中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (9): 1896-1910 DOI: 10.7536/PC211028 Previous Articles   Next Articles

• Review •

Preparation and Application of Palladium-Copper Nano Electrocatalysts

Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu()   

  1. College of Material Science and Engineering, Shenzhen University, Shenzhen 518055, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: xz.fu@szu.edu.cn
  • Supported by:
    Shenzhen Science and Technology Program(JCYJ20200109110416441)
Richhtml ( 97 ) PDF ( 1733 ) Cited
Export

EndNote

Ris

BibTeX

Nanomaterials that contain noble metal palladium are kinds of electrocatalytic materials which have excellent properties. Among them, Pd-Cu binary materials have attracted much attention in recent years due to their low cost and high activity. The introduction of Cu not only reduces the amount of Pd, but also causes ligand effect, stress effect, aggregation effect and so on, which provides a variety of ways to optimize the electrocatalytic performance. Constructing special morphology and structure can make the catalyst expose more active sites to increase the electrochemical active surface area and improve the electrocatalytic performance. In addition, the adjustment of Pd-Cu component or the construction of composite structure can adjust the d-band center, thereby optimizing the electrode interface adsorption energy, and finally enhancing activity and improving stability. This review summarizes some preparation methods of Cu-Pd nano electrocatalysts with different structures, such as spherical particles, porous structure, branched structure, hollow nanocage, core-shell structure and single atom. In addition, the application of Cu-Pd nano electrocatalysts in organic small molecule oxidation (such as methanol, ethanol, formic acid oxidation), inorganic small molecule reduction (such as oxygen reduction, carbon dioxide reduction) and electroless copper plating is also summarized. Finally, the development prospect of Cu-Pd nano electrocatalyst is presented.

