中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC121247 Previous Articles   

Special Issue: 锂离子电池

• Review •

Polymer Binders for High Capacity Electrode of Lithium-Ion Battery

Liu Xin1, Zhao Hailei*1,3, Xie Jingying*2, Tang Weiping2, Pan Yanlin2, Lü Pengpeng1   

  1. 1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
    2. Shanghai Institute of Space Power Sources, Shanghai 200245, China;
    3. Beijing Key Lab of New Energy Materials and Technology, Beijing 100083, China
  • Received: Revised: Online: Published:
PDF ( 2202 ) Cited
Export

EndNote

Ris

BibTeX

With the development of lithium ion batteries with high energy density, the traditional graphite anode material will be replaced gradually by other materials with high specific capacity, such as alloy and metal oxides. However, these high capacity anode materials suffer from huge volume change during the cycling process, which causes the degradation of cycle performance and thus limits their application. Apart from the improvement on the active materials, the rational choice of binder is an effective way to improve the electrochemical performance of electrode. In the present paper, the development of binders used in high capacity anode in the recent decade is reviewed. With various modifications on polyvinylidene fluoride (PVDF) binder to enhance its viscoelasticity, the electrochemical properties of electrode can be improved. Compared to PVDF, the water-based carboxymentyl cellulose (CMC) binder can enhance greatly the electrochemical performance of Si-based electrodes. Better dispersion of electrode slurry, inactive to electrolyte and forming a chemical bond (covalent or hydrogen bonding) with active materials are the reasons for CMC being better than PVDF when used in the high capacity negative electrode. The structural parameters of CMC (molecular weight, degree of substitution, cationic), CMC content, pH value of the slurry and the electrode porosity have important influence on CMC electrode performance. Besides, polyacrylic acid (PAA) and Na-alginate binder are much effective in improving the cycling performance of high capacity electrode, due to their high carboxyl groups (-COOH). Other novel binders also have potential to enhance cycling performance of high capacity electrode. Contents
1 Introduction
2 Disadvantages and modification of conventional PVDF binder
3 CMC binder
3.1 Application of CMC binder in lithium-ion battery
3.2 Binding mechanism of CMC binder
3.3 Influencing factors of CMC binder
4 PAA binder
5 Na-alginate binder
6 Other novel binders
7 Conclusions

CLC Number: 

