中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (9): 1369-1388 DOI: 10.7536/PC230115 Previous Articles   Next Articles

• Review •

Design, Synthesis and Application of Magnetic Nanoparticle Catalytic Materials Based on Multientate Palladium Compounds

Yunhua Ma, Han Shao, Tenglong Lin, Qinyue Deng()   

  1. College of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: dqy1991@usst.edu.cn
  • Supported by:
    The Shanghai Young Teachers Training and Support Program(slg20035)
Richhtml ( 11 ) PDF ( 201 ) Cited
Export

EndNote

Ris

BibTeX

Catalyst loading is one of the effective strategies for green catalysis. Palladium (Pd) catalysts supported by magnetic nanoparticles (MNPs) have been widely studied and used in organic synthesis due to their good dispersibility, high catalytic activity, rapid separation under the action of an external magnetic field, and efficient recovery. The MNPs-supported polydentate Pd compound catalyst (MNPs@L-Pd) shows better catalytic activity and stability than the MNPs-supported Pd nanoparticle catalyst (MNPs@PdNP). This is mainly because the introduction of the modified ligand in MNPs@L-Pd can regulate the electronic effect and steric hindrance of the catalyst metal center to achieve the regulation of its activity, on the other hand, it makes the stable chemical bond between the catalyst metal center and the magnetic material to achieve the regulation of stability. This paper mainly focuses on MNPs@L-Pd, the preparation of MNPs@L-Pd based on different ligands and coordination methods and its application in C-X(Cl, Br, I) activation reaction in the past 10 years are reviewed from the aspects of catalyst stability and activity, and the prospect of these reactions are also presented.

