中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (0203): 259-269 DOI: 10.7536/PC130767 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

Li-Rich Transition Metal Oxide xLi2MnO3·(1-x)LiMO2 (M=Ni, Co or Mn) for Lithium Ion Batteries

Bai Ying1,2, Li Yu1, Zhong Yunxia1, Chen Shi1,2, Wu Feng1,2, Wu Chuan*1,2   

  1. 1. Beijing Key Laboratory of Environmental Science and Engineering, School of Chemical Engineering & Environment, Beijing Institute of Technology, Beijing 100081, China;
    2. National Development Center for High Technology Green Materials, Beijing 100081, China
  • Received: Revised: Online: Published:
  • Supported by:

    This work was supported by the State Key Development Program for Basic Resarch of China (No.2009CB220100) and the Program for New Century Excellent Talents in University (No.NCET-12-0047)

PDF ( 2293 ) Cited
Export

EndNote

Ris

BibTeX

As a promising candidate of the cathode materials for the next generation of high energy density lithium-ion batteries, the Li-rich transition metal oxide xLi2MnO3 ·(1-x)LiMO2 (M=Ni, Co or Mn) is superior to the traditional cathode materials for its potential of achieving very high capacity of over 300mAh/g. Therefore, this type of materials is caught more and more attention in recent years. Here we give an overview of recent progress of xLi2MnO3 ·(1-x)LiMO2 in recent years. The research hotspots, the crystal structure characteristics and the mechanism of initial charge and discharge, the development of various synthesis methods, as well as the improvement of the electrochemical performances for xLi2MnO3 ·(1-x)LiMO2(M=Ni, Co or Mn) are commented. The future development trends of the xLi2MnO3 ·(1-x)LiMO2 (M=Ni, Co or Mn) is put forward.

Contents
1 Introduction
2 Research on initial charge-discharge mechanism of Li-rich composite cathode materials
2.1 Crystal structure of Li-rich composite cathode materials
2.2 Initial charge-discharge mechanism of Li-rich composite cathode materials
3 Synthesis methods for xLi2MnO3·(1-x)LiMO2
3.1 Co-precipitation method
3.2 Sol-gel method
3.3 Solid state method
3.4 Sucrose combustion method
3.5 Hydrothermal method
3.6 Low-temperature molten salt method
3.7 Other synthesis methods
4 Improvements on electrochemical properties of Li-rich composite cathode materials
4.1 Doping in the lattice
4.2 Surface coating
4.3 Doping other materials
4.4 Particle nanocrystallization and control of structures or morphologies of cathode materials
4.5 Proposing and exploration of new method
5 Conclusions and outlook

CLC Number: 

