中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (9): 1586-1597 DOI: 10.7536/PC200831 Previous Articles   Next Articles

• Review •

Thermodynamics and Kinetics Tuning of LiBH4 for Hydrogen Storage

Zhao Ding1,2, Weijie Yang3(), Kaifu Huo1(), Leon Shaw2   

  1. 1 The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology,Wuhan 430081, China
    2 Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago 60616,U.S.A.
    3 School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China
  • Received: Revised: Online: Published:
  • Contact: Weijie Yang, Kaifu Huo
  • Supported by:
    U.S. National Science Foundation(CMMI-1261782)
Richhtml ( 54 ) PDF ( 750 ) Cited
Export

EndNote

Ris

BibTeX

To meet the challenge of energy shortage and climate change, it is required to build the new renewable energy based structure and gradually abandon the conventional fossil fuel based energy structure. Hydrogen energy has attracted more and more attention, due to its high energy density, large calorific value, abundant resource and zero pollution. LiBH4, which has been acknowledged as one of the most promising hydrogen storage alternatives for onboard energy carrier applications, is still not qualified for the industrialization, though it has been studied for years. Herein, a state-of-the-art review on the modification of stable thermodynamics and sluggish kinetics of hydrogen storage in LiBH4, aiming to providing reference and solutions for its promotion and application. Multiple main-stream techniques along with their latest efforts have been discussed, including mechanical milling activation, nanoscaffold confinement, catalyst modification, ions substitution, reactant destabilization and a novel process termed as high-energy ball milling with in-situ aerosol spraying (BMAS). Remarkable, BMAS is the technology of proven ability to overcome the kinetic barriers for thermodynamically favorable systems like LiBH4 + MgH2 mixture and provide thermodynamic driving force to enhance hydrogen release at a lower temperature.

Contents

Contents

1 Introduction

2 Thermodynamical tuning of LiBH4

2.1 Cation/anion substitution

2.2 Reactant destabilization

3 Kinetics tuning of LiBH4

3.1 Mechanical milling activation

3.2 Nanoscaffold confinement by the infiltration approach

3.3 Modification by doping catalysts

4 Dual-tuning thermodynamics and kinetics of LiBH4

5 Conclusion and outlook

Fig. 1 Crystal structures of (a) LiZn2(BH4)5 and (b) NaZn(BH4)3[15]. Zn blue, B brown, M dark gray (M=Li, Na), H light gray
Fig.2 (a) Crystal structure of the novel compounds LiLa(BH4)3Cl and LiGd(BH4)3Cl (b) Isolated tetranuclear anionic clusters [M4Cl4(BH4)12]4- (M = La or Gd) with a distorted cubane M4Cl4 core[20]
Fig.3 Enthalpy diagram of LiBH4, MgH2 and LiBH4/MgH2 system[7]
Fig.4 (a) Schematic illustration of the fabrication procedure of MCHSs, (b) SEM and (c) TEM images[64]
Fig.5 Schematic illustration of dehydrogenation and rehydrogenation mechanism of SiB4 catalyzed LiBH4[68] (b)
Fig.6 (a) Isothermal dehydrogenation and (b) hydrogenation curves of the LiBH4-0.04(Li3BO3 + NbH) system and the pristine LiBH4 at different temperatures[73]
Fig. 7 (a) Schematic of the automated BMAS device and (b) its operation flow-chart where “1” means “on” and “0” means “off” on the Y axis[77]
Fig.8 SEM images of LiBH4 particles generated via aerosol spraying of the LiBH4/THF solution using the TSI aerosol generator. (a) A general view and (b) a closer view[78]
Fig.9 FESEM images of (a) BMAS sample and (b) 6R sample; (c) Comparisons of dehydrogenation and re-hydrogenation behaviors of the BMAS mixtures for six cycles[77]
Fig.10 (a) The dissociation pressure for BMAS sample at 265 ℃ in comparison with the dissociation pressure of bulk MgH2 and LiBH4; (b) Kissinger plots of the bulk LiBH4, ball-milled MgH2+C, and BMAS powder with 50% LiBH4[94]
[1]
Path to Hydrogen Competitiveness A Cost Perspective 2020. [2020-06-10]. https://hydrogencouncil.com/wp-content/uploads/2020/01/Path-to-Hydrogen-Competitiveness_Full-Study-1.pdf. 2020.
[2]
[2020-06-10]. https://www.gg-fc.com/art-39735.html. 2020.
[3]
[2020-06-10]. https://jcpage.jp/f19/01_hydrogen/01_hydrogen_06_guanghe_huang_cn.pdf?1575796716755. 2019.
[4]
Soulié J P, Renaudin G, Černý R, Yvon K. J. Alloys Compd., 2002, 346(1/2): 200.

