中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (2/3): 249-261 DOI: 10.7536/PC190616 Previous Articles   Next Articles

Synthesis and Applications of Dendrimer-Based Inorganic Nanoparticles

Tianyou Chen1,2, Zihao Wang2, Zizheng Xu2, Zushun Xu2, Zheng Cao1,**()   

  1. 1. Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
    2. Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
  • Received: Online: Published:
  • Contact: Zheng Cao
  • About author:
    ** e-mail:
  • Supported by:
    National Natural Science Foundation of China(21802035); National Natural Science Foundation of China(21704008); National Natural Science Foundation of China(51573039); Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, and the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)()
Richhtml ( 41 ) PDF ( 940 ) Cited
Export

EndNote

Ris

BibTeX

Dendrimer has several unique properties, including well-defined and highly branched three-dimension structures, uniform size, internal space, substantial number of surface groups, and so forth. Thus, dendrimer has potential applications in catalysis, sensing, and biomedical applications. To improve or achieve these applications, inorganic nanoparticles are incorporated to generate dendrimer-based inorganic nanoparticles. On the other hand, the presence of dendrimers can inhibit the aggregation and improve the stability of inorganic nanoparticles in solution, preserving the excellent properties of these nanoparticles. Over the past decades, dendrimer-based inorganic nanoparticles have attracted wide attention of many researchers owing to their excellent properties and potential applications. Based on the distinct structures, dendrimer-based inorganic nanoparticles have three categories:(1) dendrimer-encapsulated inorganic nanoparticles;(2) dendrimer-stabilized inorganic nanoparticles;(3) dendron-stabilized inorganic nanoparticles. Here we review the advances of the synthesis and applications of dendrimer-based inorganic nanoparticles mainly in recent five years, focusing on catalysis, sensing and biomedical applications. And we outlook the future development of dendrimer-based inorganic nanoparticles.

Fig.1 Schematic structures of (A) dendrimer-encapsulated inorganic nanoparticles,(B) dendrimer-stabilized inorganic nanoparticles,(C) dendron-stabilized inorganic nanoparticles
Fig.2 Synthesis of dendrimer-encapsulated inorganic nanoparticles[13]
Fig.3 Schematic illustration of the synthesis of dendrimer-encapsulated Pt nanoparticles with large sizes[47]. The schematic structures of (A) a PAMAM dendrimer,(B) a PAMAM dendrimer terminated with alkyl chains, and (C) a dendrimer-encapsulated Pt nanoparticle with a large size
Fig.4 Synthesis of conjugated thiophene dendron-stabilized gold nanoparticle[61]
Fig.5 Dendrimer-encapsulated copper nanoparticles as a chemoselective and regenerable hydrogenation catalyst[29]
Scheme 1 Oxidation of flavonol
Scheme 2 (A) Sonogashira coupling of iodobenzene and phenylacetylene,(B) Suzuki-miyaura cross-coupling
Fig.6 Lactonization over dendrimer-encapsulated Au nanoparticles[129]
Scheme 3 Azide alkyne cycloaddition of benzyl azide and phenylacetylene
Fig.7 Schematic illustration of the synthesis of folic acid-modified, dendrimer-stabilized gold nanoparticle[55]
Fig.8 Synthesis route of dendrimer-encapsulated gold nanoparticles used as carriers of thiolated anticancer drugs[149]
Fig.9 Schematic illustration of dendrimer-encapsulated nanoparticle for photothermal therapy[153]
[1]
Astruc D, Deraedt C, Djeda R, Ornelas C, Liu X, Rapakousiou A, Ruiz J, Wang Y, Wang Q . Molecules, 2018,23(4):966.
[2]
杨新国(Yang X G), 张登(Zhang D), 唐瑞仁(Tang R R) . 化学进展 (Progress in Chemistry), 2009,21(12):2595.
[3]
刘军民(Liu J M), 卜建华(Bu J H), 麦健航(Mai J H), 江焕峰(Jiang H F) . 化学进展 (Progress in Chemistry), 2008,20(11):1716.
[4]
Stevelmans S, van Hest J C M, Jansen J F G A, van Boxtel D A F J, de Brabander-van den Berg E M M Meijer E W . J. Am. Chem. Soc., 1996,118(31):7398.
[5]
Chechik V, Crooks R M . J. Am. Chem. Soc., 2000,122(6):1243.
[6]
Bosman A W, Janssen H M, Meijer E W . Chem. Rev., 1999,99(7):1665. https://www.ncbi.nlm.nih.gov/pubmed/11849007

doi: 10.1021/cr970069y pmid: 11849007
[7]
Zeng F, Zimmerman S C . Chem. Rev., 1997,97(5):1681. https://www.ncbi.nlm.nih.gov/pubmed/11851463

doi: 10.1021/cr9603892 pmid: 11851463
[8]
姚敏(Yao M), 王嘉骏(Wang J J), 顾雪萍(Gu X P), 冯连芳(Feng L F) . 化学进展 (Progress in Chemistry), 2012,24(0203):405.
[9]
董博(Dong B), 闫熙博(Yan X B), 牛玉洁(Niu Y J), 王欣(Wang X), 王连永(Wang L Y), 王燕铭(Wang Y M) . 化学进展 (Progress in Chemistry), 2012,24(12):2352.
[10]
Esfand R, Tomalia D A . Drug Discovery Today, 2001,6(8):427. https://www.ncbi.nlm.nih.gov/pubmed/11301287