[1] Nagaura T, Tozawa K. Pro. Batteries Solar Cells, 1990, 9: 209.
[2] 张临超(Zhang L C), 陈春华(Cheng C H). 化学进展(Prog. Chem.), 2011, 23(2/3): 275.
[3] Lu Z, MacNeil D D, Dahn J R. Electrochem. Solid-State Lett., 2001, 4: A200.
[4] MacNeil D, Lu Z, Dahn J R. J. Electrochem. Soc., 2002, 149: A1332.
[5] Sun Y K, Myung S T, Bang H J, Park B C, Park S J, Sung N Y. J. Electrochem. Soc., 2007, 154: A937.
[6] Amriou T, Khelifa B, Aourag H, Aouadi S M, Mathieu C. Mater. Chem. Phys., 2005, 92: 499.
[7] Liu H, Yang Y, Zhang J. J. Power Sources, 2007, 173: 556.
[8] Macneil D D, Lu Z H, Dahn J R. J. Power Sources, 2002, 108: 8.
[9] Rougier A, Bravereau P, Delmas C. J. Electrochem. Soc., 1996, 143(4): 1168.
[10] Stoyanova R, Zhecheva E, Alcantara R, Tirado J L, Bromiley G, Bromiley F, Ballaran T B. Solid State Ionics, 2003, 161: 197.
[11] Whittingham M S. Chem. Rev., 2004, 104(10): 4271.
[12] Liu Z L, Yu A S, Lee J Y. J. Power Sources, 1999, 81/82: 416.
[13] Kim G H, Kim J H, Myung S T, Yoon C S, Sun Y K. J. Electrochem. Soc., 2005, 152: A1707.
[14] Lu W, Belharouak I, Vissers D, Amine K. J. Electrochem. Soc., 2006, 153: A2147.
[15] Myung S T, Komaba S, Hosoya K, Miura Y, Hirosaki N, Kumagai N. Chem. Mater., 2005, 17: 2427.
[16] Johnson C S, Li N, Leef C, Thackeray M M. Electrochem. Commun., 2007, 9: 787.
[17] Johnson C S, Kim J S, Leef C, Li N, Vaughey J T, Thackeray M M. Electrochem. Commun., 2004, 6: 1085.
[18] Wu Y, Manthiram A. Electrochem. Solid-State Lett., 2006, 9: A221.
[19] Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Hackney S A. Electrochem. Commun., 2006, 8: 1531.
[20] Ammundsen B, Paulsen J, Davidson I, Liu R S, Shen C H, Chen J M, Jang L Y, Lee J F. J. Electrochem. Soc., 2002, 149 (4): A431.
[21] Park Y J, Wu X L. Solid State Ionics, 2004, 175: 305.
[22] Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A. J. Mater. Chem., 2007, 17: 3112.
[23] Lu Z H, Dahn J R. J. Electrochem. Soc., 2002, 149: A815.
[24] Bareño J, Lei C H, Wen J G, Kang S H, Petrov I, Abraham D P. Adv. Mater., 2010, 22: 1122.
[25] Yoon W S, Iannopollo S, Grey C P, Carlier D, Gorman J, Reed J, Ceder G. Electrochem. Solid-State Lett., 2004, 7 (7): A167.
[26] Jarvis K A, Deng Z Q, Allard L F, Manthiram A, Ferreira P, Chem. Mater., 2011, 23: 3614.
[27] Pan C J, Lee Y J, Ammundsen B, Grey C P. Chem. Mater., 2002, 14: 2289.
[28] Bréger J, Jiang M, Dupré N, Meng Y S, Shao-Horn Y, Ceder G, Grey C P. J. Solid State Chem., 2005, 178: 2575.
[29] Yoon W S, Kim N, Yang X Q, McBreen J, Grey C P. J. Power Sources, 2003, 119/121: 649.
[30] Park Y J, Hong Y S, Wu X L, Kim M G, Ryu K S, Chang S H. J. Electrochem. Soc., 2004, 151: A720.
[31] Kim J S, Johnson C S, Vaughey J T, Thackeray M M. Chem. Mater., 2004, 16: 1996.
[32] Croy J R, Kang S H, Balasubramanian M, Thackeray M M. Electrochem. Commun., 2011, 13: 1063.
[33] Saint J A, Doeff M M, Reed J. J. Power Sources, 2007, 172: 189.
[34] Guo X J, Li Y X, Zheng M, Zheng J M, Li J, Gong Z L, Yang Y. J. Power Sources, 2008, 184: 414.
[35] Yu L Y, Qiu W H, Lian F, Liu W, Kang X L, Huang J Y. Mater. Lett., 2008, 62: 3010.
[36] Lu Z H, Beaulieu L Y, Donaberger R A, Thomas C L, Dahn J R. J. Electrochem. Soc., 2002, 149: A778.
[37] Robertson A D, Bruce P G. Chem. Commun., 2002, 2790.
[38] Benedek R, Thackeray M M, Walle A. Chem. Mater., 2008, 20: 5485.
[39] Lu Z H, Chen Z H, Dahn J R. Chem. Mater., 2003, 15: 3214.
[40] Koyama K, Tanaka I, Nagao M, Kanno R. J. Power Sources, 2009, 189: 798.