Contents

1 Introduction

2 Structure and preparation of Pd-Cu nano electrocatalyst

2.1 Porous structure

2.2 Branched structure

2.3 Hollow structure nanocages

2.4 Core-shell structure

2.5 Spherical nanoparticles

2.6 Pd-Cu single atom dispersion electrocatalysts

3 Application of Pd-Cu nano electrocatalysts in oxidation of small organic molecules

3.1 Methanol oxidation reaction (MOR)

3.2 Ethanol oxidation reaction (EOR)

3.3 Formic acid oxidation reaction (FAOR)

3.4 Glucose oxidation reaction

4 Application of Pd-Cu nano electrocatalyst in reduction of inorganic small molecule

4.1 Oxygen reduction reaction (ORR)

4.2 CO2 reduction reaction

4.3 Reduction of N2 to ammonia, reduction of N2O and hydrogen evolution reaction (HER)

5 Application of Pd-Cu nano electrocatalyst in electroless copper plating

6 Conclusion and prospect

Fig.1 SEM image (a) and XRD patterns (b) of PdCu alloy with porous structure[19]
Fig.2 (a) Structure diagram of PdCu/VrGO. (b) XRD patterns of NPC and nanotubular mesoporous PdCu bimetallic electrocatalysts; (c) TEM image of nanotubular mesoporous PdCu bimetallic electrocatalysts[29]
Fig. 3 XRD (a) and TEM (b) images of PdCu alloy nanodendrites[31]
Fig. 4 Schematic illustration of the formation process for bowl-like, apple-like, and spherical PdCu alloy hollow microparticles[13]
Fig. 5 SEM images of apple-like (a), bowl-like (b) PdCu alloy hollow microparticles[13]. SEM (c) and TEM (d) images of porous octahedral PdCu nanocages[32]. SEM (e) and TEM (f) images of PdCu alloy flower-like Nanocages[33]
Fig. 6 TEM images and particle size distribution histogram ofCGCu1Pd1 NS/C-HT (a) andCGCu1Pd1@PtML NS/C-HT (b); (c) Schematic illustration of the formation process forCGCu1Pd1@PtML NS/C-HT[1]
Fig. 7 (a) Schematic illustration of the formation process for PdCu/rGO; (b) TEM image of PdCu/rGO[44]
Fig. 8 (a) HAADF-STEM image of Cu5Pd/Al2O3; (b) Size distribution of the nanoparticles; (c) Elemental map of the Pd + Cu overlayer, as acquired by EDS; (d) High-resolution image of a single nanoparticle[48]
Fig. 9 (a) Schematic illustration of direct methanol fuel cell[9]; CV curves (b) and histogram of specific and mass activities (c) of IL/PdCu and Pd/C with different atomic ratios in 1 mol/L KOH containing 1 mol/L methanol[9]
Fig. 10 (A) TEM image of oxide-rich Pd0.9Cu0.1/C. (B) Linear sweep voltammetry (LSV) curves of: (a) Pd/C; (b) oxide-rich Pd0.6Cu0.4/C; (c) oxide-rich Pd0.7Cu0.3/C; (d) oxide-rich Pd0.8Cu0.2/C; (e) oxide-rich Pd0.9Cu0.1/C; and (f) oxide-rich Pd0.95Cu0.05/C in deaerated 1 M NaOH containing 1 M C2H5OH. Scan rate: 10 mV/s[50]
Fig. 11 CV curves (a) and i-t curves (b) of PdCu with different ratios in formic acid[19]
Fig. 12 TEM image and CV curves in formic acid of monodisperse PdCu alloy nanocatalysts with different ratios[28]
Fig. 13 (a) SEM image of the urchin-like Pd@CuO-Pd yolk-shell nanocompositions; (b) CV curves of the modified electrodes in N2-saturated 0.1 mol/L KOH solution in the presence of 3 mmol/L glucose at a scan rate of 100 mV/s[59]
Fig. 14 TEM (a) and HRTEM (b) images of Pd-Cu4/C. RDE curves (c) and CV curves (d) of Pd-Cu/C electrocatalyst before (the dashed lines) and after (the solid lines) ADTs for 1000 cycles[41]
Fig. 15 (a) Schematic illustration of Pd/Cu alloy; (b) d-Band center shifts for Pd and Cu surface atoms in alloy particles with respect to the pure Pd and Cu particles[62]
Fig. 16 Representative ORR electrocatalytic activity (shown in both Tafel plot and bar chart) of the five electrocatalysts in O2-saturated 0.1 mol/L (a and b) KOH and (c and d) HClO4 solutions[1]
Fig. 17 (a) TEM image of Cu-Pd-0.3; (b) the CO and H2 Faradaic efficiency at a fixed potential of -0.87 V[14]
Fig. 18 (a) Atomic-resolution HAADF-STEM image; (b) Magnified atomic-resolution HAADF-STEM image of the yellow-frame area in (a). NH3 yield rates (c) and Faradaic efficiencies (d) of PdCu/NC, Pd/NC and Cu/NC[46]
Fig. 19 SEM images of electroless copper plating on FR-4 epoxy substrate that treated by 25 mmol/L Cu@Pd colloid[15]
Fig.20 (a)Images of screen printing and electroless copper plating on A4 paper, and resistance change during bending test[44]; (b) The University of Amsterdam logo plated on a silicon rubber plate[76]
[1]
Luo L X, Fu C H, Shen S Y, Zhu F J, Zhang J L. J. Mater. Chem. A, 2020, 8(42): 22389.

doi: 10.1039/D0TA05905F
[2]
Chen H, Liu J W, Wu X X, Ye C Y, Zhang J J, Luo J L, Fu X Z. Small, 2022, 2204110.
[3]
Ye Y K, Chi B, Jiang S J, Liao S J. Progress in Chemistry, 2019, 31: 1637.
( 叶跃坤, 池滨, 江世杰, 廖世军. 化学进展, 2019, 31: 1637.).

doi: 10.7536/PC1904105
[4]
Nunes M, Fernandes D M, Morales M V, Rodríguez-Ramos I, Guerrero-Ruiz A, Freire C. Catal. Today, 2020, 357: 279.

doi: 10.1016/j.cattod.2019.04.043
[5]
Zhao Q, Wang J, Huang X, Yao Y Y, Zhang W, Shao L D. Electrochem. Commun., 2016, 69: 55.

doi: 10.1016/j.elecom.2016.05.021
[6]
Zhou R, Fan X, Ke X X, Xu J, Zhao X, Jia L, Pan B B, Han N, Li L X, Liu X J, Luo J, Lin H P, Li Y G. Nano Lett., 2021, 21(9): 4092.

doi: 10.1021/acs.nanolett.1c01113
[7]
Zhang G L, Shi Y, Fang Y, Cao D J, Guo S Y, Wang Q, Chen Y Z, Cui P, Cheng S. ACS Appl. Mater. Interfaces, 2021, 13(28): 33147.