doi: 10.1016/s1359-6446(01)01757-3 pmid: 11301287
[11]
Yang J, Zhang Q, Chang H, Cheng Y . Chem. Rev., 2015,115(11):5274. https://www.ncbi.nlm.nih.gov/pubmed/25944558

doi: 10.1021/cr500542t pmid: 25944558
[12]
Li D, Wen S, Shi X . Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015,7(5):678. https://www.ncbi.nlm.nih.gov/pubmed/25641958

doi: 10.1002/wnan.1331 pmid: 25641958
[13]
Myers V S, Weir M G, Carino E V, Yancey D F, Pande S, Crooks R M . Chem. Sci., 2011,2(9):1632.
[14]
Bronstein L M, Shifrina Z B . Chem. Rev., 2011,111(9):5301. https://www.ncbi.nlm.nih.gov/pubmed/21718045

doi: 10.1021/cr2000724 pmid: 21718045
[15]
Cao Z, Chen Y, Zhang C, Cheng J, Wu D, Ma W, Liu C, Fu Z . Soft Matter, 2019,15(14):2950. https://www.ncbi.nlm.nih.gov/pubmed/30724317

doi: 10.1039/c8sm02635a pmid: 30724317
[16]
Cao Z, Hu Y, Yu Q, Lu Y, Wu D, Zhou A, Ma W, Xia Y, Liu C, Loos K . Advanced Engineering Materials, 2017,19(5):1600826.
[17]
Liu C, Lu Y, Xiong Y, Zhang Q, Shi A, Wu D, Liang H, Chen Y, Liu G, Cao Z . Polym. Degrad. STab., 2018,147:115. https://linkinghub.elsevier.com/retrieve/pii/S0141391017303580

doi: 10.1016/j.polymdegradstab.2017.11.015
[18]
Cao Z, Hu Y, Lu Y, Xiong Y, Zhou A, Zhang C, Wu D, Liu C . Polym. Degrad. STab., 2017,141:33.
[19]
Garcia M E, Baker L A, Crooks R M . Anal. Chem., 1999,71(1):256. https://www.ncbi.nlm.nih.gov/pubmed/21662946

doi: 10.1021/ac980588g pmid: 21662946
[20]
Esumi K, Suzuki A, Yamahira A, Torigoe K . Langmuir, 2000,16(6):2604.
[21]
Manna A, Imae T, Aoi K, Okada M, Yogo T . Chem. Mater., 2001,13(5):1674.
[22]
Scott R W J, Wilson O M, Crooks R M . J. Phys. Chem. B, 2005,109(2):692. https://www.ncbi.nlm.nih.gov/pubmed/16866429

doi: 10.1021/jp0469665 pmid: 16866429
[23]
Bronstein L M, Shifrina Z B . Nanotechnologies in Russia, 2009,4(9):576. http://link.springer.com/10.1134/S1995078009090031

doi: 10.1134/S1995078009090031
[24]
Sun W, Mignani S, Shen M, Shi X . Drug Discovery Today, 2016,21(12):1873. https://www.ncbi.nlm.nih.gov/pubmed/27388223

doi: 10.1016/j.drudis.2016.06.028 pmid: 27388223
[25]
Kesharwani P, Choudhury H, Meher J G, Pandey M, Gorain B . Prog. Mater. Sci., 2019,103:484.
[26]
Li X J, Kono K . Polym. Int., 2018,67(7):840.
[27]
Zhao M, Sun L, Crooks R M . J. Am. Chem. Soc., 1998,120(19):4877.
[28]
Balogh L, Tomalia D A . J. Am. Chem. Soc., 1998,120(29):7355.
[29]
Maity P, Yamazoe S, Tsukuda T . ACS Catal., 2013,3(2):182.
[30]
Knecht M R . Chem. Mater., 2007,19(5):1201.
[31]
Knecht M R, Weir M G, Myers V S, Pyrz W D, Ye H, Petkov V, Buttrey D J, Frenkel A I, Crooks R M . Chem. Mater., 2008,20(16):5218.
[32]
Ye H, Crooks R M . J. Am. Chem. Soc., 2005,127(13):4930. https://www.ncbi.nlm.nih.gov/pubmed/15796558

doi: 10.1021/ja0435900 pmid: 15796558
[33]
Yeung L K, Lee C T, Johnston K P, Crooks R M . Chem. Commun., 2001,( 21):2290. https://www.ncbi.nlm.nih.gov/pubmed/12240155

pmid: 12240155
[34]
Garcia-Martinez J C, Crooks R M . J. Am. Chem. Soc., 2004,126(49):16170. https://www.ncbi.nlm.nih.gov/pubmed/15584753

doi: 10.1021/ja046567n pmid: 15584753
[35]
Knecht M R, Garcia-Martinez J C, Crooks R M . Langmuir, 2005,21(25):11981. https://www.ncbi.nlm.nih.gov/pubmed/16316142

doi: 10.1021/la051475c pmid: 16316142
[36]
Gröhn F, Bauer B J, Akpalu Y A, Jackson C L, Amis E J . Macromolecules, 2000,33(16):6042. https://pubs.acs.org/doi/10.1021/ma000149v