[41] Lim J H, Bang H, Lee K S, Amine K, Sun Y K. J. Power Sources, 2009, 189: 571.
[42] Armstrong A R, Holzapfel M, Novák P, Johnson C S, Kang S H, Thackeray M M, Bruce P G. J. Am. Chem. Soc., 2006, 128: 8694.
[43] Kikkawa J, Akita T, Tabuchi M, Shikano M, Tatsumi K, Kohyama M. Electrochem. Solid-State Lett., 2008, 11: A183.
[44] Kubota K, Kaneko T, Hirayama M, Yonemura M, Imanari Y, Nakane K, Kanno R. J. Power Sources, 2012, 216: 249.
[45] Yoon W S, Grey C P, Balasubramanian M, Yang X Q, Fischer D A, McBreen J. Electrochem. Solid-State Lett., 2004, 7: A53.
[46] Yu D Y W, Yanagida K, Kato Y, Nakamura H. J. Electrochem. Soc., 2009, 156: A417.
[47] Armstrong A R, Robertson A D, Bruce P G. J. Power Sources, 2005, 146: 275.
[48] Xiao R J, Li H, Chen L Q. Chem. Mater., 2012, 24: 4242.
[49] Gong Z L, Liu H S, Guo X J, Zhang Z R, Yang Y. J. Power Sources, 2004, 136: 139.
[50] Santhanam R, Rambabu B. J. Power Sources, 2010, 195: 4313.
[51] Zheng J M, Wu X B, Yang Y. Electrochim. Acta, 2011, 56: 3071.
[52] Li J, Klöpsch R, Stan M C, Nowak S, Kunze M, Winter M, Passerini S. J. Power Sources, 2011, 196: 4821.
[53] Xiang X D, Li X Q, Li W S. J. Power Sources, 2013, 230: 89.
[54] Zheng J M, Wu X B, Yang Y. Electrochimi. Acta, 2011, 56: 3071.
[55] 王昭(Wang Z), 吴锋(Wu F), 苏岳锋(SuY F), 包丽颖(Bao L Y), 陈来(Chen L), 李宁(Li N), 陈实(Chen S). 物理化学学报(Acta Phys. -Chim. Sin.), 2012, 28(4): 823.
[56] 杜柯(Du K), 周伟瑛(Zhou W Y), 胡国荣(Hu G R). 化学学报(Acta Chimica Sinica), 2010, 68: 1391.
[57] Yu L Y, Qiu W H, Lian F, Huang J Y, Kang X L. J. Alloys and Compounds, 2009, 471: 317.
[58] Kim G Y, Yi S B, Park Y J, Kim H G. Mater. Res. Bull., 2008, 43: 3543.
[59] Wei X, Zhang S C, He L, Liu G R, Yang P H. Int. J. Electrochem. Sci., 2013, 8: 1885.
[60] Bai Y, Wang F, Wu F, Wu C, Bao L Y. Electrochimica Acta, 2008, 54: 322.
[61] Yu C, Guan X F, Li G S, Zheng J, Li L P. Scr. Mater., 2012, 66: 300.
[62] West W C, Soler J, Ratnakumar B V. J. Power Sources, 2012, 204: 200.
[63] Kim M G, Jo M, Hong Y S, Cho J. Chem. Commun., 2009, 2: 218.
[64] Park S H, Sun Y K. J. Power Sources, 2003, 119: 161.
[65] Jiao L F, Zhang M, Yuan H T, Zhao M, Guo H, Wang W, Di Zhou X, Wang M. J. Power Sources, 2007, 167: 178.
[66] Lian F, Gao M, Qiu W H, Axmann P, Wohlfahrt-Mehrens M. J. Appl. Electrochem., 2012, 42: 409.
[67] Wu Y, Manthiram A. Solid State Ionics, 2009, 180: 50.
[68] Wang Q Y, Liu J, Mueugan A V, Manthiram A. J. Mater. Chem., 2009, 19: 4965.
[69] Liu J, Reeja-Jayan B, Manthiram A. J. Phys. Chem. C, 2010, 114: 9528.
[70] Liu J, Wang Q, Reeja-Jayan B, Manthiram A. Electrochem. Commun., 2010, 12: 750.
[71] Gao J, Manthiram A. J. Power Sources, 2009, 191: 644.
[72] Zheng J M, Li J, Zhang Z R, Guo X J, Yang Y. Solid State Ionics, 2008, 179: 1794.
[73] Kang S H, Thackeray M M. Electrochem. Commun., 2009, 11: 748.
[74] Wu F, Li N, Su Y F, Lu H Q, Zhang L J, An R, Wang Z, Bao L Y, Chen S. J. Mater. Chem., 2012, 22: 1489.
[75] Gao J, Kim J, Manthiram A. Electrochem. Commun., 2009, 11: 84.
[76] Gao J, Manthiram A. J. Power Sources, 2009, 191: 644.
[77] Wei G Z, Lu X, Ke F S, Huang L, Li J T, Wang Z X, Zhou Z Y, Sun S G. Adv. Mater., 2010, 22: 4364.
[78] Lin J, Mu D B, Jin Y, Wu B R, Ma Y F, Wu F. J. Power Sources, 2013, 230: 76.
[79] Wang D, Belharouak I, Zhou G W, Amine K. Adv. Funct. Mater., 2013, 23: 1070.
[80] 吴锋(Wu F), 陈实(Chen S), 仲云霞(Zhong Y X), 白莹(Bai Y), 吴川(Wu C), 包丽颖(Bao L Y), 吴伯荣(Wu B R). CN102655232A, 2012年.