Contents

1 Introduction

2 Palladium-catalyzed system based on bidentate coordination mode

2.1 N-Pd-N coordination bond catalytic system

2.2 O-Pd-N coordination bond catalytic system

2.3 P-Pd-P coordination bond catalytic system

2.4 S-Pd-N coordination bond catalytic system

2.5 Se-Pd-N coordination bond catalytic system

3 Palladium-catalyzed system based on tridentate coordination mode

4 Palladium-catalyzed system based on tetradecentate coordination mode

5 Palladium-catalyzed system based on multidentate coordination mode

6 Palladium-catalyzed system based on Pd-C covalent bonds

7 Conclusion and outlook

Fig.1 Schematic diagram of the coordination mode of the dominant fragment of the catalyst
Scheme 1 Synthesis of MNP-1 and its application in Suzuki coupling reaction[19]
Scheme 2 Synthesis of MNP-2 and its application in Suzuki coupling reaction[20]
Scheme 3 Synthesis of MNP-3 and its application in Suzuki coupling reaction[21]
Scheme 4 Synthesis of MNP-4 and its application in Suzuki coupling reaction[22]
Scheme 5 Synthesis of MNP-5 and MNP-6 and their application in Heck coupling reaction[23,24]
Scheme 6 Synthesis of MNP-7 and its application in cross-coupling reaction[25]
Scheme 7 Synthesis of MNP-8 and its application in cross-coupling of C-S and C-Se[26]
Scheme 8 Synthesis of MNP-9 and its application in cross-coupling and cyanidation reactions[27]
Scheme 9 Synthesis of MNP-10 and its application in Heck and Suzuki cross-coupling reactions[29]
Scheme 10 Synthesis of MNP-11 and its application in Suzuki cross-coupling reactions[30]
Scheme 11 Synthesis of MNP-12 and its application in C-C cross-coupling reactions[31]
Scheme 12 Synthesis of MNP-13 and its application in C-C cross-coupling reactions[32]
Scheme 13 Synthesis of MNP-14 and its application in C-C cross-coupling reactions[33]
Scheme 14 Synthesis of MNP-15 and its application in Heck coupling reactions[34]
Scheme 15 Synthesis of MNP-16 and its application in Heck coupling reactions[37]
Scheme 16 Synthesis of MNP-17 and its application in Buchwald-Hartwig amination[38]
Scheme 17 Synthesis of MNP-18 and its application in C-C coupling reactions[39]
Scheme 18 Synthesis of MNP-19 and its application in Heck coupling reactions[40]
Scheme 19 Synthesis of MNP-20 and its application in Suzuki coupling reactions[41]
Scheme 20 Synthesis of MNP-21 and its application in C-C coupling reactions[42]
Scheme 21 Synthesis of MNP-22 and its application in Sonogashira coupling reactions[43]
Scheme 22 Synthesis of MNP-23 and its application in C-C coupling reactions[44]
Scheme 23 Synthesis of MNP-24 and its application in C-C coupling reactions[45]
Scheme 24 Synthesis of MNP-25 and its application in C-C coupling reactions[46]
Scheme 25 Synthesis of MNP-26 and its application in CO2 cyclocarbonate reaction[48]
Scheme 26 Synthesis of MNP-27 and its application in Suzuki coupling reactions[49]
Scheme 27 Synthesis of MNP-28 and its application in Suzuki coupling reactions[50]
Scheme 28 Synthesis of MNP-29 and its application in C-C coupling reactions[51]
Scheme 29 Synthesis of MNP-30 and its application in C-C coupling reactions[52]
Scheme 30 Schematic representation of the structures of MNP-31 and MNP-32[53]
Scheme 31 Synthesis of MNP-33 and its application in C-C coupling reactions[54]
Scheme 32 Synthesis of MNP-34 and its application in Suzuki coupling reactions[55]
Scheme 33 Synthesis of MNP-35 and MNP-36 and their application in Suzuki coupling reactions[56,57]
Scheme 34 Synthesis of MNP-37 and its application in Suzuki coupling reactions[58]
Scheme 35 Synthesis of MNP-38 and its application in Suzuki coupling reactions[59]
Scheme 36 Synthesis of MNP-39 and its application in C-C coupling reactions[60]
Scheme 37 Synthesis of MNP-40 and its application in C-C coupling reactions[61,62]
Scheme 38 Synthesis of MNP-41 and its application in Suzuki coupling reactions[63]
Table 1 Performance of catalysts supported by different magnetic nanoparticles for Suzuka-Miyaura reaction
Pd catalyst (mol%) Standard conditions Yield(%) Reusability TOF(h-1) ref
MNP-2 (0.14 mol% Pd) K2CO3, EtOH/H2O(1∶1), 80 ℃, 50 min 95% 8 814.28 20a
MNP-3 (0.01 mol% Pd) K2CO3, EtOH/H2O(1∶1), 70 ℃, 30 min 96% 12 19 200 21a
MNP-4 (0.1 mol% Pd) Et3N or Na2CO3, EtOH/H2O(1∶1), 80 ℃,
30 min
99% 7 1980 22b
MNP-10 (0.009 mol% Pd) K2CO3, EtOH/H2O(1∶1), 75 ℃, 1.0 h 97% 5 10 778 29a
MNP-12 (0.47 mol% Pd) K2CO3, H2O, 60~90 ℃, 20 min 95% 6 612 31a
MNP-13 (0.1 mol% Pd) K2CO3, H2O, 90 ℃, 1.0 h 95% 6 950 32a
MNP-14 (0.09 mol% Pd) K2CO3, H2O, reflux, 1.0 h 93% 6 1033.3 33a
MNP-18 (0.01 mol% Pd) Et3N, H2O, 80 ℃, 45 min 91% 9 12 133.3 39a
MNP-20 (0.04 mol% Pd ) K2CO3, EtOH/H2O(2∶1), 60 ℃, 1.5 h 95% 7 1583.3 41a
MNP-21 (0.5 mol% Pd) Et3N, DMF, 100 ℃, 3 h 92% 10 61.3 42a
MNP-23 (0.3 mol% Pd) K2CO3, NMP, 100 ℃, 2.5 h 88% 8 117 44a
MNP-27 (0.017 mol% Pd) K2CO3, EtOH/H2O(1∶1), 80 ℃, 3.0 h 86% 7 1686.3 49a
MNP-28 (0.34 mol% Pd) K2CO3, EtOH/H2O(2∶1), 60 ℃, 3.0 h 92% 20 6903 50a
MNP-29 (0.825 mol% Pd) K2CO3, NMP, 90 ℃, 1.0 h 88% 6 107 51a
MNP-34 (0.5 mol%) K3PO4, Toluene, 100 ℃, 24.0 h 99% 7 8.25 55c
MNP-35 (0.15 mol% Pd) K2CO3, EtOH/H2O(1∶1), 70 ℃, 1.0 h 95% 5 633.3 56a
MNP-36 (0.15 mol% Pd) K2CO3, EtOH/H2O(1∶1), R.T, 2.0 h 95% 7 316.7 57a
MNP-37 (0.022 mmol% Pd ) Na2CO3, EtOH, 60 ℃, 20 min 95% 5 12 954.5 58a
MNP-38 (0.021 mmol% Pd) NaHCO3, EtOH/H2O(1∶1), 70 ℃, 10 min 98% 13 2940×104 59a
MNP-39 (0.37 mol% Pd ) K2CO3, H2O, 60 ℃, 3.0 h 96% 8 86.5 60a
MNP-40-A (1.5 mol% ) Na2CO3, PEG-400, 80 ℃, 100 min 88% 8 35.2 61a
MNP-40-B (0.83 mol% ) Na2CO3, PEG-400, 80 ℃, 3.0 h 93% 7 37.3 62a
MNP-41 (0.5 mol%) K2CO3, EtOH/H2O(2∶1), 60 ℃, 12.0 h 93% 12 15.5 63d
Table 2 Performance of catalysts supported by different magnetic nanoparticles for Heck reaction
Table 3 Performance of catalysts supported by different magnetic nanoparticles for other C-C coupling reactions
[1]
Zhao G, Xu X J. Nanoscale, 2021, 13 (24): 10649.