doi: 10.1021/acsami.1c08691
[8]
Gawande M B, Goswami A, Felpin F X, Asefa T, Huang X X, Silva R, Zou X X, Zboril R, Varma R S. Chem. Rev., 2016, 116(6): 3722.

doi: 10.1021/acs.chemrev.5b00482 pmid: 26935812
[9]
Wang H J, Zhang S L, Cai W W, Xu B Z, Cai Z X, Wu Y, Luo X, Wei X Q, Liu Z, Gu W L, Eychmüller A, Zhu C Z, Chen J. Mater. Horiz., 2020, 7(9): 2407.

doi: 10.1039/D0MH00646G
[10]
Miyazawa N, Hakamada M, Sato Y, Mabuchi M. J. Mater. Res., 2019, 34(12): 2086.

doi: 10.1557/jmr.2019.154
[11]
Zhang Z H, Zhang C, Sun J Z, Kou T Y, Zhao C C. RSC Adv., 2012, 2(31): 11820.

doi: 10.1039/c2ra21905k
[12]
Liu C, Wu F, Su Q Q, Qian W P. Prog. Chem., 2019, 31(10): 1396.
( 刘畅, 吴峰, 苏倩倩, 钱卫平. 化学进展, 2019, 31(10): 1396.).

doi: 10.7536/PC190323
[13]
Liu S Q, Xu Y T, Xie J Q, Sheng G Q, Zhu Y W, Fu X Z, Sun R, Wong C P. ACS Appl. Energy Mater., 2018, 1(7): 3323.

doi: 10.1021/acsaem.8b00523
[14]
Chen D, Yao Q F, Cui P L, Liu H, Xie J P, Yang J. ACS Appl. Energy Mater., 2018, 1(2): 883.

doi: 10.1021/acsaem.7b00320
[15]
Guo Y. Masteral Dissertation of University of Chinese Academy of Sciences, 2015.
( 郭瑛. 中国科学院大学硕士论文, 2015.).
[16]
Pei G X, Liu X Y, Chai M Q, Wang A Q, Zhang T. Chin. J. Catal., 2017, 38(9): 1540.

doi: 10.1016/S1872-2067(17)62847-X
[17]
Xiao W P, Lei W, Gong M X, Xin H L, Wang D L. ACS Catal., 2018, 8(4): 3237.

doi: 10.1021/acscatal.7b04420
[18]
Jocelyn T L G, Hannah M A, Sara E S, Kallum M K. Adv. Mater., 2018, 30: 1801563.

doi: 10.1002/adma.201801563
[19]
Yan B, Wang C Q, Xu H, Zhang K, Li S M, Du Y K. ChemPlusChem, 2017, 82(8): 1121.

doi: 10.1002/cplu.201700245 pmid: 31957330
[20]
Yang F, Zhang Y, Liu P F, Cui Y, Ge X R, Jing Q S. Int. J. Hydrog. Energy, 2016, 41(16): 6773.

doi: 10.1016/j.ijhydene.2016.02.145
[21]
Serov A, Asset T, Padilla M, Matanovic I, Martinez U, Roy A, Artyushkova K, Chatenet M, Maillard F, Bayer D, Cremers C, Atanassov P. Appl. Catal. B Environ., 2016, 191: 76.

doi: 10.1016/j.apcatb.2016.03.016
[22]
Lv H, Lv F, Qin H Y, Min X W, Sun L Z, Han N, Xu D D, Li Y G, Liu B. CCS Chem., 2022, 4(4): 1376.

doi: 10.31635/ccschem.021.202100958
[23]
Song J L, Zhong H C, Wu H, Xiao Z J, Song H Y, Shu T, Zeng J H. Electrocatalysis, 2021, 12(2): 117.

doi: 10.1007/s12678-020-00632-9
[24]
Kun J, Ye W, Tao L, Wen B C. Journal of Electrochemistry, 2014, 20: 343.
( 蒋昆, 王晔, 林涛, 蔡文斌. 电化学, 2014, 20: 343.).

doi: 10.13208/j.electrochem.131173
[25]
Xie Y X, Li C, Castillo E, Fang J Y, Dimitrov N. Electrochimica Acta, 2021, 385: 138306.