[1] Scrosati B, Hassoun J, Sun Y K. Energy & Environ. Sci., 2011, 4: 3287-3295
[2] Hassoun J, Derrien G, Panero S, Scrosati B. Adv. Mater., 2008, 20: 3169-3175
[3] Jia H, Gao P, Yang J, Wang J, Nuli Y, Yang Z. Adv. Energy Mater., 2011, 1: 1036-1039
[4] Ferguson P P, Todd A D W, Dahn J R. Electrochem. Commun., 2008, 10: 25-31
[5] Hassouna J, Derrienb G, Paneroa S, Scrosati B. J. Power Sources, 2008, 183: 339-343
[6] Wang J, Zhao H, He J, Wang C, Wang J. J. Power Sources, 2011, 196: 4811-4815
[7] Wang J, Zhao H, Liu X, Wang J, Wang J. Electrochim. Acta, 2011, 56: 6441-6447
[8] Chae C, Kim J H, Kim J M, Sun Y K, Lee J K. J. Mater. Chem., 2012, 22: 17870-17877
[9] Chen Y, Song B, Tang X, Lub L, Xue J. J. Mater. Chem., 2012, 22: 17656-17662
[10] Guo B, Chi M, Sun X G, Dai S. J. Power Sources, 2012, 205: 495-499
[11] Chen X, Li X, Ding F, Xu W, Xiao J, Cao Y, Meduri P, Liu J, Graff G L, Zhang J G. Nano Lett., 2012, 12: 4124-4130
[12] Zhao K, Tritsaris G A, Pharr M, Wang W L, Okeke O, Suo Z, Vlassak J J, Kaxiras E. Nano Lett., 2012, 12: 4397-4403
[13] Hassoun J, Derrien G, Panero S, Scrosati B. Electrochim. Acta, 2009, 54: 4441-4444
[14] Guo H, Zhao H, Ji X, Li X, Qiu W. Electrochim. Acta, 2007, 52: 4853-4857
[15] Cui W J, Li F, Liu H, Wang C, Xia Y. J. Mater. Chem., 2009, 19: 7202-7207
[16] 郝连升(Hao L S), 蔡宗平(Cai Z P), 李伟善(Li W S). 电源技术(Chinese Journal of Power Sources), 2010, 34 (3): 303-306
[17] 马利华(Ma H L), 傅鹏立(Fu P L), 陈小娜(Chen X N), 张胜利(Zhang S L), 宋延华(Song Y H). 电池工业(Chinese Battery Industry), 2008, 13 (3): 203-206
[18] Yang J, Takeda Y, Imanishi N, Ichikawa T, Yamamoto O. J. Power Sources, 1999, 79: 220-224
[19] Guy D, Lestriez B, Guyomard D. Adv. Mater., 2004, 16: 553-557
[20] Chen Z, Christensen L, Dahn J R. Electrochem. Commun., 2003, 5: 919-923
[21] Chen Z, Christensen L, Dahn J R. J. Electrochem. Soc., 2003, 150: A1073-A1078
[22] Chen Z, Christensen L, Dahn J R. J. Appl. Polym. Sci., 2003, 90: 1891-1899
[23] Chen Z, Christensen L, Dahn J R. J. Appl. Polym. Sci., 2004, 91: 2949-2957
[24] Xie J, Zhao X, Cao G. J. Mater. Sci. Technol., 2007, 23: 142-144
[25] Zhang X W, Wang C, Appleby A J, Little F E. J. Power Sources, 2002, 109: 136-141
[26] Li J, Christensen L, Obrovac M N, Hewitt K C, Dahn J R. J. Electrochem. Soc., 2008, 155: A234-A238
[27] Xu Y H, Yin G P, Ma Y L, Zuo P J, Cheng X Q. J. Power Sources, 2010, 195: 2069-2073
[28] Li J, Dahn H M, Krause L J, Le D B, Dahn J R. J. Electrochem. Soc., 2008, 155: A812-A816
[29] Drofenik J, Gaberscek M, Dominko R, Poulsen F W, Mogensen M, Pejovnik S, Jamnik J. Electrochim. Acta, 2003, 48: 883-889
[30] Lee J H, Lee S, Paik U, Choi Y M. J. Power Sources, 2005, 147: 249-255
[31] Lee J H, Paik U, Hackley V A, Choi Y M. J. Electrochem. Soc., 2005, 152: A1763-A1769
[32] Lee J H, Choi Y M, Paik U, Park J G. J. Electroceram., 2006, 17: 657-660