doi: 10.1039/D1NR02464G
[2]
Vogel P, Lam Y H, Simon A, Houk K N. Catalysts, 2016, 6 (9): 128.

doi: 10.3390/catal6090128
[3]
Gabriele B. Molecules, 2022, 27 (4): 1227.

doi: 10.3390/molecules27041227
[4]
Niu B, Yang K, Lawrence B, Ge H. ChemSusChem, 2019, 12 (13): 2955.

doi: 10.1002/cssc.v12.13
[5]
Wang Q J, Su Y J, Li L X, Huang H M. Chem.Soc.Rev., 2016, 45 (5): 1257.
[6]
Xia Y, Qiu D, Wang J B. Chem.Rev., 2017, 117 (23): 13810.
[7]
Sain Shalu, Jain S, Srivastava M, Vishwakarma R, Dwivedi J. Curr. Org. Synth., 2019, 16 (8): 1105.

doi: 10.2174/1570179416666191104093533 pmid: 31984919
[8]
Wu X F, Anbarasan P, Neumann H, Beller M. Angew. Chem. Int. Ed., 2010, 49 (48): 9047.

doi: 10.1002/anie.v49.48
[9]
Beller M, Zapf A, Mägerlein W. Chem. Eng. Technol., 2001, 24 (6): 575.

doi: 10.1002/1521-4125(200106)24:6;<575::AID-CEAT575;>3.0.CO;2-D
[10]
Dobrounig P, Trobe M, Breinbauer R. Monatsh. Chem., 2017, 148 (1): 3.

doi: 10.1007/s00706-016-1883-7 pmid: 28127089
[11]
Cole-Hamilton D J, Tooze R P. Catalyst Separation, Recovery and Recycling. New York: Springer, 2006.
[12]
Mallesham B, Raikwar D, Shee D. Advanced Functional Solid Catalysts for Biomass Valorization. Eds.: Mustansar H C, Sudarsanam P. Amsterdam: Elsevier, 2020.1.
[13]
Liu J, Zhu Q R, Du J, Zhang X L. Chin. J. Org. Chem., 2015, 35(1): 15.

doi: 10.6023/cjoc201408014
((刘杰, 朱庆仁, 杜娟, 张袖丽. 有机化学, 2015, 35(1): 15.)

doi: 10.6023/cjoc201408014
[14]
Franzen R G. Top. Catal., 2016, 59 (13): 1143.

doi: 10.1007/s11244-016-0635-6
[15]
Qiao N N. Mater Dissertation of Guangdong Pharmaceutical University, 2019.
(乔妮娜. 广东药科大学硕士论文, 2019.).
[16]
Yan T L, Zhang Y, Zhu X Q, Zhang X H, Liu Z T, Dai J T, Xu G D. Journal of Yangzhou University Natural Science Edition, 2022, 25(1): 19.
( 颜廷良, 张玉, 朱啸庆, 张雪华, 刘总堂, 戴兢陶, 徐国栋. 扬州大学学报(自然科学版), 2022, 25(1): 19.)
[17]
Mu J L, Hu T W, Shan S Y, Jiang L H, Wang Y M, Jia Q M. Polymeric Materials Science and Engineering, 2013, 29(7): 179.
母佳利, 胡庭维, 陕绍云, 蒋利红, 王亚明, 贾庆明. 高分子材料科学与工程, 2013, 29(7): 179.).
[18]
Wang H B. Mater Dissertation of Lanzhou University, 2013.
(王海博. 兰州大学硕士论文, 2013.).
[19]
Bui N T, Dang T B, Le H V, Phan N T S. Chin. J. Catal., 2011, 32 (11/12): 1667.