doi: 10.1021/ma000149v
[37]
Ye H, Crooks R M . J. Am. Chem. Soc., 2007,129(12):3627. https://www.ncbi.nlm.nih.gov/pubmed/17335206

doi: 10.1021/ja068078o pmid: 17335206
[38]
Knecht M R, Weir M G, Frenkel A I, Crooks R M . Chem. Mater., 2008,20(3):1019.
[39]
Weir M G, Knecht M R, Frenkel A I, Crooks R M . Langmuir, 2010,26(2):1137. https://www.ncbi.nlm.nih.gov/pubmed/19839631

doi: 10.1021/la902233h pmid: 19839631
[40]
Scott R W J, Wilson O M, Oh S K, Kenik E A, Crooks R M . J. Am. Chem. Soc., 2004,126(47):15583. https://www.ncbi.nlm.nih.gov/pubmed/15563188

doi: 10.1021/ja0475860 pmid: 15563188
[41]
Myers S V, Frenkel A I, Crooks R M . Chem. Mater., 2009,21(20):4824.
[42]
Carino E V, Crooks R M . Langmuir, 2011,27(7):4227. https://www.ncbi.nlm.nih.gov/pubmed/21384847

doi: 10.1021/la2001915 pmid: 21384847
[43]
Yamamoto K, Imaoka T . Acc. Chem. Res., 2014,47(4):1127. https://www.ncbi.nlm.nih.gov/pubmed/24576189

doi: 10.1021/ar400257s pmid: 24576189
[44]
Crooks R M, Zhao M, Sun L, Chechik V, Yeung L K . Acc. Chem. Res., 2001,34(3):181. https://www.ncbi.nlm.nih.gov/pubmed/11263876

doi: 10.1021/ar000110a pmid: 11263876
[45]
Anderson R M, Yancey D F, Loussaert J A, Crooks R M . Langmuir, 2014,30(49):15009. https://www.ncbi.nlm.nih.gov/pubmed/25456853

doi: 10.1021/la503956h pmid: 25456853
[46]
Cho T, Yoon C W, Kim J . Langmuir, 2018,34(25):7436. https://www.ncbi.nlm.nih.gov/pubmed/29856918

doi: 10.1021/acs.langmuir.8b01169 pmid: 29856918
[47]
Chen T, Cheng Z, Yi C, Xu Z . Chem. Commun., 2018,54(66):9143. https://www.ncbi.nlm.nih.gov/pubmed/30059083

doi: 10.1039/c8cc05106b pmid: 30059083
[48]
Lakowicz J R, Gryczynski I, Gryczynski Z, Murphy C J . J. Phys. Chem. B, 1999,103(36):7613. https://www.ncbi.nlm.nih.gov/pubmed/32267907

doi: 10.1021/jp991469n pmid: 32267907
[49]
Wisher A C, Bronstein I, Chechik V . Chem. Commun., 2006,( 15):1637. https://www.ncbi.nlm.nih.gov/pubmed/16583004

doi: 10.1039/b518115a pmid: 16583004
[50]
Sooklal K, Hanus L H, Ploehn H J, Murphy C J . Adv. Mater., 1998,10(14):1083.
[51]
Esumi K, Suzuki A, Aihara N, Usui K, Torigoe K . Langmuir, 1998,14(12):3157. https://pubs.acs.org/doi/10.1021/la980162x

doi: 10.1021/la980162x
[52]
Ciganda R, Gu H, Hernandez R, Escobar A, Martínez A, Yates L, Moya S, Ruiz J, Astruc D . Inorg. Chem., 2017,56(5):2784. https://www.ncbi.nlm.nih.gov/pubmed/28212023

doi: 10.1021/acs.inorgchem.6b02850 pmid: 28212023
[53]
Guerra J, Rodrigo A C, Merino S, Tejeda J, García-Martínez J C, Sánchez-Verdú P, Ceña V, Rodríguez-López J . Macromolecules, 2013,46(18):7316.
[54]
Kim K, Lee J, Jo G, Shin S, Kim J B, Jang J H . ACS Appl. Mater. Interfaces, 2016,8(31):20379. https://www.ncbi.nlm.nih.gov/pubmed/27403733

doi: 10.1021/acsami.6b05710 pmid: 27403733
[55]
Liu H, Xu Y, Wen S, Chen Q, Zheng L, Shen M, Zhao J, Zhang G, Shi X . Chem. Eur. J., 2013,19(20):6409. https://www.ncbi.nlm.nih.gov/pubmed/23505030

doi: 10.1002/chem.201204612 pmid: 23505030
[56]
Li X, Takeda K, Yuba E, Harada A, Kono K . Journal of Materials Chemistry B, 2014,2(26):4167. https://www.ncbi.nlm.nih.gov/pubmed/32261750

doi: 10.1039/c4tb00132j pmid: 32261750
[57]
Li X, Takashima M, Yuba E, Harada A, Kono K . Biomaterials, 2014,35(24):6576. https://www.ncbi.nlm.nih.gov/pubmed/24816361

doi: 10.1016/j.biomaterials.2014.04.043 pmid: 24816361
[58]
Lu S, Li X, Zhang J, Peng C, Shen M, Shi X . Advanced Science, 2018,5(12):1801612. https://www.ncbi.nlm.nih.gov/pubmed/30581720