[33] Liu W R, Yang M H, Wu H C, Chiao S M, Wu N L. Electrochem. Solid-State Lett., 2005, 8: A100-A103
[34] Buqa H, Holzapfel M, Krumeich F, Veit C, Novák P. J. Power Sources, 2006, 161: 617-622
[35] Li J, Lewis R B, Dahn J R. Electrochem. Solid-State Lett., 2007, 10: A17-A20
[36] Lestriez B, Bahri S, Sandu I, Roué L, Guyomard D. Electrochem. Commun., 2007, 9: 2801-2806
[37] Munao D, Erven J W M, Valvo M, Garcia-Tamayo E, Kelder E M. J. Power Sources, 2011, 196: 6695-6702
[38] Hochgatterer N S, Schweiger M R, Koller S, Raimann P R, Wöhrle T, Wurm C, Winter M. Electrochem. Solid-State Lett., 2008, 11: A76-A80
[39] Cho S L, Gao X W, Wang J Z, Wexler D, Wang Z X, Chen L Q, Liu H K. Dalton Trans., 2011, 40: 12801-12807
[40] Chou S L, Wang J Z, Zhong C, Rahman M M, Liu H K, Dou S X. Electrochim. Acta, 2009, 54: 7519-7524
[41] Zhong C, Wang J Z, Chou S L, Konstantinov K, Rahman M, Liu H K. J. Appl. Electrochem., 2010, 40: 1415-1419
[42] Lavoie N, Malenfant P R L, Courtel F M, Abu-Lebdeh Y, Davidson I J. J. Power Sources, 2012, 213: 249-254
[43] Zhong C, Wang J Z, Gao X W, Chou S L, Konstantinov K, Liu H K. J. Nanosci. Nanotechnol. 2012, 12: 1314-1317
[44] Li C C, Wang Y W. J. Electrochem. Soc., 2011, 158: A1361-A1370
[45] Lux S F, Schappacher F, Balducci A, Passerini S, Winter M. J. Electrochem. Soc., 2010, 157: A320-A325
[46] Li J, Klöpsch R, Nowak S, Kunze M, Winter M, Passerini S. J. Power Sources, 2011, 196: 7687-7691
[47] Kim G T, Jeong S S, Joost M, Rocca E, Winter M, Passerini S, Balducci A. J. Power Sources, 2011, 196: 2187-2194
[48] Wang Z, Dupré N, Gaillot A C, Lestriez B, Martin J F, Daniel L, Patoux S, Guyomard D. Electrochim. Acta, 2012, 62: 77-83
[49] Courtel F M, Niketic S, Duguay D, Abu-Lebdeh Y, Davidson I J. J. Power Sources, 2011, 196: 2128-2134
[50] Mancini M, Nobili F, Tossici R, Wohlfahrt-Mehrens M, Marassi R. J. Power Sources, 2011, 196: 9665-9671
[51] Zaïdi W, Oumellal Y, Bonnet J P, Zhang J, Cuevas F, Latroche M, Bobet J L, Aymard L. J. Power Sources, 2011, 196: 2854-2857
[52] Xie L, Zhao L, Wan J, Shao Z, Wang F, Lv S. J. Electrochem. Soc., 2012, 159: A499-A505
[53] Ouatani L E, Dedryvère R, Ledeuil J B, Siret C, Biensan P, Desbrières J, Gonbeau D. J. Power Sources, 2009, 189: 72-80
[54] Mazouzi D, Lestriez B, Roué L, Guyomard D. Electrochem. Solid-State Lett., 2009, 12: A215-A218
[55] Bridel J S, Azaïs T, Morcrette M, Tarascon J M, Larcher D. Chem. Mater., 2010, 22: 1229-1241
[56] Beattie S D, Larcher D, Morcrette M, Simon B, Tarascon J M. J. Electrochem. Soc., 2008, 155: A158-A163
[57] Guo J, Wang C. Chem. Commun., 2010, 46: 1428-1430
[58] Guo J, Chen X, Wang C. J. Mater. Chem., 2010, 20: 5035-5040
[59] Jeong G, Lee S M, Choi N S, Kim Y U, Lee C K. Electrochim. Acta, 2011, 56: 5095-5101
[60] Li C C, Lee J T, Peng X W. J. Electrochem. Soc., 2006, 153: A809-A815
[61] Lee J H, Paik U, Hackley V A, Choi Y M. J. Power Sources, 2006, 161: 612-616