doi: 10.1016/S0925-8388(02)00521-2
[5]
Ding Z, Li S Y, Zhou Y, Chen Z Q, Yang W J, Ma W H, Shaw L. Nano Mater. Sci., 2020, 2(2): 109.
[6]
Ding Z, Chen Z Q, Ma T Y, Lu C T, Ma W H, Shaw L. Energy Storage Mater., 2020, 27: 466.
[7]
Vajo J J, Skeith S L, Mertens F. J. Phys. Chem. B, 2005, 109(9): 3719.

doi: 10.1021/jp040769o
[8]
Züttel A, Rentsch S, Fischer P, Wenger P, Sudan P, Mauron P, Emmenegger C. J. Alloys Compd., 2003, 356/357: 515.

doi: 10.1016/S0925-8388(02)01253-7
[9]
Züttel A. Mater. Today, 2003, 6(9): 24.
[10]
Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles. [2020-06-10]. https://www.energy.gov/sites/prod/files/2017/05/f34/fcto_targets_onboard_hydro_storage_explanation.pdf.
[11]
Matsunaga T, Buchter F, Miwa K, Towata S, Orimo S, Züttel A. Renew. Energy, 2008, 33(2): 193.

doi: 10.1016/j.renene.2007.05.004
[12]
Nakamori Y, Miwa K, Ninomiya A, Li H W, Ohba N, Towata S I, Züttel A, Orimo S I. Phys. Rev. B, 2006, 74(4): 045126.

doi: 10.1103/PhysRevB.74.045126
[13]
Miwa K, Ohba N, Towata S, Nakamori Y, Orimo S. J. Alloys Compd., 2005, 404/406: 140.

doi: 10.1016/j.jallcom.2004.09.090
[14]
Nakamori Y, Orimo S I. J. Alloys Compd., 2004, 370(1/2): 271.

doi: 10.1016/j.jallcom.2003.08.089
[15]
Ravnsbæk D, Filinchuk Y, Cerenius Y, Jakobsen H, Besenbacher F, Skibsted J, Jensen T. Angew. Chem. Int. Ed., 2009, 48(36): 6659.

doi: 10.1002/anie.v48:36
[16]
Bai Y, Pei Z W, Wu F, Wu C. ACS Appl. Mater. Interfaces, 2018, 10(11): 9514.

doi: 10.1021/acsami.8b01529
[17]
Corno M, Pinatel E, Ugliengo P, Baricco M. J. Alloys Compd., 2011, 509: S679.

doi: 10.1016/j.jallcom.2010.10.005
[18]
Yin L C, Wang P, Fang Z Z, Cheng H M. Chem. Phys. Lett., 2008, 450(4/6): 318.

doi: 10.1016/j.cplett.2007.11.060
[19]
Huang Z N, Wang Y Q, Wang D, Yang F S, Wu Z, Zheng L, Han X L, Wu L, Zhang Z X. J. Phys. Chem. C, 2019, 123(3): 1550.

doi: 10.1021/acs.jpcc.8b08198
[20]
Ley M B, Boulineau S, Janot R, Filinchuk Y, Jensen T R. J. Phys. Chem. C, 2012, 116(40): 21267.

doi: 10.1021/jp307762g
[21]
Frommen C, Sørby M H, Ravindran P, Vajeeston P, Fjellvåg H, Hauback B C. J. Phys. Chem. C, 2011, 115(47): 23591.

doi: 10.1021/jp205105j
[22]
Rude L H, Filinchuk Y, Sørby M H, Hauback B C, Besenbacher F, Jensen T R. J. Phys. Chem. C, 2011, 115(15): 7768.

