中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (1): 151-161 DOI: 10.7536/PC200958 Previous Articles   

• Review •

Analysis Methods, Occurrence, and Transformation of Reactive Gaseous Mercury in the Atmosphere

Yingying Fang1,2, Ying Wang1,2, Jianbo Shi1,2,4, Yongguang Yin1,2,4,*(), Yong Cai1,3, Guibin Jiang1,2,4   

  1. 1 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,Beijing 100085, China
    2 University of Chinese Academy of Sciences,Beijing 100049, China
    3 Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
    4 School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences,Hangzhou 310000, China
  • Received: Revised: Online: Published:
  • Contact: Yongguang Yin
  • Supported by:
    the National Natural Science Foundation of China(21976193); the National Natural Science Foundation of China(QYZDB-SSWDQC018); the CAS Interdisciplinary Innovation Team(JCTD-2018-04); the National Young Top-Notch Talents(W03070030); the Youth Innovation Promotion Association of CAS(2016037)
Richhtml ( 23 ) PDF ( 696 ) Cited
Export

EndNote

Ris

BibTeX

Reactive gaseous mercury(RGM), also known as gaseous oxidized mercury, dominates atmospheric mercury deposition and is critical to the global cycle of mercury. This review introduces various sampling and analysis methods of RGM in detail, and discusses the advantages and limitations of the current techniques. The environmental processes including the formation, occurrence, and depletion of RGM in the atmosphere and related mechanisms are reviewed, and the contribution of each process in the atmospheric mercury cycle is explored. In view of the current analytical difficulties of RGM(e.g., ultralow concentration and sampling problems) and key scientific issues(e.g., chemical form and transformation) in the RGM research, efforts should be made to develop the feasible methods for RGM collection and speciation determinatiton in the real environment, so as to further explore its environmental behavior. This is challenging but important for the research of atmospheric mercury and will be helpful for understanding the role of RGM in cycle processes of atmospheric mercury.

Contents

1 Introduction

2 Sampling and analysis of reactive gaseous mercury

2.1 Sampling of reactive gaseous mercury

2.2 Analysis of reactive gaseous mercury

3 Occurrence and transformation of reactive gaseous mercury in the atmosphere

3.1 Formation of reactive gaseous mercury in the atmosphere

3.2 Occurrence of reactive gaseous mercury in the atmosphere

3.3 Depletion of reactive gaseous mercury from the atmosphere

4 Conclusion and outlook

Fig. 1 Three sampling methods of reactive gaseous mercury (a) KCl-coated denuder[20],(b )Multi-membrane filter[21] and(c) Mist chamber[22](modified from reference [20]; [21]; [22])
Table 1 Comparison of sampling and analysis of reactive gaseous mercury
Table 2 Comparison of reactive gaseous mercury monitoring results by different sampling methods
Fig. 2 Temperature programmed desorption profiles of different Hg compounds (a) and field samples(b~g). By comparing temperature programmed desorption profiles of field sample to those of mercury standard, the Hg species in field samples could be inferred;(b) shows HgCl2/HgBr2;(c) shows Hg-sulfur, and nitrogen compounds;(d) shows a mixture of compounds;(e) shows HgO, Hg-nitrogen, and sulfur compounds;(f) shows Hg-nitrogen compounds with an unknown compound producing a high residual tail, and(g) shows a gradual increase with an unknown peak[28]. Copyright 2016, American Chemical Society
Fig. 3 Chemical transformation of mercury in the atmosphere
Table 3 Comparison of reactive gaseous mercury from worldwide locations
Table 4 Different depletion ways of reactive gaseous mercury and the influencing factors
[1]
UNEP, Global Mercury Assessment 2018, Geneva, Switzerland, 2019.
[2]
Pirrone N, Cinnirella S, Feng X, Finkelman R B, Friedli H R, Leaner J, Mason R, Mukherjee A B, Stracher G B, Streets D G, Telmer K. Atmos. Chem. Phys., 2010, 10: 5951.

doi: 10.5194/acp-10-5951-2010
[3]
Steffen A, Douglas T, Amyot M, Ariya P, Aspmo K, Berg T, Bottenheim J, Brooks S, Cobbett F, Dastoor A, Dommergue A, Ebinghaus R, Ferrari C, Gardfeldt K, Goodsite M E, Lean D, Poulain A J, Scherz C, Skov H, Sommar J, Temme C. Atmos. Chem. Phys., 2008, 8: 1445.