[62] Cai Z P, Liang Y, Li W S, Xing L D, Liao Y H. J. Power Sources, 2009, 189: 547-551
[63] Ui K, Kikuchi S, Mikami F, Kadoma Y, Kumagai N. J. Power Sources, 2007, 173: 518-521
[64] Komaba S, Ozeki T, Okushi K. J. Power Sources, 2009, 189: 197-203
[65] Komaba S, Okushi K, Ozeki T, Yui H, Katayama Y, Miura T, Saito T, Groulte H. Electrochem. Solid-State Lett., 2009, 12: A107-A110
[66] Komaba S, Yabuuchi N, Ozeki T, Okushi K, Yui H, Konno K, Katayama Y, Miura T. J. Power Sources, 2010, 195: 6069-6074
[67] Chong J, Xun S, Zheng H, Song X, Liu G, Ridgway P, Wang J Q, Battaglia V S. J. Power Sources, 2011, 196: 7707-7714
[68] Ui K, Towada J, Agatsuma S, Kumagai N, Yamamoto K, Haruyama H, Takeuchi K, Koura N. J. Power Sources, 2011, 196: 3900-3905
[69] Lee J T, Chu Y J, Peng X W, Wang F M, Yang C R, Li C C. J. Power Sources, 2007, 173: 985-989
[70] Li C C, Peng X W, Lee J T, Wang F M. J. Electrochem. Soc., 2010, 157: A517-A520
[71] Chen L, Xie X, Xie J, Wang K, Yang J. J. Appl. Electrochem., 2006, 36: 1099-1104
[72] Li J, Le D B, Ferguson P P, Dahn J R. Electrochim. Acta, 2010, 55: 2991-2995
[73] Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner C F, Fuller T F, Luzinov I, Yushin G. ACS Appl. Mater. Interfaces, 2010, 2: 3004-3010
[74] Komaba S, Ozeki T, Yabuuchi N, Chimomura K. Electrochemistry, 2011, 79: 6-9
[75] Komaba S, Yabuuchi N, Ozeki T, Han Z J, Shimomura K, Yui H, Katayama Y, Miura T. J. Phys. Chem. C, 2012, 116: 1380-1389
[76] Komaba S, Shimomura K, Yabuuchi N, Ozeki T, Yui H, Konno K. J. Phys. Chem. C, 2011, 115: 13487-13495
[77] Han Z J, Yabuuchi N, Shimomura K, Murase M, Yui H, Komab S. Energy & Environ. Sci., 2012, 5: 9014-9020
[78] Koo B, Kim H, Cho Y, Lee K T, Choi N S, Cho J. Angew. Chem. Int. Ed., 2012, 51: 8762-8767
[79] Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G. Science, 2011, 334: 75-79
[80] 张晓丽(Zhang X L), 李素芝(Li S Z), 仇晓阳(Qiu X Y). 应用化工(Applied Chemical Industry), 2012, 41(2): 263-265
[81] Chockla A M, Bogart T D, Hessel C M, Klavetter K C, Mullins C B, Korgel B A. J. Phys. Chem. C, 2012, 116: 18079-18086
[82] Chockla A M, Klavetter K C, Mullins C B, Korgel B A. Chem. Mater., 2012, 24: 3738-3745
[83] Ge M Y, Rong J P, Fang X, Zhou C W. Nano Lett., 2012, 12: 2318-2323
[84] Zhao X Y, Cao M H, Hu C W. RSC Adv., 2012, 2: 11737-11742
[85] Kang W P, Zhao C H, Shen Q. Int. J. Electrochem. Sci., 2012, 7: 8194-8204
[86] Wang Z Y, Madhavi S, Lou X W. J. Phys. Chem. C, 2012, 116: 12508-12513
[87] Li J X, Zhao Y, Wang N, Ding Y H, Guan L H. J. Mater. Chem., 2012, 22: 13002-13004
[88] Choi N S, Yew K H, Choi W U, Kim S S. J. Power Sources, 2008, 177: 590-594
[89] Garsuch R R, Le D B, Garsuch A, Li J, Wang S, Farooq A, Dahn J R. J. Electrochem. Soc., 2008, 155: A721-A724
[90] Park H K, Kong B S, Oh E S. Electrochem. Commun., 2011, 13: 1051-1053