doi: 10.1002/advs.201801612 pmid: 30581720
[59]
Kuchkina N V, Bronshtein L M, Rusanov A L, Shifrina Z B . Russ. Chem. Bull., 2009,58(4):862.
[60]
Bhandari R, Anderson R M, Stauffer S, Dylla A G, Henkelman G, Stevenson K J, Crooks R M . Langmuir, 2015,31(23):6570. https://www.ncbi.nlm.nih.gov/pubmed/26039456

doi: 10.1021/acs.langmuir.5b01383 pmid: 26039456
[61]
Deng S, Fulghum T M, Krueger G, Patton D, Park J Y, Advincula R C . Chem. Eur. J., 2011,17(32):8929. https://www.ncbi.nlm.nih.gov/pubmed/21714015

doi: 10.1002/chem.201100246 pmid: 21714015
[62]
Brunetti V, Bouchet L M, Strumia M C . Nanoscale, 2015,7(9):3808. https://www.ncbi.nlm.nih.gov/pubmed/25566989

doi: 10.1039/c4nr04438j pmid: 25566989
[63]
Park Y, Taranekar P, Park J Y, Baba A, Fulghum T, Ponnapati R, Advincula R C . Adv. Funct. Mater., 2008,18(14):2071.
[64]
Zhao Y, Li Y, Song Y, Jiang W, Wu Z, Wang Y A, Sun J, Wang J . J. Colloid Interface Sci., 2009,339(2):336. https://www.ncbi.nlm.nih.gov/pubmed/19735920

doi: 10.1016/j.jcis.2009.08.009 pmid: 19735920
[65]
Elbert K C, Lee J D, Wu Y, Murray C B . Langmuir, 2018,34(44):13333. https://www.ncbi.nlm.nih.gov/pubmed/30350692

doi: 10.1021/acs.langmuir.8b02960 pmid: 30350692
[66]
Elbert K C, Jishkariani D, Wu Y, Lee J D, Donnio B, Murray C B . Chem. Mater., 2017,29(20):8737.
[67]
Pandey P K, Maheshwari R, Raval N, Gondaliya P, Kalia K, Tekade R K . J. Colloid Interface Sci., 2019,544:61. https://www.ncbi.nlm.nih.gov/pubmed/30825801

doi: 10.1016/j.jcis.2019.02.073 pmid: 30825801
[68]
Saha Ray A, Ghann W E, Tsoi P S, Szychowski B, Dockery L T, Pak Y J, Li W, Kane M A, Swaan P, Daniel M C . Langmuir, 2019,35(9):3391. https://www.ncbi.nlm.nih.gov/pubmed/30712354

doi: 10.1021/acs.langmuir.8b03196 pmid: 30712354
[69]
Gillich T, Acikgöz C, Isa L, Schlüter A D, Spencer N D, Textor M . ACS Nano, 2013,7(1):316. https://www.ncbi.nlm.nih.gov/pubmed/23214719

doi: 10.1021/nn304045q pmid: 23214719
[70]
Zhao G, Tong L, Cao P, Nitz M, Winnik M A . Langmuir, 2014,30(23):6980. https://www.ncbi.nlm.nih.gov/pubmed/24898128

doi: 10.1021/la501142v pmid: 24898128
[71]
Xu X, Jian Y, Li Y, Zhang X, Tu Z, Gu Z . ACS Nano, 2014,8(9):9255. https://www.ncbi.nlm.nih.gov/pubmed/25184443

doi: 10.1021/nn503118f pmid: 25184443
[72]
Jishkariani D, Wu Y, Wang D, Liu Y, van Blaaderen A, Murray C B . ACS Nano, 2017,11(8):7958. https://www.ncbi.nlm.nih.gov/pubmed/28771319

doi: 10.1021/acsnano.7b02485 pmid: 28771319
[73]
Shon Y S, Choi D, Dare J, Dinh T . Langmuir, 2008,24(13):6924. https://www.ncbi.nlm.nih.gov/pubmed/18507425

doi: 10.1021/la800759n pmid: 18507425
[74]
Wu Y, Chen C, Zhou Q, Li Q X, Yuan Y, Tong Y, Wang H, Zhou X, Sun Y, Sheng X . J. Colloid Interface Sci., 2019,539:361. https://www.ncbi.nlm.nih.gov/pubmed/30594011

doi: 10.1016/j.jcis.2018.12.064 pmid: 30594011
[75]
Roucoux A, Schulz J, Patin H . Chem. Rev., 2002,102(10):3757. https://www.ncbi.nlm.nih.gov/pubmed/12371901

doi: 10.1021/cr010350j pmid: 12371901
[76]
Bell A T . Science, 2003,299(5613):1688. https://www.ncbi.nlm.nih.gov/pubmed/12637733

doi: 10.1126/science.1083671 pmid: 12637733
[77]
Narayanan R, El-Sayed M A . J. Phys. Chem. B, 2005,109(26):12663. https://www.ncbi.nlm.nih.gov/pubmed/16852568