doi: 10.5194/acp-8-1445-2008
[4]
Lindberg S, Bullock R, Ebinghaus R, Engstrom D, Feng X, Fitzgerald W, Pirrone N, Prestbo E, Seigneur C. Ambio., 2007, 36: 19.

doi: 10.1579/0044-7447(2007)36[19:ASOPAU]2.0.CO;2
[5]
Ariya P A, Amyot M, Dastoor A, Deeds D, Feinberg A, Kos G, Poulain A, Ryjkov A, Semeniuk K, Subir M, Toyota K. Chem. Rev., 2015, 115: 3760.
[6]
Schroeder W H, Munthe J. Atmos. Environ., 1998, 32: 809.

doi: 10.1016/S1352-2310(97)00293-8
[7]
Lin C J, Pehkonen S O. Atmos. Environ., 1999, 33: 2067.

doi: 10.1016/S1352-2310(98)00387-2
[8]
Lindqvist O, Rodhe H. Tellus , Ser. B : Chem. Phys. Meteorol., 1985, 37: 136.
[9]
Munthe J, Wangberg I, Pirrone N, Iverfeldt A, Ferrara R, Ebinghaus R, Feng X, Gardfeldt K, Keeler G, Lanzillotta E, Lindberg S E, Lu J, Mamane Y, Prestbo E, Schmolke S, Schroeder W H, Sommar J, Sprovieri F, Stevens R K, Stratton W, Tuncel G, Urba A. Atmos. Environ., 2001, 35: 3007.

doi: 10.1016/S1352-2310(01)00104-2
[10]
Lindberg S E, Stratton W J. Environ. Sci. Technol., 1998, 32: 49.

doi: 10.1021/es970546u
[11]
Xiao Z F, Munthe J, Lindqvist O. Water , Air , Soil Pollut., 1991, 56: 141.
[12]
Tong Y D , Zhang W , Deng C Y , Chen L , Wang H H , Wang X J , Schauer J J. Acta Scientiae Circumstantiae , 2016, 36( 5): 1515.
童银栋, 张巍, 邓春燕 , 陈龙, 王欢欢, 王学军, Schauer J J. 环境科学学报, 2016, 36( 05): 1515.
[13]
Ye Z, Mao H, Driscoll C T, Wang Y, Zhang Y, Jaegle L. J. Adv. Model. Earth. Sy., 2018, 10: 668.
[14]
Frances-Monerris A, Carmona-Garcia J, Ulises Acuna A, Davalos J Z, Cuevas C A, Kinnison D E, Francisco J S, Saiz-Lopez A, Roca-Sanjuan D. Angew. Chem. Int. Edit., 2020, 59: 7605.

doi: 10.1002/anie.v59.19
[15]
Landis M S, Ryan J V, ter Schure A F H, Laudal D. Environ. Sci. Technol., 2014, 48: 13540.

doi: 10.1021/es500783t
[16]
Pongprueksa P, Lin C J, Lindberg S E, Jang C, Braverman T, Bullock O R, Ho T C, Chu H W. Atmos. Environ., 2008, 42: 1828.

doi: 10.1016/j.atmosenv.2007.11.020
[17]
Amos H M, Jacob D J, Holmes C D, Fisher J A, Wang Q, Yantosca R M, Corbitt E S, Galarneau E, Rutter A P, Gustin M S, Steffen A, Schauer J J, Graydon J A, St Louis V L, Talbot R W, Edgerton E S, Zhang Y, Sunderland E M. Atmos. Chem. Phys., 2012, 12: 591.

doi: 10.5194/acp-12-591-2012
[18]
Shia R L, Seigneur C, Pai P, Ko M, Sze N D. J. Geophys. Res. : Atmos., 1999, 104: 23747.
[19]
Li Z G , Feng X B , Zheng W , Shang L H , Fu X W. Environmental Monitoring in China , 2007,( 2): 19.
李仲根, 冯新斌, 郑伟, 商立海, 付学吾. 中国环境监测, 2007,( 2): 19.
[20]
Landis M S, Stevens R K, Schaedlich F, Prestbo E M. Environ. Sci. Technol., 2002, 36: 3000.

