14th National Youth Conference on Catalysis. 长春(Changchun):吉林大学出版社(Jilin University Press), 2013. OD-18.
[16] Trifirò F, Grasselli R K. Topics in Catalysis, 2014, 57(14/16):1188.
[17] Lorences M J, Patience G S, Cenni R, Díez F, Coca J. Catalysis Today, 2006, 112(1/4):45.
[18] Gascón J, Valenciano R, Telléz C, Herguido J, Menéndez M. Chemical Engineering Science, 2006, 61(19):6385.
[19] Dudukovic M P. Science, 2009, 325:698.
[20] 蒋亚琪(Jiang Y Q), 周朝晖(Zhou Z H), 魏赞斌(Wei Z B), 万惠霖(Wan H L).高等学校化学学报(Chemical Journal of Chinese Universities), 2000, 21(8):1177.
[21] 王晓书(Wang X S), 聂维艳(Nie W Y), 季伟捷(Ji W J), 颜其洁(Yan Q J), 陈懿(Chen Y). 高等学校化学学报(Chemical Journal of Chinese Universities), 2002, 23(4):620.
[22] Nie W Y, Wang Z Y, Ji W J, Chen Y, Au C T. Applied Catalysis A:General, 2003, 244(2):265.
[23] Li X K, Ji W J, Zhao J, Zhang Z B, Au C T. Applied Catalysis A:General, 2006, 306(7):8.
[24] Li X, Ji W J, Zhao J, Zhang Z B, Au C T. Journal of Catalysis, 2006, 238(1):232.
[25] Feng R M, Yang X J, Ji W J, Chen Y, Au C T. Journal of Catalysis, 2007, 246(1):166.
[26] Lin Z, Weng W, Kiely C J, Dummer N F, Bartley J K, Hutchings G J. Catalysis Today, 2010, 157(1/4):211
[27] Otaibi R A, Weng W H, Bartley J K, Dummer N F, Kiely C J, Hutchings G J. ChemCatChem, 2010, 2(4):443.
[28] Centi G. Catalysis Today, 1993, 16(1):5.
[29] 刘先明(Liu X M), 李春福(Li C F), 高浩华(Gao H H), 蒋大林(Jing D L), 冯景隆(Feng J L), 康小平(Kang X P), 席宗敬(Xi Z J). 材料导报(Materials Review), 2008(4):57.
[30] Hutchings G J. Journal of Materials Chemistry, 2009, 19(9):1222.
[31] Dummer N F, Bartley J K, Hutchings G J. Advances in Catalysis, 2011, 54:189.
[32] 师慧敏(Shi H M), 陈雅萍(Chen Y P).石油化工(Petrochemical Technology), 2013, 42(9):1044.
[33] Cavani F, Trifiro F. In Catalysis.(Eds. Spivey J J, Agarwal S K). London:The Royal Society of Chemistry. 1994, 11:246.
[34] Shekari A, Patience G S. Catalysis Today, 2010, 157(1/4):334.
[35] Mills P L, Randall H T, Mccracken J S. Chemical Engineering Science, 1999, 54(15/16):3709.
[36] Huang X F, Li C Y, Chen B H, Silveston P L. AIChE Journal, 2002, 48(4):846.
[37] Pepera M A, Callahan J L, Desmond M J, Pepera M A, Callahan J L, Desmond M J, Milberger E C, Blum P R, Bremer N J. Journal of American Chemical Society, 1985, 107(17):4883.
[38] Escardino A, Sola C, Ruiz F. Anales De Química, 1973, 69(11):385.
[39] Varma R L, Saraf D N. Journal of Catalysis, 1978, 55(3):361.
[40] Moser T P, Schrader G L. Journal of Catalysis, 1985, 92(2):216.
[41] Centi G, Fornasari G, Trifirò F. Journal of Catalysis, 1984, 89(1):44.
[42] Centi G, Fornasari G, Trifirò F. Industrial & Engineering Chemistry Product Research, 1985, 24(1):32.
[43] Centi G, Trifirò F, Ebner J R, Franchetti V M. Chemical Reviews, 1988, 88(1):55.
[44] Hodnett B K, Delmon B. Bulletin Des Societes Chimiques Belges, 1983, 92(8):695.
[45] Hodnett B K. Catalysis Review-Science and Engineering, 1985, 27(3):373.
[46] Gleaves J T, Ebner J R, Kuechler T C. Catalysis Reviews-Science and Engineering, 1988, 30(1):49.
[47] Xue Z Y, Schrader G L. Journal of Catalysis, 1999, 184(1):87.
[48] Centi G, Perathoner S. International Journal of Molecular Sciences, 2001, 2(5):183.
[49] Wohlfahrt K, Hofmann H. Chemie Ingenieur Technik, 1980, 52(10):811.
[50] Sharma R K, Cresswell D L, Newson E J. AIChE Annual Meeting. San Francisco. 1984.
[51] Lerou J J. 25th Annual Spring Symposium of Pitt-Cleve Catalysis Society. 1986.
[52] Kumar K V, Porkodi K, Rocha F. Catalysis Communications, 2008, 9(1):82.
[53] Rideal E K. Chemical Industry, 1943, 62:335.