doi: 10.1021/jp111473d
[23]
Černý R, Ravnsbæk D B, Schouwink P, Filinchuk Y, Penin N, Teyssier J, Smrčok L, Jensen T R. J. Phys. Chem. C, 2012, 116(1): 1563.

doi: 10.1021/jp209848r
[24]
Bösenberg U, Doppiu S, Mosegaard L, Barkhordarian G, Eigen N, Borgschulte A, Jensen T R, Cerenius Y, Gutfleisch O, Klassen T, Dornheim M, Bormann R. Acta Mater., 2007, 55(11): 3951.

doi: 10.1016/j.actamat.2007.03.010
[25]
Walker G S, Grant D M, Price T C, Yu X B, Legrand V. J. Power Sources, 2009, 194(2): 1128.

doi: 10.1016/j.jpowsour.2009.06.075
[26]
Pinkerton F E, Meyer M S, Meisner G P, Balogh M P, Vajo J J. J. Phys. Chem. C, 2007, 111(35): 12881.

doi: 10.1021/jp0742867
[27]
Ohba N, Miwa K, Aoki M, Noritake T, Towata S, Nakamori Y, Orimo S, Züttel A. Phys. Rev. B, 2006, 74: 075110.

doi: 10.1103/PhysRevB.74.075110
[28]
Orimo S I, Nakamori Y, Ohba N, Miwa K, Aoki M, Towata S I, Züttel A. Appl. Phys. Lett., 2006, 89(2): 021920.

doi: 10.1063/1.2221880
[29]
Ozolins V, Majzoub E H, Wolverton C. J. Am. Chem. Soc., 2009, 131(1): 230.

doi: 10.1021/ja8066429 pmid: 19072157
[30]
Pinkerton F E, Meyer M S. J. Alloys Compd., 2008, 464(1/2): L1.

doi: 10.1016/j.jallcom.2007.09.125
[31]
Barkhordarian G, Klassen T, Dornheim M, Bormann R. J. Alloys Compd., 2007, 440(1/2): L18.

doi: 10.1016/j.jallcom.2006.09.048
[32]
Liu D, Yang J, Ni J, Drews A. J. Alloys Compd., 2012, 514: 103.

doi: 10.1016/j.jallcom.2011.11.009
[33]
Lim J H, Shim J H, Lee Y S, Cho Y W, Lee J. Scr. Mater., 2008, 59(12): 1251.

doi: 10.1016/j.scriptamat.2008.08.037
[34]
Lim J H, Shim J H, Lee Y S, Suh J Y, Cho Y W, Lee J. Int. J. Hydrog. Energy, 2010, 35(13): 6578.

doi: 10.1016/j.ijhydene.2010.04.046
[35]
Jiang K, Xiao X Z, Chen L X, Han L Y, Li S Q, Ge H W, Wang Q D. J. Alloys Compd., 2012, 539: 103.

doi: 10.1016/j.jallcom.2012.06.039
[36]
Alapati S V, Johnson J K, Sholl D S. J. Alloys Compd., 2007, 446/447: 23.

doi: 10.1016/j.jallcom.2006.10.166
[37]
Purewal J, Hwang S J, Bowman R C, Rönnebro E, Fultz B, Ahn C. J. Phys. Chem. C, 2008, 112(22): 8481.

doi: 10.1021/jp800486n
[38]
Orimo S, Fujii H, Ikeda K. Acta Mater., 1997, 45(1): 331.

doi: 10.1016/S1359-6454(96)00158-9
[39]
Yu X B, Grant D M, Walker G S. Chem. Commun., 2006(37): 3906.
[40]
Orimo S I, Fujii H. Intermetallics, 1998, 6(3): 185.

doi: 10.1016/S0966-9795(97)00064-2
[41]
Gross K J, Chartouni D, Leroy E, Züttel A, Schlapbach L. J. Alloys Compd., 1998, 269(1/2): 259.

doi: 10.1016/S0925-8388(97)00627-0
[42]
Liang G, Boily S, Huot J, van Neste A, Schulz R. J. Alloys Compd., 1998, 267(1/2): 302.

doi: 10.1016/S0925-8388(97)00533-1
[43]
Nakagawa T, Ichikawa T, Hanada N, Kojima Y, Fujii H. J. Alloys Compd., 2007, 446/447: 306.