doi: 10.1021/jp051066p pmid: 16852568
[78]
Somorjai G A, Contreras A M, Montano M, Rioux R M . Proc. Natl. Acad. Sci. U. S. A., 2006,103(28):10577. https://www.ncbi.nlm.nih.gov/pubmed/16740668

doi: 10.1073/pnas.0507691103 pmid: 16740668
[79]
Van Santen R A . Acc. Chem. Res., 2009,42(1):57. https://www.ncbi.nlm.nih.gov/pubmed/18986176

doi: 10.1021/ar800022m pmid: 18986176
[80]
Jia C J, Schuth F . Phys. Chem. Chem. Phys., 2011,13(7):2457. https://www.ncbi.nlm.nih.gov/pubmed/21246127

doi: 10.1039/c0cp02680h pmid: 21246127
[81]
Chen T, Chen B-T, Bukhryakov K V, Rodionov V O . Chem. Commun., 2017,53(85):11638. https://www.ncbi.nlm.nih.gov/pubmed/28956878

doi: 10.1039/c7cc06146c pmid: 28956878
[82]
Balanta A, Godard C, Claver C . Chem. Soc. Rev., 2011,40(10):4973. https://www.ncbi.nlm.nih.gov/pubmed/21879073

doi: 10.1039/c1cs15195a pmid: 21879073
[83]
Astruc D . Inorg. Chem., 2007,46(6):1884. https://www.ncbi.nlm.nih.gov/pubmed/17348719

doi: 10.1021/ic062183h pmid: 17348719
[84]
Narayanan R, El-Sayed M A . J. Am. Chem. Soc., 2003,125(27):8340. https://www.ncbi.nlm.nih.gov/pubmed/12837106

doi: 10.1021/ja035044x pmid: 12837106
[85]
Ikeda S, Ishino S, Harada T, Okamoto N, Sakata T, Mori H, Kuwabata S, Torimoto T, Matsumura M . Angew. Chem. Int. Ed., 2006,45(42):7063. https://www.ncbi.nlm.nih.gov/pubmed/17009288

doi: 10.1002/anie.200602700 pmid: 17009288
[86]
Chen T, Xu Z . ChemistrySelect, 2018,3(23):6421.
[87]
White R J, Luque R, Budarin V L, Clark J H, Macquarrie D J . Chem. Soc. Rev., 2009,38(2):481. https://www.ncbi.nlm.nih.gov/pubmed/19169462

doi: 10.1039/b802654h pmid: 19169462
[88]
Thomas J M, Johnson B F G, Raja R, Sankar G, Midgley P A . Acc. Chem. Res., 2003,36(1):20. https://www.ncbi.nlm.nih.gov/pubmed/12534301

doi: 10.1021/ar990017q pmid: 12534301
[89]
Kamat P V . J. Phys. Chem. Lett., 2010,1(2):520.
[90]
Liang Y, Li Y, Wang H, Dai H . J. Am. Chem. Soc., 2013,135(6):2013. https://www.ncbi.nlm.nih.gov/pubmed/23339685

doi: 10.1021/ja3089923 pmid: 23339685
[91]
Niu Z, Li Y . Chem. Mater., 2014,26(1):72.
[92]
Azcárate J C, Corthey G, Pensa E, Vericat C, Fonticelli M H, Salvarezza R C, Carro P . J. Phys. Chem. Lett., 2013,4(18):3127.
[93]
Latham A H, Williams M E . Acc. Chem. Res., 2008,41(3):411. https://www.ncbi.nlm.nih.gov/pubmed/18251514

doi: 10.1021/ar700183b pmid: 18251514
[94]
Ford M J, Masens C, Cortie M B . Surf. Rev. Lett., 2006,13:297.
[95]
Vilé G, Albani D, Almora-Barrios N, López N, Pérez-Ramírez J . ChemCatChem, 2016,8(1):21.
[96]
Schoenbaum C A, Schwartz D K, Medlin J W . Acc. Chem. Res., 2014,47(4):1438. https://www.ncbi.nlm.nih.gov/pubmed/24635215

doi: 10.1021/ar500029y pmid: 24635215
[97]
Ulman A . Chem. Rev., 1996,96(4):1533. https://www.ncbi.nlm.nih.gov/pubmed/11848802

doi: 10.1021/cr9502357 pmid: 11848802
[98]
Love J C, Estroff L A, Kriebel J K, Nuzzo R G, Whitesides G M . Chem. Rev., 2005,105(4):1103. https://www.ncbi.nlm.nih.gov/pubmed/15826011

doi: 10.1021/cr0300789 pmid: 15826011
[99]
Chen T, Rodionov V O . ACS Catal., 2016,6(6):4025.
[100]
Koczkur K M, Mourdikoudis S, Polavarapu L, Skrabalak S E . Dalton Trans., 2015,44(41):17883. https://www.ncbi.nlm.nih.gov/pubmed/26434727

doi: 10.1039/c5dt02964c pmid: 26434727
[101]
Lopez-Sanchez J A, Dimitratos N, Hammond C, Brett G L, Kesavan L, White S, Miedziak P, Tiruvalam R, Jenkins R L, Carley A F, Knight D, Kiely C J, Hutchings G J . Nature Chem., 2011,3:551.
[102]
Astruc D, Boisselier E, Ornelas C . Chem. Rev., 2010,110(4):1857. https://www.ncbi.nlm.nih.gov/pubmed/20356105