doi: 10.1021/es015887t
[21]
Miller M B, Dunham-Cheatham S M, Gustin M S, Edwards G C. Atmos. Meas. Tech., 2019, 12: 1207.

doi: 10.5194/amt-12-1207-2019
[22]
Stratton W J, Lindberg S E. Water , Air , Soil Pollut., 1995, 80: 1269.
[23]
Xiao Z, Sommar J, Wei S, Lindqvist O. FreseniusJ. Anal. Chem., 1997, 358: 386.
[24]
Feng X B, Sommar J, Gardfeldt K, Lindqvist O. FreseniusJ. Anal. Chem., 2000, 366: 423.
[25]
McClure C D, Jaffe D A, Edgerton E S. Environ. Sci. Technol., 2014, 48: 11437.

doi: 10.1021/es502545k
[26]
Huang J, Lyman S N, Hartman J S, Gustin M S. Environ. Sci. : Processes Impacts , 2014, 16: 374.
[27]
Lyman S N, Gustin M S, Prestbo E M. Atmos. Environ., 2010, 44: 246.

doi: 10.1016/j.atmosenv.2009.10.008
[28]
Gustin M S, Pierce A M, Huang J, Miller M B, Holmes H A, Loria-Salazar S M. Environ. Sci. Technol. , 2016, 50: 12225.

doi: 10.1021/acs.est.6b03339
[29]
Stratton W J, Lindberg S E, Perry C J. Environ. Sci. Technol., 2001, 35: 170.

doi: 10.1021/es001260j
[30]
Olson E S, Sharma R K, Pavlish J H. Anal. Bioanal. Chem., 2002, 374: 1045.

doi: 10.1007/s00216-002-1602-6
[31]
Deeds D A, Ghoshdastidar A, Raofie F, Guerette E A, Tessier A, Ariya P A. Anal. Chem., 2015, 87: 5109.

doi: 10.1021/ac504545w
[32]
Gustin M S, Amos H M, Huang J Y, Miller M B, Heidecorn K. Atmos. Chem. Phys., 2015, 15: 5697.

doi: 10.5194/acp-15-5697-2015
[33]
Huang J, Gustin M S. Environ. Sci. Technol. , 2015, 49: 6102.

doi: 10.1021/acs.est.5b00098
[34]
Huang J, Miller M B, Weiss-Penzias P, Gustin M S. Environ. Sci. Technol. , 2013, 47: 7307.

doi: 10.1021/es4012349
[35]
Gustin M S, Dunham-Cheatham S M, Zhang L. Environ. Sci. Technol., 2019, 53: 14489.

doi: 10.1021/acs.est.9b04648
[36]
Pierce A M, Gustin M S. Environ. Sci. Technol., 2017, 51: 436.

doi: 10.1021/acs.est.6b04707
[37]
Huang J, Miller M B, Edgerton E, Gustin M S. Atmos. Chem. Phys. , 2017, 17: 1689.

doi: 10.5194/acp-17-1689-2017
[38]
Luippold A, Gustin M S, Dunham-Cheatham S M, Zhang L. Atmos. Environ., 2020, 224.
[39]
Lyman S N, Gustin M S, Prestbo E M, Kilner P I, Edgerton E, Hartsell B. Environ. Sci. Technol., 2009, 43: 6235.

doi: 10.1021/es901192e
[40]
Bu X, Zhang H, Lv G, Lin H, Chen L, Yin X, Shen G, Yuan W, Zhang W, Wang X, Tong Y. Environ. Sci. Technol. Lett. , 2018, 5: 600.

doi: 10.1021/acs.estlett.8b00439
[41]
Tong Y, Eichhorst T, Olson M R, Rutter A P, Shafer M M, Wang X, Schauer J. J. Atmos. Res., 2014, 138: 324.
[42]
Luippold A, Gustin M S, Dunham-Cheatham S M, Castro M, Luke W, Lyman S, Zhang L. Environ. Sci. Technol. , 2020, 54: 7922.

doi: 10.1021/acs.est.0c02283
[43]
Huang J, Gustin M S. Environ. Sci. Technol., 2015, 49: 432.