doi: 10.1016/j.jallcom.2007.02.097
[44]
Vajo J J, Salguero T T, Gross A F, Skeith S L, Olson G L. J. Alloys Compd., 2007, 446/447: 409.

doi: 10.1016/j.jallcom.2007.02.080
[45]
Au M, Jurgensen A. J. Phys. Chem. B, 2006, 110(13): 7062.

doi: 10.1021/jp056240o
[46]
Kostka J, Lohstroh W, Fichtner M, Hahn H. J. Phys. Chem. C, 2007, 111(37): 14026.

doi: 10.1021/jp073783k
[47]
Yang J, Sudik A, Wolverton C. J. Phys. Chem. C, 2007, 111(51): 19134.

doi: 10.1021/jp076434z
[48]
Fecht H J, Hellstern E, Fu Z, Johnson W L. Metall. Trans. A, 1990, 21(9): 2333.

doi: 10.1007/BF02646980
[49]
Yang Z G, Shaw L L. Nanostructured Mater., 1996, 7(8): 873.

doi: 10.1016/S0965-9773(96)00058-X
[50]
Koch C C. Nanostructured Mater., 1997, 9(1/8): 13.

doi: 10.1016/S0965-9773(97)00014-7
[51]
Suryanarayana C. Prog. Mater. Sci., 2001, 46(1/2): 1.

doi: 10.1016/S0079-6425(99)00010-9
[52]
Pang Y P, Liu Y F, Gao M X, Ouyang L Z, Liu J W, Wang H, Zhu M, Pan H G. Nat. Commun., 2014, 5(1): 1.
[53]
Lobo N, Takasaki A, Mineo K, Klimkowicz A, Goc K. Int. J. Hydrog. Energy, 2019, 44(55): 29179.

doi: 10.1016/j.ijhydene.2019.02.191
[54]
Agresti F, Khandelwal A. Scr. Mater., 2009, 60(9): 753.

doi: 10.1016/j.scriptamat.2009.01.010
[55]
Çakanyıldırım Ç, Gürü M. Renew. Energy, 2008, 33(11): 2388.

doi: 10.1016/j.renene.2008.01.015
[56]
Guo L L, Li Y, Ma Y F, Liu Y, Peng D D, Zhang L, Han S M. Int. J. Hydrog. Energy, 2017, 42(4): 2215.

doi: 10.1016/j.ijhydene.2016.11.184
[57]
Sun T, Liu J, Jia Y, Wang H, Sun D L, Zhu M, Yao X D. Int. J. Hydrog. Energy, 2012, 37(24): 18920.

doi: 10.1016/j.ijhydene.2012.09.119
[58]
Gross A F, Vajo J J, van Atta S L, Olson G L. J. Phys. Chem. C, 2008, 112(14): 5651.

doi: 10.1021/jp711066t
[59]
Vajo J J, Olson G L. Scr. Mater., 2007, 56(10): 829.

doi: 10.1016/j.scriptamat.2007.01.002
[60]
Javadian P, Zlotea C, Ghimbeu C M, Latroche M, Jensen T R. J. Phys. Chem. C, 2015, 119(11): 5819.

doi: 10.1021/jp5117307
[61]
Shao J, Xiao X Z, Fan X L, Huang X, Zhai B, Li S Q, Ge H W, Wang Q D, Chen L X. Nano Energy, 2015, 15: 244.

doi: 10.1016/j.nanoen.2015.04.023
[62]
Zang L, Sun W Y, Liu S, Huang Y K, Yuan H T, Tao Z L, Wang Y J. ACS Appl. Mater. Interfaces, 2018, 10(23): 19598.

doi: 10.1021/acsami.8b02327
[63]
Wang S, Gao M X, Xian K C, Li Z L, Shen Y, Yao Z H, Liu Y F, Pan H G. ACS Appl. Energy Mater., 2020, 3(4): 3928.

doi: 10.1021/acsaem.0c00325
[64]
Wu R Y, Zhang X, Liu Y F, Zhang L C, Hu J J, Gao M X, Pan H G. Small, 2020, 16(32): 2001963.