doi: 10.1016/S1872-2067(10)60270-7
[20]
Beygzadeh M, Alizadeh A, Khodaei M M, Kordestani D. Catal. Commun., 2013, 32: 86.

doi: 10.1016/j.catcom.2012.11.028
[21]
Yang P B, Ma R, Bian F L. ChemCatChem, 2016, 8 (24): 3746.

doi: 10.1002/cctc.v8.24
[22]
Nehlig E, Waggeh B, Millot N, Lalatonne Y, Motte L, GuÉnin E. Dalton Trans., 2015, 44 (2): 501.

doi: 10.1039/c4dt02899f pmid: 25429437
[23]
Bodaghifard M A. J. Organomet. Chem., 2019, 886: 57.

doi: 10.1016/j.jorganchem.2019.02.010
[24]
Aryanasab F, Shabanian M, Laoutid F, Vahabi H. Appl. Organomet. Chem., 2021, 35 (5): e6198.

doi: 10.1002/aoc.v35.5
[25]
Dehbanipour Z, Zarnegaryan A. Inorg. Chem. Commun., 2022, 141.
[26]
Xu X Q, Wang W Q, Lu L, Zhang J Z, Luo J. Catal. Lett., 2022, 152 (10): 3031.

doi: 10.1007/s10562-021-03908-x
[27]
Cai Y, Yuan H L, Gao Q, Wu L L, Xue L J, Feng N J, Sun Y. Catal. Lett., 2023, 153(2): 460.

doi: 10.1007/s10562-022-03990-9
[28]
Bauer R E, Grimsdale A C, Müllen K. Functional Molecular Nanostructures. Ed.: Schlüter A D. Berlin, Heidelberg: Springer, 2005. 253.
[29]
Ma R, Yang P B, Bian F L. New J. Chem., 2018, 42 (6): 4748.

doi: 10.1039/C7NJ05014C
[30]
Sorokina S A, Kuchkina N V, Lawson B P, Krasnova I Y, Nemygina N A, Nikoshvili L Z, Talanova V N, Stein B D, Pink M, Morgan D G, Sulman E M, Bronstein L M, Shifrina Z B. Appl. Surf. Sci., 2019, 488: 865.

doi: 10.1016/j.apsusc.2019.05.141
[31]
Sheikh S, Nasseri M A, Chahkandi M, Reiser O, Allahresani A. RSC Adv., 2022, 12 (15): 8833.

doi: 10.1039/D2RA00487A
[32]
Yang J H, Wang D F, Liu W D, Zhang X, Bian F L, Yu W. Green Chem., 2013, 15 (12): 3429.

doi: 10.1039/c3gc40941d
[33]
Wang D F, Liu W D, Bian F L, Yu W. New J. Chem., 2015, 39 (3): 2052.

doi: 10.1039/C4NJ01581A
[34]
Barazandehdoust M, Mamaghani M, Kefayati H. React. Kinet., Mech. Catal., 2020, 129 (2): 1007.
[35]
Khoobi MM, Ma?mani L, Rezazadeh F, Zareie Z, Foroumadi A, Ramazani A, Shafiee A. J. Mol. Catal. A: Chem., 2012, 359: 74.

doi: 10.1016/j.molcata.2012.03.023
[36]
Ma?mani L, Sheykhan M, Heydari A, Faraji M, Yamini Y. Appl. Catal., A, 2010, 377 (1): 64.
[37]
Mohammadnia M, Poormirzaei N. Nanoscale Adv., 2021, 3 (7): 1917.

doi: 10.1039/d0na00954g pmid: 36133091
[38]
Zarnaghash N, Panahi F, Khalafi-Nezhad A. J. Iran. Chem. Soc., 2015, 12 (11): 2057.

doi: 10.1007/s13738-015-0682-0
[39]
Sobhani S, Habibollahi A, Zeraatkar Z. Org. Process Res. Dev., 2019, 23 (7): 1321.

doi: 10.1021/acs.oprd.8b00426
[40]
Rangraz Y, Nemati F, Elhampour A. New J. Chem., 2018, 42 (18): 15361.