doi: 10.1021/es502836w
[44]
Sheu G R, Mason R P. Environ. Sci. Technol., 2001, 35: 1209.

doi: 10.1021/es001183s
[45]
Rutter A P, Hanford K L, Zwers J T, Perillo-Nicholas A L, Schauer J J, Olson M L. J. Air Waste Manage. Assoc., 2008, 58: 377.

doi: 10.3155/1047-3289.58.3.377
[46]
Lyman S N, Jaffe D A, Gustin M S. Atmos. Chem. Phys., 2010, 10: 8197.

doi: 10.5194/acp-10-8197-2010
[47]
Gustin M S, Weiss-Penzias P S, Peterson C. Atmos. Chem. Phys. , 2012, 12: 9201.

doi: 10.5194/acp-12-9201-2012
[48]
U. S. EPA. EPA -821- R -02- 019, 2008.
[49]
Shuuaeua O V, Gustaytis M A, Anoshin G N. Anal. Chim. Acta , 2008, 621: 148.

doi: 10.1016/j.aca.2008.05.034
[50]
Raposo C, Windmoller C C, Junior W A D. Waste Manage., 2003, 23: 879.

doi: 10.1016/S0956-053X(03)00089-8
[51]
Feng X B, Lu J Y, Gregoire D C, Hao Y J, Banic C M, Schroeder W H. Anal. Bioanal. Chem., 2004, 380: 683.

doi: 10.1007/s00216-004-2803-y
[52]
Pacyna E G, Pacyna J M, Steenhuisen F, Wilson S. Atmos. Environ., 2006, 40: 4048.

doi: 10.1016/j.atmosenv.2006.03.041
[53]
Driscoll C T, Mason R P, Chan H M, Jacob D J, Pirrone N. Environ. Sci. Technol., 2013, 47: 4967.

doi: 10.1021/es305071v
[54]
Lindberg S E, Brooks S, Lin C J, Scott K J, Landis M S, Stevens R K, Goodsite M, Richter A. Environ. Sci. Technol., 2002, 36: 1245.

doi: 10.1021/es0111941
[55]
Sommar J, Gardfeldt K, Stromberg D, Feng X B. Atmos. Environ., 2001, 35: 3049.

doi: 10.1016/S1352-2310(01)00108-X
[56]
Holmes C D, Jacob D J, Yang X. Geophys. Res. Lett., 2006, 33.
[57]
Holmes C D, Jacob D J, Corbitt E S, Mao J, Yang X, Talbot R, Slemr F. Atmos. Chem. Phys., 2010, 10: 12037.

doi: 10.5194/acp-10-12037-2010
[58]
Gratz L E, Ambrose J L, Jaffe D A, Shah V, Jaegle L, Stutz J, Festa J, Spolaor M, Tsai C, Selin N E, Song S, Zhou X, Weinheimer A J, Knapp D J, Montzka D D, Flocke F M, Campos T L, Apel E, Hornbrook R, Blake N J, Hall S, Tyndall G S, Reeves M, Stechman D, Stell M. Geophys. Res. Lett., 2015, 42: 10494.
[59]
Stephens C R, Shepson P B, Steffen A, Bottenheim J W, Liao J, Huey L G, Apel E, Weinheimer A, Hall S R, Cantrell C, Sive B C, Knapp D J, Montzka D D, Hornbrook R S. J. Geophys. Res. : Atmos. , 2012, 117.
[60]
Peleg M, Tas E, Obrist D, Matveev V, Moore C, Gabay M, Luria M. Environ. Sci. Technol., 2015, 49: 14008.

doi: 10.1021/acs.est.5b03894
[61]
Goodsite M E, Plane J M C, Skov H. Environ. Sci. Technol. , 2004, 38: 1772.

doi: 10.1021/es034680s
[62]
Saiz-Lopez A, Ulises Acuna A, Trabelsi T, Carmona-Garcia J, Davalos J Z, Rivero D, Cuevas C A, Kinnison D E, Sitkiewicz S P, Roca-Sanjuan D, Francisco J S. J. Am. Chem. Soc., 2019, 141: 8698.