doi: 10.1002/smll.v16.32
[65]
Mosegaard L, Møller B, Jørgensen J E, Filinchuk Y, Cerenius Y, Hanson J C, Dimasi E, Besenbacher F, Jensen T R. J. Phys. Chem. C, 2008, 112(4): 1299.

doi: 10.1021/jp076999v
[66]
Zang L, Zhang Q Y, Li L, Huang Y K, Chang X Y, Jiao L F, Yuan H T, Wang Y J. Chem. Asian J., 2018, 13(1): 99.

doi: 10.1002/asia.201701524
[67]
Cai W T, Wang H, Liu J W, Jiao L F, Wang Y J, Ouyang L Z, Sun T, Sun D L, Wang H H, Yao X D, Zhu M. Nano Energy, 2014, 10: 235.

doi: 10.1016/j.nanoen.2014.09.001
[68]
Cai W T, Yang Y Z, Tao P J, Ouyang L Z, Wang H, Yang X S. Dalton Trans., 2019, 48(4): 1314.

doi: 10.1039/C8DT04720K
[69]
Dolotko O, Gupta S, Kobayashi T, McDonald E, Hlova I, Majzoub E, Balema V P, Pruski M, Pecharsky V K. Int. J. Hydrog. Energy, 2019, 44(14): 7381.

doi: 10.1016/j.ijhydene.2019.01.211
[70]
He T, Wu H, Wu G T, Wang J H, Zhou W, Xiong Z T, Chen J E, Zhang T, Chen P. Energy Environ. Sci., 2012, 5(2): 5686.

doi: 10.1039/C2EE03205H
[71]
Pinkerton F E, Meisner G P, Meyer M S, Balogh M P, Kundrat M D. J. Phys. Chem. B, 2005, 109(1): 6.

doi: 10.1021/jp0455475
[72]
Wang H, Cao H, Zhang W, Chen J, Wu H, Pistidda C, Ju X, Zhou W, Wu G, Etter M, Chem. Eur. J. 2018, 24, 1342.

doi: 10.1002/chem.v24.6
[73]
Li Z L, Gao M X, Gu J, Xian K C, Yao Z H, Shang C X, Liu Y F, Guo Z X, Pan H G. ACS Appl. Mater. Interfaces, 2020, 12(1): 893.

doi: 10.1021/acsami.9b19287
[74]
Zhu J, Mao Y, Wang H, Liu J, Ouyang L, Zhu M, ACS Appl. Energy Mater. 2020, 3(12): 11964.

doi: 10.1021/acsaem.0c02140
[75]
Wan X F, Shaw L L. Acta Mater., 2011, 59(11): 4606.

doi: 10.1016/j.actamat.2011.04.006
[76]
Zhong Y, Wan X F, Ding Z, Shaw L L. Int. J. Hydrog. Energy, 2016, 41(47): 22104.

doi: 10.1016/j.ijhydene.2016.09.195
[77]
Ding Z, Lu Y, Li L, Shaw L. Energy Storage Mater., 2019, 20: 24.
[78]
Ding Z, Zhao X Z, Shaw L L. J. Power Sources, 2015, 293: 236.

doi: 10.1016/j.jpowsour.2015.05.079
[79]
Ding Z, Li H, Shaw L. Chem. Eng. J., 2020, 385: 123856.

doi: 10.1016/j.cej.2019.123856
[80]
Crosby K, Shaw L L. Int. J. Hydrog. Energy, 2010, 35(14): 7519.

doi: 10.1016/j.ijhydene.2010.04.124
[81]
Davis R M, McDermott B, Koch C C. Metall. Trans. A, 1988, 19(12): 2867.

doi: 10.1007/BF02647712
[82]
Bhattacharya A K, Arzt E. Scr. Metall. Et Mater., 1992, 27(6): 749.

doi: 10.1016/0956-716X(92)90500-E
[83]
Deprez E, Muñoz-Márquez M A, Roldán M A, Prestipino C, Palomares F J, Minella C B, Bösenberg U, Dornheim M, Bormann R, Fernández A. J. Phys. Chem. C, 2010, 114(7): 3309.