[91] Liu G, Xun S, Vukmirovic N, Song X, Olalde-Velasco P, Zheng H, Battaglia V S, Wang L, Yang W. Adv. Mater., 2011, 23: 4679-4683
[1] Changhuan Zhang, Nianwu Li, Xiuqin Zhang. Electrode Materials for Flexible Lithium-Ion Battery [J]. Progress in Chemistry, 2021, 33(4): 633-648.
[2] Wei Zhang, Xiaopeng Qi, Sheng Fang, Jianhua Zhang, Bimeng Shi, Juanyu Yang. Effects of Carbon on Silicon-Carbon Composites in Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 454-466.
[3] Zhimin Jiang, Li Wang, Min Shen, Huichuang Chen, Guoqiang Ma, Xiangming He. Electrolyte Additives for Interfacial Modification of Cathodes in Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(5): 699-713.
[4] Yun Zhao, Yuqiong Kang, Yuhong Jin, Li Wang, Guangyu Tian, Xiangming He. Silicon-Based and -Related Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2019, 31(4): 613-630.
[5] Zhenjie Li, Du Zhong, Jie Zhang, Jinwei Chen, Gang Wang, Ruilin Wang. Silicon Nanoparticles/Carbon Composites for Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(1): 201-209.
[6] Jiao Lin, Chunwei Liu, Hongbin Cao, Li Li, Renjie Chen, Zhi Sun. Recovery of Spent Lithium Ion Batteries Based on High Temperature Chemical Conversion [J]. Progress in Chemistry, 2018, 30(9): 1445-1454.
[7] Shuaijin Wu, Juanyu Yang, Bing Yu, Sheng Fang, Zhaohui Wu, Bimeng Shi. Nano/Micro Structured Silicon-Based Negative Materials [J]. Progress in Chemistry, 2018, 30(2/3): 272-285.
[8] Ma Guoqiang, Wang Li, Zhang Janjun, Chen Huichuang, He Xiangming, Ding Yuansheng. Lithium-Ion Battery Electrolyte Containing Fluorinated Solvent and Additive [J]. Progress in Chemistry, 2016, 28(9): 1299-1312.
[9] Ming Hai, Ming Jun, Qiu Jingyi, Yu Zhongbao, Li Meng, ZhengJunwei. Lithium-Ion Full Batteries Based on the Anode of Non-Metallic Lithium [J]. Progress in Chemistry, 2016, 28(2/3): 204-218.
[10] Niu Jin, Zhang Su, Niu Yue, Song Huaihe, Chen Xiaohong, Zhou Jisheng. Silicon-Based Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2015, 27(9): 1275-1290.
[11] Wang Qian, Zhang Jingze, Lou Yuwan, Xia Baojia. Characteristic of Gas Evolution in Lithium-Ion Batteries Using An Anode Based on Lithium Titanate [J]. Progress in Chemistry, 2014, 26(11): 1772-1780.
[12] Li Jian, Guan Yibiao, Fu Kai, Su Yuefeng, Bao Liying, Wu Feng. Applications of Carbon Nanotubes and Graphene in the Energy Storage Batteries [J]. Progress in Chemistry, 2014, 26(07): 1233-1243.
[13] Bai Ying, Li Yu, Zhong Yunxia, Chen Shi, Wu Feng, Wu Chuan. Li-Rich Transition Metal Oxide xLi2MnO3·(1-x)LiMO2 (M=Ni, Co or Mn) for Lithium Ion Batteries [J]. Progress in Chemistry, 2014, 26(0203): 259-269.
[14] Gong Xue, Yang Jinlong, Jiang Yulin, Mu Shichun. Application of Electrospinning Technique in Power Lithium-Ion Batteries [J]. Progress in Chemistry, 2014, 26(01): 41-47.
[15] Chen Xu, He Daping, Mu Shichun. Nitrogen-Doped Graphene [J]. Progress in Chemistry, 2013, 25(08): 1292-1301.