doi: 10.1016/j.electacta.2021.138306
[26]
Yang R Z, Bian W Y, Strasser P, Toney M F. J. Power Sources, 2013, 222: 169.

doi: 10.1016/j.jpowsour.2012.08.064
[27]
Yang L M, Yan D F, Liu C B, Song H J, Tang Y H, Luo S L, Liu M J. J. Power Sources, 2015, 278: 725.

doi: 10.1016/j.jpowsour.2014.12.141
[28]
Park K H, Lee Y W, Kang S W, Han S W. Chem. Asian J., 2011, 6(6): 1515.

doi: 10.1002/asia.201000808
[29]
Xu C X, Zhang Y, Wang L Q, Xu L Q, Bian X F, Ma H Y, Ding Y. Chem. Mater., 2009, 21(14): 3110.

doi: 10.1021/cm900244g
[30]
Yang B, Zhang W Q, Hu S L, Liu C Z, Wang X Q, Fan Y J, Jiang Z, Yang J, Chen W. J. Colloid Interface Sci., 2021, 600: 503.

doi: 10.1016/j.jcis.2021.05.018
[31]
Xiong Y L, Ye W Y, Chen W L, Wu Y W, Xu Q F, Yan Y C, Zhang H, Wu J B, Yang D R. RSC Adv., 2017, 7(10): 5800.

doi: 10.1039/C6RA25900F
[32]
Sheng J L, Kang J H, Ye H Q, Xie J Q, Zhao B, Fu X Z, Yu Y, Sun R, Wong C P. J. Mater. Chem. A, 2018, 6(9): 3906.

doi: 10.1039/C7TA07879J
[33]
Chen Z, He Y C, Chen J H, Fu X Z, Sun R, Chen Y X, Wong C P. J. Phys. Chem. C, 2018, 122(16): 8976.

doi: 10.1021/acs.jpcc.8b01095
[34]
Shi F L, Peng J H, Li F, Qian N K, Shan H, Tao P, Song C Y, Shang W, Deng T, Zhang H, Wu J B. Adv. Mater., 2021, 33(38): 2101511.

doi: 10.1002/adma.202101511
[35]
Takashima T, Suzuki T, Irie H. Electrochimica Acta, 2017, 229: 415.

doi: 10.1016/j.electacta.2017.01.171
[36]
Li S J, Cheng D J, Qiu X G, Cao D P. Electrochimica Acta, 2014, 143: 44.

doi: 10.1016/j.electacta.2014.07.156
[37]
Wang X P, Kariuki N, Vaughey J T, Goodpaster J, Kumar R, Myers D J. J. Electrochem. Soc., 2008, 155(6): B602.

doi: 10.1149/1.2902342
[38]
Kang W D, Wei Y C, Liu C W, Wang K W. Electrochem. Commun., 2011, 13(2): 162.

doi: 10.1016/j.elecom.2010.12.003
[39]
Zhang X, Wu D F, Cheng D J. Electrochimica Acta, 2017, 246: 572.

doi: 10.1016/j.electacta.2017.06.076
[40]
Wang L, Zhai J J, Jiang K, Wang J Q, Cai W B. Int. J. Hydrog. Energy, 2015, 40(4): 1726.

doi: 10.1016/j.ijhydene.2014.11.128
[41]
Gong Q, Gong S P, Zhang T F, Cheng X, Li H Y. J. Electrochem. Soc., 2019, 166(13): F906.

doi: 10.1149/2.1061912jes
[42]
Ye H Q, Mao D S, Yuen M M F, Fu X Z, Sun R, Wong C P. 2017 18th International Conference on Electronic Packaging Technology ( ICEPT). Harbin, China. IEEE,: 835.
[43]
Dong Q, Zhao Y, Han X, Wang Y, Liu M C, Li Y. Int. J. Hydrog. Energy, 2014, 39(27): 14669.

doi: 10.1016/j.ijhydene.2014.06.139
[44]
Ye H Q. Doctoral Dissertation of University of Chinese Academy of Sciences, 2020.
( 叶晃青. 中国科学院大学博士论文, 2020.).
[45]
Chu C H, Huang D H, Gupta S, Weon S, Niu J F, Stavitski E, Muhich C, Kim J H. Nat. Commun., 2021, 12: 5179.