doi: 10.1021/jacs.9b02890
[63]
Sander S P, Finlayson-Pitts B, Friedl R R, Golden D M, Huie R, Keller-Rudek H. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies (Evaluation No. 15), Pasadena, CA: Jet Propulsion Laboratory, 2006.
[64]
Goodsite M E, Plane J M C, Skov H. Environ. Sci. Technol., 2012, 46: 5262.

doi: 10.1021/es301201c
[65]
Raofie F, Ariya P A. Environ. Sci. Technol., 2004, 38: 4319.

doi: 10.1021/es035339a
[66]
Dibble T S, Zelie M J, Mao H. Atmos. Chem. Phys., 2012, 12: 10271.

doi: 10.5194/acp-12-10271-2012
[67]
Wang F, Saiz-Lopez A, Mahajan A S, Gomez Martin J C, Armstrong D, Lemes M, Hay T, Prados-Roman C. Atmos. Chem. Phys., 2014, 14: 1323.

doi: 10.5194/acp-14-1323-2014
[68]
Raofie F, Snider G, Ariya P A. Can. J. Chem., 2008, 86: 811.

doi: 10.1139/v08-088
[69]
Quan J N , Zhang X S , Zhang Q , Li H Y. Plateau Meteorology , 2009, 28( 1): 159.
权建农, 张晓山, 张蔷, 李宏宇. 高原气象, 2009, 28( 1): 159.
[70]
Mao H, Cheng I, Zhang L. Atmos. Chem. Phys., 2016, 16: 12897.

doi: 10.5194/acp-16-12897-2016
[71]
Valente R J, Shea C, Humes K L, Tanner R L. Atmos. Environ. , 2007, 41: 1861.

doi: 10.1016/j.atmosenv.2006.10.054
[72]
Wu X Y , Zheng Y F , Lin K S. China Environmental Science, 2009, 28( 1): 159.
吴晓云, 郑有飞, 林克思. 中国环境科学, 2009, 28( 1): 159.
[73]
Lindberg S, Landis M S, Stevens R K, Brooks S. Atmos. Environ. , 2001, 35: 5377.

doi: 10.1016/S1352-2310(01)00310-7
[74]
Zhang H, Wang Z, Wang C, Zhang X. Environ. Pollut., 2009, 249: 13.

doi: 10.1016/j.envpol.2019.02.064
[75]
Zhang L, Wang S X, Wang L, Hao J M. Atmos. Chem. Phys., 2013, 13: 10505.

doi: 10.5194/acp-13-10505-2013
[76]
Hong Y, Chen J, Deng J, Tong L, Xu L, Niu Z, Yin L, Chen Y, Hong Z. Environ. Pollut., 2016, 218: 259.

doi: 10.1016/j.envpol.2016.06.073
[77]
Fu X, Feng X, Qiu G, Shang L, Zhang H. Atmos. Environ., 2011, 45: 4205.

doi: 10.1016/j.atmosenv.2011.05.012
[78]
Xu L, Chen J, Yang L, Niu Z, Tong L, Yin L, Chen Y. Chemosphere , 2015, 119: 530.

doi: 10.1016/j.chemosphere.2014.07.024
[79]
Zhang L, Wang L, Wang S, Dou H, Li J, Li S, Hao J. Aerosol Air Qual. Res. , 2017, 17: 2913.

doi: 10.4209/aaqr.2016.09.0402
[80]
Sheu G R, Ly Sy Phu N, Mirth Tri T, Lin D W. Atmos. Environ., 2019, 214.
[81]
Wang C, Ci Z, Wang Z, Zhang X, Guo J. Atmos. Environ., 2016, 131: 360.
[82]
Wang C, Wang Z, Hui F, Zhang X. Atmos. Chem. Phys. , 2019, 19: 10111.

doi: 10.5194/acp-19-10111-2019
[83]
Liu C, Fu X, Zhang H, Ming L, Xu H, Zhang L, Feng X. Sci. Total Environ., 2019, 663: 275.

doi: 10.1016/j.scitotenv.2019.01.332
[84]
Fu X W, Feng X, Liang P, Deliger, Zhang H, Ji J, Liu P. Atmos. Chem. Phys., 2012, 12: 1951.

doi: 10.5194/acp-12-1951-2012
[85]
Lyman S N, Gustin M S. Sci. Total Environ., 2009, 408: 431.