[54] Mars P, van Krevelen D W. Chemical Engineering Science, 1954, 3:41.
[55] Sharma R K, Cresswell D L, Newson E J. AIChE Journal, 1991, 37(1):39.
[56] Uihlein K. Doctoral Dissertation of Universität Karlsruhe, 1993.
[57] Schneider P, Emig G, Hofmann H. Industrial and Engineering Chemistry Research, 1987, 26(11):2236.
[58] Buchanan J S, Sundaresan S. Applied Catalysis, 1986, 26(1/2):211.
[59] Rodemerck U. Doctoral Dissertation of Ruhr-Universität Bochum, 1995.
[60] Kubias B, Rodemerck U, Zanthoff H W, Meisel M. Catalysis Today, 1996, 32(1/4):243.
[61] Bej S K, Rao M S. Industrial & Engineering Chemistry Research, 1991, 30(8):1819.
[62] Bej S K, Rao M S. Industrial & Engineering Chemistry Research, 1991, 30(8):1824.
[63] Bej S K, Rao M S. Industrial & Engineering Chemistry Research, 1991, 30(8):1829.
[64] Becker C, Eigenberger G, Dieterich E E. Chemie Ingenieur Technik, 1999, 71(9):977.
[65] Becker C. Doctoral Dissertation of Universität Stuttgart, 2002.
[66] 黄晓峰(Huang X F). 北京化工大学博士论文(Doctoral Dissertation of Beijing University of Chemical Technology), 1999.
[67] 杨东海(Yang D H), 黄晓峰(Huang X F), 陈标华(Chen B H), 李成岳(Li C Y). 催化学报(Chinese Journal of Catalysis), 2000, 21(6):561.
[68] Gascón J, Telléz C, Herguido J, Menéndez M. Industrial & Engineering Chemical Research, 2005, 44(24):8945.
[69] Pugsley T S, Patience G S, Berruti F, Chaouki J. Industrial & Engineering Chemistry Research, 1992, 31(12):2652.
[70] Fernandez J R, Vega A, Diez F V. Applied Catalysis A:General, 2010, 376(1/2):76.
[71] Hutchenson K W, La Marca C, Patience G S, Laviolettec J P, Bockratha RE. Applied Catalysis A:General, 2010, 376(1/2):91.
[72] Mallada R, Pedernera M, Menéndez N, Santamaría J. Industrial & Engineering Chemistry Research, 2000, 39(3):620.
[73] Mallada R, Menéndez M, Santamaría J. Catalysis Today, 2000, 56(1/3):191.
[74] Pedernera M, Mallada R, Menéndez M, Santamaría J. AIChE Journal, 2000, 46(12):2489.
[75] Alonso M, Lorences M J, Pina M P, Patience G S. Catalysis Today, 2001, 67(1/3):151.
[76] Mallada R, Menéndez M, Santamaría J. Applied Catalysis A-General, 2002, 231(1/2):109.
[77] Alonso M, Patience G, Fernández J R, Lorencesc M J, Díeza F, Vegaa A, Cennic R. Catalysis Today, 2006, 118(1/2):32.
[78] Chalakov L, Rihko-Struckmann L K, Munder B, Raua H, Sundmacher K. Chemical Engineering Journal, 2007, 131(1/3):15.
[79] Marín P, Hamel C, Ordóñez S, Díeza F V, Tsotsasc E, Seidel M A. Chemical Engineering Science, 2010, 65(11):3538.
[80] Ueda W, Moro-Oka Y, Ikawa T. Journal of the Chemical Society-Faraday Transactions Ⅰ:Physical Chemistry in Condensed Phases, 1982, 78(2):495.
[81] Glaeser L C, Brazdil J F, Hazle M A, Mehicic M, Grasselli R K. Journal of the Chemical Society-Faraday Transactions Ⅰ:Physical Chemistry in Condensed Phases, 1985, 81(11):2903.
[82] Che M, Tench A J. Advances in Catalysis, 1982, 31:77.
[83] Hodnett B K, Permanne P, Delmon B. Applied Catalysis, 1983, 6(2):231.
[84] Hodnett B K, Delmon B. Journal of Catalysis, 1984, 88(1):43.
[85] Morishige H, Teraoka Y, Miura N, Yamazoe N. Nippon Kagaku Kaishi, 1989,(7):1074.
[86] Iwamoto M, Yahiro H, Tanda K, Inui T. Stud. Surf. Sci. Catal, 1988, 44:15.
[87] Morishige H, Tamaki J, Miura N, Yamazoe N. Chemistry Letters, 1990,(9):1513.
[88] 梁日忠(Liang R Z). 北京化工大学博士论文(Doctoral Dissertation of Beijing University of Chemical Technology), 2002.
[89] 梁日忠(Liang R Z),李成岳(Li C Y).上海大学学报(自然科学版)(The Journal of Shanghai University(Natural Science)). 2006,(6):615.
[90] Mills P L, Randall H T, McCracken J S. Chemical Engineering Science, 1999, 54(15/16):3709.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[6] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[7] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[8] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[9] Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu. Recent Advances of the Electrode Materials for Sodium-Ion Capacitors [J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
[10] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[11] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[12] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[13] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[14] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.
[15] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.