doi: 10.1038/s41467-021-25526-2
[46]
Han L L, Ren Z H, Ou P F, Cheng H, Rui N, Lin L L, Liu X J, Zhuo L C, Song J, Sun J Q, Luo J, Xin H L. Angew. Chem. Int. Ed., 2021, 60(1): 345.

doi: 10.1002/anie.202010159
[47]
Cao X X, Mirjalili A, Wheeler J, Xie W T, Jang B W L. Front. Chem. Sci. Eng., 2015, 9(4): 442.

doi: 10.1007/s11705-015-1547-x
[48]
Xing F L, Jeon J, Toyao T, Shimizu K I, Furukawa S. Chem. Sci., 2019, 10(36): 8292.

doi: 10.1039/C9SC03172C
[49]
Liu C R, Hu S S, Yin L, Yang W L, Yu J, Xu Y M, Li L L, Wang G F, Wang L W. Micromachines, 2021, 12(1): 72.

doi: 10.3390/mi12010072
[50]
Guo Z F, Liu T F, Li W P, Zhang C, Zhang D, Pang Z J. Catalysts, 2016, 6(5): 62.

doi: 10.3390/catal6050062
[51]
Sun L M, Su R G G, Shi L L, Zhang Y J. Chinese Journal of Materials Research, 2018, 32: 669.
( 孙丽美, 苏日古嘎, 石乐乐, 张益佳. 材料研究学报, 2018, 32: 669.).
[52]
Gong Y X, Ma N, Yin Y R, Xue J, Dong C H, Guo P Z. Colloid. Surface. A, 2019, 583: 123909.

doi: 10.1016/j.colsurfa.2019.123909
[53]
Abdel Hameed R M, Fahim A E, Allam N K. J. Mol. Liq., 2020, 297: 111816.

doi: 10.1016/j.molliq.2019.111816
[54]
Chen D, Xu L L, Liu H, Yang J. Green Energy Environ., 2019, 4(3): 254.

doi: 10.1016/j.gee.2018.09.002
[55]
Ji Y Q, Liu J, Liu X N, Yuen M M F, Fu X Z, Yang Y, Sun R, Wong C P. Electrochimica Acta, 2017, 248: 299.

doi: 10.1016/j.electacta.2017.07.100
[56]
Li L, Scott K, Yu E H. J. Power Sources, 2013, 221: 1.

doi: 10.1016/j.jpowsour.2012.08.021
[57]
Chen Z, Zhao B, Fu X Z, Sun R, Wong C P. J. Electroanal. Chem., 2017, 807: 220.

doi: 10.1016/j.jelechem.2017.11.041
[58]
Guo Y, Liu J W, Xu Y T, Zhao B, Wang X W, Fu X Z, Sun R, Wong C P. Sci. Bull., 2019, 64(11): 764.

doi: 10.1016/j.scib.2019.04.025
[59]
Guo Y, Xu Y T, Zhao B, Wang T, Zhang K, Yuen M M F, Fu X Z, Sun R, Wong C P. J. Mater. Chem. A, 2015, 3(26): 13653.

doi: 10.1039/C5TA01891A
[60]
Gobal F, Arab R. J. Electroanal. Chem., 2010, 647(1): 66.

doi: 10.1016/j.jelechem.2010.05.009
[61]
An L J, Zhu M Y, Dai B, Yu F. Electrochimica Acta, 2015, 176: 222.

doi: 10.1016/j.electacta.2015.06.135
[62]
Tang W J, Zhang L, Henkelman G. J. Phys. Chem. Lett., 2011, 2(11): 1328.

doi: 10.1021/jz2004717
[63]
Bampos G, Sygellou L, Bebelis S. Catal. Today, 2020, 355: 685.

doi: 10.1016/j.cattod.2019.06.010
[64]
Jiang K Z, Wang P T, Guo S J, Zhang X, Shen X, Lu G, Su D, Huang X Q. Angew. Chem., 2016, 128(31): 9176.

doi: 10.1002/ange.201603022
[65]
Gunji T K, Noh S H, Ando F, Tanabe T, Han B, Ohsaka T, Matsumoto F. J. Mater. Chem. A, 2018, 6(30): 14828.

doi: 10.1039/C8TA03233E
[66]
Liu J, Fan X F, Sun C, Zhu W G. Materials, 2017, 11(1): 33.