doi: 10.1016/j.scitotenv.2009.09.045
[86]
Liu B, Keeler G J, Dvonch J T, Barres J A, Lynam M M, Marsik F J, Morgan J T. Atmos. Environ., 2010, 44: 2013.

doi: 10.1016/j.atmosenv.2010.02.012
[87]
Song X, Cheng I, Lu J. J. Environ. Monit., 2009, 11: 660.

doi: 10.1039/b815435j
[88]
Rutter A P, Snyder D C, Stone E A, Schauer J J, Gonzalez-Abraham R, Molina L T, Marquez C, Cardenas B, de Foy B. Atmos. Chem. Phys., 2009, 9: 207.

doi: 10.5194/acp-9-207-2009
[89]
Swartzendruber P C, Jaffe D A, Prestbo E M, Weiss-Penzias P, Selin N E, Park R, Jacob D J, Strode S, Jaegle L. J. Geophys. Res. : Atmos., 2006, 111.
[90]
Fain X, Obrist D, Hallar A G, McCubbin I, Rahn T. Atmos. Chem. Phys. , 2009, 9: 8049.

doi: 10.5194/acp-9-8049-2009
[91]
Steffen A, Bottenheim J, Cole A, Douglas T A, Ebinghaus R, Friess U, Netcheva S, Nghiem S, Sihler H, Staebler R. Atmos. Chem. Phys., 2013, 13: 7007.

doi: 10.5194/acp-13-7007-2013
[92]
Castagna J, Bencardino M, D’Amore F, Esposito G, Pirrone N, Sprovieri F. Atmos. Environ., 2018, 173: 108.
[93]
Angot H, Barret M, Magand O, Ramonet M, Dommergue A. Atmos. Chem. Phys., 2014, 14: 11461.

doi: 10.5194/acp-14-11461-2014
[94]
Soerensen A L, Skov H, Jacob D J, Soerensen B T, Johnson M S. Environ. Sci. Technol. , 2010, 44: 7425.

doi: 10.1021/es903839n
[95]
Fu X, Marusczak N, Heimbuerger L E, Sauvage B, Gheusi F, Prestbo E M, Sonke J E. Atmos. Chem. Phys., 2016, 16: 5623.

doi: 10.5194/acp-16-5623-2016
[96]
Poissant L, Pilote M, Xu X H, Zhang H, Beauvais C. J. Geophys. Res. : Atmos., 2004, 109.
[97]
Feng X B , Qiu G L , Fu X W , He T R , Li P , Wang S F. Progress in Chemistry , 2009, 21: 436.
冯新斌, 仇广乐, 付学吾, 何天容, 李平, 王少锋. 化学进展, 2009, 21: 436.
[98]
Sather M E, Mukerjee S, Smith L, Mathew J, Jackson C, Callison R, Scrapper L, Hathcoat A, Adam J, Keese D, Ketcher P, Brunette R, Karlstrom J, Van der Jagt G. Atmos. Pollut. Res., 2013, 4: 168.

doi: 10.5094/APR.2013.017
[99]
Zhou H, Zhou C, Hopke P K, Holsen T M. Sci. Total Environ., 2018, 637: 943.
[100]
Selin N E, Jacob D J. Atmos. Environ., 2008, 42: 5193.

doi: 10.1016/j.atmosenv.2008.02.069
[101]
Zhang F W , Zhao J P , Chen J S , Xu Y. Environmental Science, 2010, 31( 10): 2273.
张福旺, 赵金平, 陈进生, 徐亚. 环境科学, 2010, 31( 10): 2273.
[102]
Rutter A P, Schauer J J. Atmos. Environ. , 2007, 41: 8647.

doi: 10.1016/j.atmosenv.2007.07.024
[103]
Rutter A P, Schauer J J. Environ. Sci. Technol., 2007, 41: 3934.

doi: 10.1021/es062439i
[104]
Holmes C D, Jacob D J, Mason R P, Jaffe D A. Atmos. Environ., 2009, 43: 2278.

doi: 10.1016/j.atmosenv.2009.01.051
[105]
Kunkely H, Horvath O, Vogler A. Coord. Chem. Rev. , 1997, 159: 85.