doi: 10.1021/cr900327d pmid: 20356105
[103]
Zhao M, Crooks R M . Angew. Chem. Int. Ed., 1999,38(3):364. https://www.ncbi.nlm.nih.gov/pubmed/29711654

doi: 10.1002/(SICI)1521-3773(19990201)38:3【-逻*辑*与-】amp;amp;lt;364::AID-ANIE364【-逻*辑*与-】amp;amp;gt;3.0.CO;2-L pmid: 29711654
[104]
Roya S, Majid M H, Shima A, Niousha N, Mohammad R N . Curr. Org. Chem., 2016,20(6):696.
[105]
Zhao P, Feng X, Huang D, Yang G, Astruc D . Coord. Chem. Rev., 2015,287:114.
[106]
Bingwa N, Meijboom R . J. Mol. Catal. A: Chem., 2015,396:1.
[107]
Bingwa N, Meijboom R . J. Phys. Chem. C, 2014,118(34):19849. https://www.ncbi.nlm.nih.gov/pubmed/25177410

doi: 10.1021/jp506234r pmid: 25177410
[108]
Wang Q, Zhang Y, Zhou Y, Zhang Z, Xu Y, Zhang C, Sheng X . New J. Chem., 2015,39(12):9942.
[109]
Wang L, Yang Q, Cui Y, Gao D, Kang J, Sun H, Zhu L, Chen S . New J. Chem., 2017,41(16):8399.
[110]
Johnson J A, Makis J J, Marvin K A, Rodenbusch S E, Stevenson K J . J. Phys. Chem. C, 2013,117(44):22644.
[111]
Ricciardi R, Huskens J, Verboom W . J. Flow. Chem., 2015,5(4):228. http://www.akademiai.com/doi/abs/10.1556/1846.2015.00018

doi: 10.1556/1846.2015.00018
[112]
Wu B, Huang H, Yang J, Zheng N, Fu G . Angew. Chem. Int. Ed., 2012,51(14):3440. https://www.ncbi.nlm.nih.gov/pubmed/22374847

doi: 10.1002/anie.201108593 pmid: 22374847
[113]
Antonels N C, Meijboom R . Catal. Commun., 2014,57:148. https://www.ncbi.nlm.nih.gov/pubmed/9600207

doi: 10.1097/00005072-199802000-00006 pmid: 9600207
[114]
Ficker M, Petersen J F, Gschneidtner T, Rasmussen A L, Purdy T, Hansen J S, Hansen T H, Husted S, Moth Poulsen K, Olsson E, Christensen J B . Chem. Commun., 2015,51(49):9957. https://www.ncbi.nlm.nih.gov/pubmed/25997569

doi: 10.1039/c5cc00347d pmid: 25997569
[115]
Luo L, Duan Z, Li H, Kim J, Henkelman G, Crooks R M . J. Am. Chem. Soc., 2017,139(15):5538. https://www.ncbi.nlm.nih.gov/pubmed/28387511

doi: 10.1021/jacs.7b01653 pmid: 28387511
[116]
Ncube P, Hlabathe T, Meijboom R . Appl. Surf. Sci., 2015,357:1141.
[117]
Wang L, Zhang J, Guo X, Chen S, Cui Y, Yu Q, Yang L, Sun H, Gao D, Xie D . New J. Chem., 2018,42(24):19740.
[118]
Ilunga A K, Meijboom R . J. Mol. Catal. A: Chem., 2016,411:48.
[119]
Luo L, Zhang L, Henkelman G, Crooks R M . J. Phys. Chem. Lett., 2015,6(13):2562. https://www.ncbi.nlm.nih.gov/pubmed/26266734

doi: 10.1021/acs.jpclett.5b00985 pmid: 26266734
[120]
Luo L, Zhang L, Duan Z, Lapp A S, Henkelman G, Crooks R M . ACS Nano, 2016,10(9):8760. https://www.ncbi.nlm.nih.gov/pubmed/27585091

doi: 10.1021/acsnano.6b04448 pmid: 27585091
[121]
Staubitz A, Robertson A P M, Manners I . Chem. Rev., 2010,110(7):4079. https://www.ncbi.nlm.nih.gov/pubmed/20672860

doi: 10.1021/cr100088b pmid: 20672860
[122]
Staubitz A, Robertson A P M, Sloan M E, Manners I . Chem. Rev., 2010,110(7):4023. https://www.ncbi.nlm.nih.gov/pubmed/20672859

doi: 10.1021/cr100105a pmid: 20672859
[123]
Ke D, Li Y, Wang J, Zhang L, Wang J, Zhao X, Yang S, Han S . Int. J. Hydrogen Energy, 2016,41(4):2564. https://linkinghub.elsevier.com/retrieve/pii/S0360319915311587

doi: 10.1016/j.ijhydene.2015.11.142
[124]
Wang Q, Fu F, Escobar A, Moya S, Ruiz J, Astruc D . ChemCatChem, 2018,10(12):2673.
[125]
Wang Q, Fu F, Yang S, Martinez Moro M, Ramirez M d l A, Moya S, Salmon L, Ruiz J, Astruc D . ACS Catal., 2019,9(2):1110.
[126]
Choudary B M, Madhi S, Chowdari N S, Kantam M L, Sreedhar B . J. Am. Chem. Soc., 2002,124(47):14127. https://www.ncbi.nlm.nih.gov/pubmed/12440911