doi: 10.3390/ma11010033
[67]
Li L, Ozden A, Guo S Y, Garcı?a de Arquer F P, Wang C H, Zhang M Z, Zhang J, Jiang H Y, Wang W, Dong H, Sinton D, Sargent E H, Zhong M. Nat. Commun., 2021, 12: 5223.

doi: 10.1038/s41467-021-25573-9
[68]
Feng X, Ren Y W, Jiang H F. Progress in Chemistry, 2020, 32: 1697.
( 封啸, 任颜卫, 江焕峰. 化学进展, 2020, 32: 1697.).

doi: 10.7536/PC200407
[69]
Zhu H L, Li W Y, Li T T, Michael B, Juri G, Zheng Y Q. Progress in Chemistry, 2019, 31: 939.
( 朱红林, 李文英, 黎挺挺, Michael B, Juri G, 郑岳青. 化学进展, 2019, 31: 939.).

doi: 10.7536/PC181124
[70]
Shen S J, Han C, Wang B, Wang Y D. Progress in Chemistry, 2021: 1.
( 沈树进, 韩成, 王兵, 王应德. 化学进展, 2021: 1.).
[71]
Weng Z, Zhang X, Wu Y S, Huo S J, Jiang J B, Liu W, He G J, Liang Y Y, Wang H L. Angew. Chem. Int. Ed., 2017, 56(42): 13135.

doi: 10.1002/anie.201707478 pmid: 28805993
[72]
Xie J F, Chen J J, Huang Y X, Zhang X, Wang W K, Huang G X, Yu H Q. Appl. Catal. B Environ., 2020, 270: 118864.

doi: 10.1016/j.apcatb.2020.118864
[73]
Liu X L, Geng Y X, Hao R, Liu Y P, Yuan Z Y, Li W. Progress in Chemistry, 2021, 33: 1074.
( 刘晓璐, 耿钰晓, 郝然, 刘玉萍, 袁忠勇, 李伟. 化学进展, 2021, 33: 1074.).

doi: 10.7536/PC200714
[74]
Baek S, Kim K, Kwon O S, Kim H, Han J W, Kwon O J, Kim J J. J. Appl. Electrochem., 2020, 50(4): 395.

doi: 10.1007/s10800-019-01396-x
[75]
Kang W, Li L, Zhao Q, Wang C, Wang J L, Teng Y. Progress in Chemistry, 2020, 32: 1952.

doi: 10.7536/PC200319
( 康伟, 李璐, 赵卿, 王诚, 王建龙, 滕越. 化学进展, 2020, 32: 1952.).
[76]
Biemolt J, van Noordenne D, Liu J W, Antonetti E, Leconte M, van Vliet S, Bliem R, Rothenberg G, Fu X Z, Yan N. ACS Appl. Nano Mater., 2020, 3(10): 10176.

doi: 10.1021/acsanm.0c02162
[1] Yunhua Ma, Han Shao, Tenglong Lin, Qinyue Deng. Design, Synthesis and Application of Magnetic Nanoparticle Catalytic Materials Based on Multientate Palladium Compounds [J]. Progress in Chemistry, 2023, 35(9): 1369-1388.
[2] Wenliang Liu, Yuqi Wang, Xiaohan Li, Xuanyu Zhang, Jiqian Wang. Design and Application of Chiral Plasmonic Core-Shell Nanostructures [J]. Progress in Chemistry, 2023, 35(8): 1168-1176.
[3] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[6] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[7] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[8] Dong Yang, Keyi Gao, Baiqin Yang, Lei Lei, Lixia Wang, Chaohua Xue. Classification of Microfluidic System and Applications in Nanoparticles Synthesis [J]. Progress in Chemistry, 2021, 33(3): 368-379.
[9] Pingping Zhao, Junxing Yang, Jianhui Shi, Jingyi Zhu. Construction and Application of Dendrimer-Based SPECT Imaging Agent [J]. Progress in Chemistry, 2021, 33(3): 394-405.
[10] Jiaqi Han, Zhida Li, Deqiang Ji, Dandan Yuan, Hongjun Wu. Single-Atom-Modified MoS2 for Efficient Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(12): 2392-2403.
[11] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[12] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[13] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[14] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[15] Tianyou Chen, Zihao Wang, Zizheng Xu, Zushun Xu, Zheng Cao. Synthesis and Applications of Dendrimer-Based Inorganic Nanoparticles [J]. Progress in Chemistry, 2020, 32(2/3): 249-261.