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[3] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[4] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[5] Changhuan Zhang, Nianwu Li, Xiuqin Zhang. Electrode Materials for Flexible Lithium-Ion Battery [J]. Progress in Chemistry, 2021, 33(4): 633-648.
[6] Jianwen Liu, Heyang Jiang, Chihang Sun, Wenbin Luo, Jing Mao, Kehua Dai. P2-Structure Layered Composite Metal Oxide Cathode Materials for Sodium Ion Batteries [J]. Progress in Chemistry, 2020, 32(6): 803-816.
[7] Wei Zhang, Xiaopeng Qi, Sheng Fang, Jianhua Zhang, Bimeng Shi, Juanyu Yang. Effects of Carbon on Silicon-Carbon Composites in Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 454-466.
[8] Guange Wang, Huaning Zhang, Tong Wu, Borui Liu, Qing Huang, Yuefeng Su. Recycling and Regeneration of Spent Lithium-Ion Battery Cathode Materials [J]. Progress in Chemistry, 2020, 32(12): 2064-2074.
[9] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[10] Depei Liu, Jing Tian, Jingsha Li, Zheng Tang, Haiyan Wang, Yougen Tang. Preparation and Applications of Mn-Ce Binary Oxides [J]. Progress in Chemistry, 2019, 31(6): 811-830.
[11] Zhimin Jiang, Li Wang, Min Shen, Huichuang Chen, Guoqiang Ma, Xiangming He. Electrolyte Additives for Interfacial Modification of Cathodes in Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(5): 699-713.
[12] Zhenjie Li, Du Zhong, Jie Zhang, Jinwei Chen, Gang Wang, Ruilin Wang. Silicon Nanoparticles/Carbon Composites for Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(1): 201-209.
[13] Jiao Lin, Chunwei Liu, Hongbin Cao, Li Li, Renjie Chen, Zhi Sun. Recovery of Spent Lithium Ion Batteries Based on High Temperature Chemical Conversion [J]. Progress in Chemistry, 2018, 30(9): 1445-1454.
[14] Yijia Shao, Bin Huang, Quanbing Liu, Shijun Liao. Preparation and Modification of Ni-Co-Mn Ternary Cathode Materials [J]. Progress in Chemistry, 2018, 30(4): 410-419.
[15] Shuaijin Wu, Juanyu Yang, Bing Yu, Sheng Fang, Zhaohui Wu, Bimeng Shi. Nano/Micro Structured Silicon-Based Negative Materials [J]. Progress in Chemistry, 2018, 30(2/3): 272-285.