doi: 10.1021/ja026975w pmid: 12440911
[127]
Astruc D, Lu F, Aranzaes J R . Angew. Chem. Int. Ed., 2005,44(48):7852. https://www.ncbi.nlm.nih.gov/pubmed/16304662

doi: 10.1002/anie.200500766 pmid: 16304662
[128]
Ricciardi R, Huskens J, Verboom W . Org. Biomol. Chem., 2015,13(17):4953. https://www.ncbi.nlm.nih.gov/pubmed/25814154

doi: 10.1039/c5ob00289c pmid: 25814154
[129]
Ye R, Zhukhovitskiy A V, Kazantsev R V, Fakra S C, Wickemeyer B B, Toste F D, Somorjai G A . J. Am. Chem. Soc., 2018,140(11):4144. https://www.ncbi.nlm.nih.gov/pubmed/29506380

doi: 10.1021/jacs.8b01017 pmid: 29506380
[130]
Liu X, Gregurec D, Irigoyen J, Martinez A, Moya S, Ciganda R, Hermange P, Ruiz J, Astruc D . Nat. Commun., 2016,7:13152. https://www.ncbi.nlm.nih.gov/pubmed/27759006

doi: 10.1038/ncomms13152 pmid: 27759006
[131]
Ye R, Zhao J, Yuan B, Liu W C, Rodrigues De Araujo J, Faucher F F, Chang M, Deraedt C V, Toste F D, Somorjai G A . Nano Lett., 2017,17(1):584. https://www.ncbi.nlm.nih.gov/pubmed/27966991

doi: 10.1021/acs.nanolett.6b04827 pmid: 27966991
[132]
Anderson M J, Ostojic N, Crooks R M . Anal. Chem., 2017,89(20):11027. https://www.ncbi.nlm.nih.gov/pubmed/28968078

doi: 10.1021/acs.analchem.7b03016 pmid: 28968078
[133]
Ostojic N, Crooks R M . Langmuir, 2016,32(38):9727. https://www.ncbi.nlm.nih.gov/pubmed/27641461

doi: 10.1021/acs.langmuir.6b02578 pmid: 27641461
[134]
Ostojic N, Duan Z, Galyamova A, Henkelman G, Crooks R M . J. Am. Chem. Soc., 2018,140(42):13775. https://www.ncbi.nlm.nih.gov/pubmed/30351132

doi: 10.1021/jacs.8b08036 pmid: 30351132
[135]
Trindell J A, Clausmeyer J, Crooks R M . J. Am. Chem. Soc., 2017,139(45):16161. https://www.ncbi.nlm.nih.gov/pubmed/29099183

doi: 10.1021/jacs.7b06775 pmid: 29099183
[136]
Xiong Z, Shen M, Shi X . Science China Materials, 2018,61(11):1387.
[137]
Fan Y, Sun W, Shi X . Small Methods, 2017,1(12):1700224.
[138]
Qiao Z, Shi X . Prog. Polym. Sci., 2015,44:1.
[139]
Wang H, Zheng L, Peng C, Shen M, Shi X, Zhang G . Biomaterials, 2013,34(2):470. https://www.ncbi.nlm.nih.gov/pubmed/23088841

doi: 10.1016/j.biomaterials.2012.09.054 pmid: 23088841
[140]
Zhao L, Shi X, Zhao J . Drug Delivery, 2017,24(2):81. https://www.ncbi.nlm.nih.gov/pubmed/21410324

doi: 10.1089/jamp.2010.0831 pmid: 21410324
[141]
Ma W, Fu F, Zhu J, Huang R, Zhu Y, Liu Z, Wang J, Conti P S, Shi X, Chen K . Nanoscale, 2018,10(13):6113. https://www.ncbi.nlm.nih.gov/pubmed/29547220

doi: 10.1039/C7NR09269E pmid: 29547220
[142]
Liu J, Xiong Z, Zhang J, Peng C, Klajnert-Maculewicz B, Shen M, Shi X . ACS Appl. Mater. Interfaces, 2019,11(17):15212. https://www.ncbi.nlm.nih.gov/pubmed/30964632

doi: 10.1021/acsami.8b21679 pmid: 30964632
[143]
Xing Y, Zhu J, Zhao L, Xiong Z, Li Y, Wu S, Chand G, Shi X, Zhao J . Drug Delivery, 2018,25(1):1384. https://www.ncbi.nlm.nih.gov/pubmed/29869521

doi: 10.1080/10717544.2018.1474968 pmid: 29869521
[144]
Xu X, Zhao L, Li X, Wang P, Zhao J, Shi X, Shen M . Biomaterials Science, 2017,5(12):2393. https://www.ncbi.nlm.nih.gov/pubmed/29038813

doi: 10.1039/c7bm00826k pmid: 29038813
[145]
Wen S, Zhao L, Zhao Q, Li D, Liu C, Yu Z, Shen M, Majoral J P, Mignani S, Zhao J, Shi X . Journal of Materials Chemistry B, 2017,5(21):3810. https://www.ncbi.nlm.nih.gov/pubmed/32264242