doi: 10.1016/S0010-8545(96)01307-0
[106]
Saiz-Lopez A, Sitkiewicz S P, Roca-Sanjuan D, Oliva-Enrich J M, Davalos J Z, Notario R, Jiskra M, Xu Y, Wang F, Thackray C P, Sunderland E M, Jacob D J, Travnikov O, Cuevas C A, Acuna A U, Rivero D, Plane J M C, Kinnison D E, Sonke J E. Nat. Commun., 2018, 9: 4796.

doi: 10.1038/s41467-018-07075-3
[107]
de Foy B, Tong Y, Yin X, Zhang W, Kang S, Zhang Q, Zhang G, Wang X, Schauer J. Atmos. Environ., 2016, 134: 27.

doi: 10.1016/j.atmosenv.2016.03.028
[108]
Wang Y, Liu G, Li Y, Liu Y, Guo Y, Shi J, Hu L, Cai Y, Yin Y, Jiang G. Environ. Sci. Technol. Lett., 2020, 7: 482.

doi: 10.1021/acs.estlett.0c00329
[1] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[2] Li Zhou, Abdelkrim Yasmine, Zhiguo Jiang, Zhongzhen Yu, Jin Qu. Microplastics: A Review on Biological Effects, Analysis and Degradation Methods [J]. Progress in Chemistry, 2022, 34(9): 1935-1946.
[3] Cheng Peng, Leyun Wu, Zhijian Xu, Weiliang Zhu. Replica Exchange Molecular Dynamics [J]. Progress in Chemistry, 2022, 34(2): 384-396.
[4] Xuyang Liu, Chaoshu Duan, Wensheng Cai, Xueguang Shao. Explainable Deep Learning in Spectral and Medical Image Analysis [J]. Progress in Chemistry, 2022, 34(12): 2561-2572.
[5] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[6] Quanfei Zhu, Jundi Hao, Jingwen Yan, Yu Wang, Yuqi Feng. FAHFAs: Biological Functions, Analysis and Synthesis [J]. Progress in Chemistry, 2021, 33(7): 1115-1125.
[7] Zixuan Wang, Xin Li, Zeper Abliz. Chemical Derivatization for Mass Spectrometric Analysis of Metabolite Isomers [J]. Progress in Chemistry, 2021, 33(3): 406-416.
[8] Xiaoyu Yang, Shanshan Jia, Juan Zhang, Yinghua Qi, Xuewen Hu, Baojie Shen, Hongying Zhong. Photo Ionization and Dissociation in Mass Spectrometry for Structural Identification of Biological Molecules [J]. Progress in Chemistry, 2021, 33(12): 2316-2333.
[9] Han Zhang, Jiawang Ding, Wei Qin. Recent Advances in Peptide-Based Electrochemical Biosensor [J]. Progress in Chemistry, 2021, 33(10): 1756-1765.
[10] Lesi Cai, Meng-Chan Xia, Zhanping Li, Sichun Zhang, Xinrong Zhang. Bioimaging By Secondary Ion Mass Spectrometry [J]. Progress in Chemistry, 2021, 33(1): 97-110.
[11] Zhihua Song, Shenghong Li, Gangqiang Yang, Na Zhou, Lingxin Chen. Sample Pretreatment, Analysis and Detection of Ginsenosides [J]. Progress in Chemistry, 2020, 32(2/3): 239-248.
[12] Yue Li, Jinghong Li. CRISPR Bioanalytical Chemistry Technology [J]. Progress in Chemistry, 2020, 32(1): 5-13.
[13] Bin Qiao, Hongfei Chen, Hui Zhang, Chenxin Cai. Analysis and Detection of Tumor Exosomes [J]. Progress in Chemistry, 2019, 31(6): 847-857.
[14] Lei Bai, Yanfeng Wang, Shuhui Huo, Xiaoquan Lu. Application of Food and Water Samples Pretreatment Using Functional Metal-Organic Frameworks Materials [J]. Progress in Chemistry, 2019, 31(1): 191-200.
[15] Haochuan Chen, Haohao Fu, Xueguang Shao, Wensheng Cai. Importance Sampling Methods and Free Energy Calculations [J]. Progress in Chemistry, 2018, 30(7): 921-931.