doi: 10.1039/C8NJ02433B
[41]
Rangraz Y, Nemati F, Elhampour A. J. Phys. Chem. Solids, 2020, 138: 109251.

doi: 10.1016/j.jpcs.2019.109251
[42]
Sobhani S, Zeraatkar Z, Zarifi F. New J. Chem., 2015, 39 (9): 7076.

doi: 10.1039/C5NJ00344J
[43]
Esmaeilpour M, Sardarian A R, Javidi J. J. Organomet. Chem., 2014, 749: 233.

doi: 10.1016/j.jorganchem.2013.10.011
[44]
Esmaeilpour M, Javidi J. J. Chin. Chem. Soc., 2015, 62 (7): 614.

doi: 10.1002/jccs.v62.7
[45]
Sardarian A R, Kazemnejadi M, Esmaeilpour M. Dalton Trans., 2019, 48 (9): 3132.

doi: 10.1039/c9dt00060g pmid: 30775761
[46]
Tashrifi Z, Bahadorikhalili S, Lijan H, Ansari S, Hamedifar H, Mahdavi M. New J. Chem., 2019, 43 (23): 8930.

doi: 10.1039/c9nj01562k
[47]
Liao Q L, Tannenbaum R, Wang Z L. J. Phys. Chem. B, 2006, 110 (29): 14262.

doi: 10.1021/jp0625154
[48]
Qiu J P, Yu L, Ni J G, Fei Z X, Li W D, Sadeghzadeh S M. New J. Chem., 2020, 44 (4): 1269.

doi: 10.1039/C9NJ05513D
[49]
Rahman M, L Sarjadi M S, Akhter M S, Hannan J J, Sarkar S M. Arabian J. Chem., 2022, 15 (8): 103983.

doi: 10.1016/j.arabjc.2022.103983
[50]
Ren F F, Li S, Zheng W Q, Song Q Y, Jia W H, Nan Y Q, Jia H J, Liu J, Bao J J, Li Y X. Colloids Surf., A, 2022, 642: 128611.

doi: 10.1016/j.colsurfa.2022.128611
[51]
Esmaeilpour M, Javidi J, Dodeji F N, Hassannezhad H. J. Iran. Chem. Soc., 2014, 11 (6): 1703.

doi: 10.1007/s13738-014-0443-5
[52]
Bahadorikhalili S, Ma?mani L, Mahdavi H, Shafiee A. RSC Adv., 2015, 5 (87): 71297.

doi: 10.1039/C5RA12747E
[53]
Martinez-Olid F, AndrÉs R, Flores J C, GÓmez-Sal P, HeuzÉ K, Vellutini L. Dalton Trans., 2016, 45 (29): 11633.

doi: 10.1039/C6DT01330A
[54]
Kaur A, Singh V. Chem. Lett., 2016, 45 (1): 83.

doi: 10.1246/cl.150868
[55]
Deng Q Y, Shen Y J, Zhu H B, Tu T. Chem. Commun. (Camb), 2017, 53 (97): 13063.
[56]
Vishal K, Fahlman B D, Sasidhar B S, Patil S A, Patil S A,. Catal. Lett., 2017, 147 (4): 900.

doi: 10.1007/s10562-017-1987-7
[57]
Kandathil V, Fahlman B D, Sasidhar B S, Patil S A, Patil S A,. New J. Chem., 2017, 41 (17): 9531.

doi: 10.1039/C7NJ01876B
[58]
Rafiee F, Mehdizadeh N. Catal. Lett., 2018, 148 (5): 1345.

doi: 10.1007/s10562-018-2363-y
[59]
Rafiee F, Hosseini S A. Appl. Organomet. Chem., 2018, 32 (11): e4519.

doi: 10.1002/aoc.v32.11
[60]
Esmaeilpour M, Sardarian A R, Firouzabadi H. J. Organomet. Chem., 2018, 873: 22.

doi: 10.1016/j.jorganchem.2018.08.002
[61]
Tahmasbi B, Ghorbani-Choghamarani A. New J. Chem., 2019, 43 (36): 14485.

doi: 10.1039/c9nj02727k
[62]
Ghorbani-Choghamarani A, Tahmasbi B, Hudson R H E, Heidari A. Micropor. Mesopor. Mater., 2019, 284: 366.

doi: 10.1016/j.micromeso.2019.04.061
[63]
Zuo B, Shao H, Zheng Y, Ma Y H, Li W F, Huang M X, Deng Q Y. Asian J. Org. Chem., 2022, 11 (5): e202200018.