doi: 10.1039/c7tb00543a pmid: 32264242
[146]
Li X, Xiong Z, Xu X, Luo Y, Peng C, Shen M, Shi X . ACS Appl. Mater. Interfaces, 2016,8(31):19883. https://www.ncbi.nlm.nih.gov/pubmed/27434031

doi: 10.1021/acsami.6b04827 pmid: 27434031
[147]
Wolfbeis O S . Chem. Soc. Rev., 2015,44(14):4743. https://www.ncbi.nlm.nih.gov/pubmed/25620543

doi: 10.1039/c4cs00392f pmid: 25620543
[148]
Yang L, Wang H, Li D, Li L, Lou X, Liu H . Chem. Mater., 2018,30(15):5507.
[149]
Wang X, Cai X, Hu J, Shao N, Wang F, Zhang Q, Xiao J, Cheng Y . J. Am. Chem. Soc., 2013,135(26):9805. https://www.ncbi.nlm.nih.gov/pubmed/23789713

doi: 10.1021/ja402903h pmid: 23789713
[150]
Zhu J, Wang G, Alves C S, Tomás H, Xiong Z, Shen M, Rodrigues J, Shi X . Langmuir, 2018,34(41):12428. https://www.ncbi.nlm.nih.gov/pubmed/30251859

doi: 10.1021/acs.langmuir.8b02901 pmid: 30251859
[151]
Kong L, Shi X . Supramolecular Chemistry of Biomimetic Systems, Springer Singapore, Singapore, 2017,285.
[152]
Shan Y, Luo T, Peng C, Sheng R, Cao A, Cao X, Shen M, Guo R, Tomás H, Shi X . Biomaterials, 2012,33(10):3025. https://www.ncbi.nlm.nih.gov/pubmed/22248990

doi: 10.1016/j.biomaterials.2011.12.045 pmid: 22248990
[153]
Zhou Z, Wang Y, Yan Y, Zhang Q, Cheng Y . ACS Nano, 2016,10(4):4863. https://www.ncbi.nlm.nih.gov/pubmed/27054555

doi: 10.1021/acsnano.6b02058 pmid: 27054555
[154]
Yan Y, Gao X, Zhang S, Wang Y, Zhou Z, Xiao J, Zhang Q, Cheng Y . ACS Appl. Mater. Interfaces, 2019,11(1):160. https://www.ncbi.nlm.nih.gov/pubmed/30525391

doi: 10.1021/acsami.8b15827 pmid: 30525391
[155]
Yuan X, Wen S, Shen M, Shi X . Analytical Methods, 2013,5(20):5486.
[156]
Yang L, Lou X, Yu F, Liu H . Analyst, 2019,144(8):2765. https://www.ncbi.nlm.nih.gov/pubmed/30869682

doi: 10.1039/c9an00132h pmid: 30869682
[157]
Ning D, Zhang H, Zheng J . J. Electroanal. Chem., 2014, 717-718:29. https://www.ncbi.nlm.nih.gov/pubmed/24926227

doi: 10.1016/j.jelechem.2014.01.020 pmid: 24926227
[158]
Ding R, Fan X, Xue L, Ma X, Chen S, Luo Z . Anal. Lett., 2015,48(11):1686.
[159]
Baghayeri M, Alinezhad H, Tarahomi M, Fayazi M, Ghanei-Motlagh M, Maleki B . Appl. Surf. Sci., 2019,478:87. https://linkinghub.elsevier.com/retrieve/pii/S0169433219302326

doi: 10.1016/j.apsusc.2019.01.201
[160]
Wang L, Zhu L, Yu Q, Chen S, Cui Y, Sun H, Gao D, Lan X, Yang Q, Xiao H . J. Biomater. Sci., Polym. Ed., 2018,29(18):2267. https://www.ncbi.nlm.nih.gov/pubmed/30382000

doi: 10.1080/09205063.2018.1541499 pmid: 30382000
[161]
Cui Y, Zhang J, Yu Q, Guo X, Chen S, Sun H, Liu S, Wang L, Lai X, Gao D . New J. Chem., 2019.
[162]
Niu X, Huang L, Zhao J, Yin M, Luo D, Yang Y . Analytical Methods, 2016,8(5):1091. https://www.ncbi.nlm.nih.gov/pubmed/11891896

doi: 10.1002/1521-3765(20020301)8:5【-逻*辑*与-】amp;amp;lt;1091::aid-chem1091【-逻*辑*与-】amp;amp;gt;3.0.co;2-y pmid: 11891896
[163]
Zhao M, Huang D, Zhuo Y, Chai Y Q, Yuan R . Electrochim. Acta, 2016,212:734.
[164]
Kavosi B, Navaee A, Salimi A . J. Lumin., 2018,204:368. https://linkinghub.elsevier.com/retrieve/pii/S0022231318304381

doi: 10.1016/j.jlumin.2018.08.012
[165]
Tan L, Ge J, Jiao M, Jie G, Niu S . Talanta, 2018,183:108. https://www.ncbi.nlm.nih.gov/pubmed/29567151

doi: 10.1016/j.talanta.2018.02.063 pmid: 29567151
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[4] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[5] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[6] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[7] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[8] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[9] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[10] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[11] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[12] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[13] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[14] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[15] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.