doi: 10.1021/jp910955r
[84]
Zeng L, Miyaoka H, Ichikawa T, Kojima Y. J. Phys. Chem. C, 2010, 114(30): 13132.

doi: 10.1021/jp1042443
[85]
Weng B C, Yu X B, Wu Z, Li Z L, Huang T S, Xu N X, Ni J. J. Alloys Compd., 2010, 503(2): 345.

doi: 10.1016/j.jallcom.2009.11.059
[86]
Crosby K, Wan X F, Shaw L L. J. Power Sources, 2010, 195(21): 7380.

doi: 10.1016/j.jpowsour.2010.05.052
[87]
Price T E C, Grant D M, Legrand V, Walker G S. Int. J. Hydrog. Energy, 2010, 35(9): 4154.

doi: 10.1016/j.ijhydene.2010.02.082
[88]
Bösenberg U, Kim J W, Gosslar D, Eigen N, Jensen T R, von Colbe J M B, Zhou Y, Dahms M, Kim D H, Günther R. Acta Mater., 2010, 58(9): 3381.

doi: 10.1016/j.actamat.2010.02.012
[89]
Wan X F, Markmaitree T, Osborn W, Shaw L L. J. Phys. Chem. C, 2008, 112(46): 18232.

doi: 10.1021/jp8033159
[90]
Ding Z, Wu P K, Shaw L. J. Alloys Compd., 2019, 806: 350.

doi: 10.1016/j.jallcom.2019.07.218
[91]
Ding Z, Li H, Yan G, Yang W J, Gao Z Y, Ma W H, Shaw L. Chem. Commun., 2020, 56(91): 14235.

doi: 10.1039/D0CC03741A
[92]
Hao S Q, Sholl D S. J. Chem. Phys., 2009, 130(24): 244705.

doi: 10.1063/1.3158619
[93]
Hao S Q, Widom M, Sholl D S. J. Phys.: Condens. Matter, 2009, 21(11): 115402.
[94]
Ding Z, Shaw L. ACS Sustainable Chem. Eng., 2019, 7(17): 15064.

doi: 10.1021/acssuschemeng.9b03724
[95]
Fang Z Z, Kang X D, Wang P, Li H W, Orimo S I. J. Alloys Compd., 2010, 491(1/2): L1.

doi: 10.1016/j.jallcom.2009.10.149
[96]
Lee J Y, Ravnsbæk D, Lee Y S, Kim Y, Cerenius Y, Shim J H, Jensen T R, Hur N H, Cho Y W. J. Phys. Chem. C, 2009, 113(33): 15080.

doi: 10.1021/jp904400b
[97]
Soloveichik G L, Gao Y, Rijssenbeek J, Andrus M, Kniajanski S, Bowman R C, Hwang S J, Zhao J C. Int. J. Hydrog. Energy, 2009, 34(2): 916.

doi: 10.1016/j.ijhydene.2008.11.016
[98]
Rönnebro E, Majzoub E H. J. Phys. Chem. B, 2007, 111(42): 12045.

doi: 10.1021/jp0764541
[1] Tingting Gu, Jian Gu, Yu Zhang, Hua Ren. Metal Borohydride-Based System for Solid-State Hydrogen Storage [J]. Progress in Chemistry, 2020, 32(5): 665-686.
[2] Li Chao, Fan Meiqiang, Chen Haichao, Chen Da, Tian Guanglei, Shu Kangying. Thermodynamics and Kinetics Modifications on the Li-Mg-N-H Hydrogen Storage System [J]. Progress in Chemistry, 2016, 28(12): 1788-1797.
[3] Li Xue, Zhang Yifang, Qi Weihong, Cao Xiaowu, Wang Yuan, Li Haohua. Hydrogen Storage Nanoalloys [J]. Progress in Chemistry, 2013, 25(07): 1122-1130.
[4] Xu Shujun, Liang Liyun, Li Buyi, Luo Yali, Liu Chengmei, Tan Bien. Research Progress on Microporous Organic Polymers [J]. Progress in Chemistry, 2011, 23(10): 2085-2094.
[5] Huang Yucheng Li Zhe Kang Guojun Chen Zhaoxu. Theoretical Chemistry and New Energy Sources [J]. Progress in Chemistry, 2009, 21(11): 2271-2284.