doi: 10.1002/ajoc.v11.5
[64]
Lakhdar S. Synthesis, 2020, 52 (22): 3492.

doi: 10.1055/s-0040-1706070
[65]
Liu Y Y, Liu J, Lu L Q, Xiao W J. Top Curr. Chem. (Cham), 2019, 377 (6): 37.
[66]
Zhou W J, Cao G M, Zhang Z P, Yu D G. Chem. Lett., 2019, 48 (3): 181.

doi: 10.1246/cl.190006
[67]
Sauermann N, Meyer T H, Qiu Y A, Ackermann L. ACS Catal., 2018, 8 (8):7086.

doi: 10.1021/acscatal.8b01682
[68]
Luscombe C K, Yadav P, Velmurugan N. Synthesis, 2023, 55(01): 1.

doi: 10.1055/a-1939-7052
[1] Zhiyong Han, Liuzhu Gong*. Asymmetric Organo/Palladium Combined Catalysis [J]. Progress in Chemistry, 2018, 30(5): 505-512.
[2] Hongmei Bi, Xiaojun Han. Design and Fabrication of Magnetically Responsive Drug Delivery Carriers [J]. Progress in Chemistry, 2018, 30(12): 1920-1929.
[3] Wang Kui, Lei Jinhua*, Nie Heran, Zhou Guangyuan*. Olefin Polymerization in Confined Space [J]. Progress in Chemistry, 2015, 27(12): 1764-1773.
[4] Tan Lisha, Sun Mingyang, Hu Yunjun, Cheng Lihua, Xu Xinhua. Heavy Metal Removal from Aqueous Solution by Functional Magnetic Fe3O4 Nanoparticles [J]. Progress in Chemistry, 2013, 25(12): 2147-2158.
[5] Zhang Yunfei, Yang Bo, Zhang Hong, Yu Gang, Deng Shubo, Liu Jianhong. Degradation of Halogenated Organic Contaminants with Hydrodehalogenation Using Supported Catalysts [J]. Progress in Chemistry, 2013, 25(12): 2159-2168.
[6] Huang Tiantian, Fu Yan, Zhang Jinli, Li Wei. Preparation and Application of Protein-Functionalized Magnetic Nanoparticles [J]. Progress in Chemistry, 2012, 24(08): 1610-1622.
[7] Zhou Huirui, Tao Ke, Sun Kang. Synthesis and Perspectives of Fluorescent-Magnetic Nanocomposites [J]. Progress in Chemistry, 2011, 23(6): 1100-1107.
[8] Du Kai, Zhu Yanhong, Xu Huibi, Yang Xiangliang. Multifunctional Magnetic Nanoparticles: Synthesis, Modification and Biomedical Applications [J]. Progress in Chemistry, 2011, 23(11): 2287-2298.
[9] Zhang Changwu, Chai Zhuo, Zhao Gang. Polymer-Supported Catalysts Designing, Synthesis and Their Application on Organic Synthetic Reaction [J]. Progress in Chemistry, 2010, 22(07): 1442-1456.
[10] Wang Haiming,Wang Zheng,Ding Kuiling. Recent Progress in Self-Supported Chiral Catalysts [J]. Progress in Chemistry, 2010, 22(07): 1471-1481.
[11] . Preparation and Application of Magnetic Core-shell Mesoporous Silica Microspheres [J]. Progress in Chemistry, 2010, 22(06): 1116-1124.
[12] Zhang Jilin Hong Guangyan Ni Jiazuan. Monodisperse Mangetic Nanoparticles Carriers for Targeting Drug [J]. Progress in Chemistry, 2009, 21(05): 880-889.
[13] Ke Tao,Hongjing Dou,Kang Sun**. Chemical Preparation of Iron Oxide Nanoparticles and Assemblies [J]. Progress in Chemistry, 2006, 18(11): 1460-1467.
[14] Zilai Zhao,Zhengyun Bian,Langxing Chen**,Xiwen He,Yanfen Wang. Synthesis and Surface-Modifications of Iron Oxide Magnetic Nanoparticles and Applications on Separation and Analysis [J]. Progress in Chemistry, 2006, 18(10): 1288-1297.
[15] Li Wenzhen1,Sun Gongquan1,Yan Yushan3,Xin Qin1,2*. Supported Noble Metal Electrocatalysts in Low Temperature Fuel Cells [J]. Progress in Chemistry, 2005, 17(05): 761-772.