中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (12): 2316-2333 DOI: 10.7536/PC201123 Previous Articles   Next Articles

• Review •

Photo Ionization and Dissociation in Mass Spectrometry for Structural Identification of Biological Molecules

Xiaoyu Yang, Shanshan Jia, Juan Zhang, Yinghua Qi, Xuewen Hu, Baojie Shen, Hongying Zhong()   

  1. Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Key Laboratory of Pesticides and Chemical Biology of Ministry of Education,Wuhan 430079, China
  • Received: Revised: Online: Published:
  • Contact: Hongying Zhong
  • Supported by:
    the National Natural Science Foundation of China(21834002)
Richhtml ( 11 ) PDF ( 341 ) Cited
Export

EndNote

Ris

BibTeX

Mass spectrometry is an analytical technique that has been extensively used in the areas of chemistry, biomedicine, pharmacology, environment, agriculture and energy. It is based on the detection of accurate mass-to-charge ratios of molecular ions and fragment ions for the structural identification of diverse biological molecules. How to efficiently ionize and dissociate neutral molecules present in various samples and generate positive or negative ions are the key to the instrumentation of mass spectrometry and the development of enabling analytical methods. There are various ionization and dissociation techniques based on different physical chemical mechanisms that have unique advantages suitable for specific analytical goals. Most soft ionization techniques generate ions with even-numbered electrons that are very stable and need the coupling to other dissociation techniques for further molecular fragmentation. Besides those techniques based on collision activation and electron gains/losses, photo irradiation based techniques can provide wavelength/energy adjustable photons to initiate specific cleavages of chemical bonds. This work is aimed to review fundamental principles and instrumentations of infrared and ultraviolet photo-induced ionization and dissociation. The application to the analysis of different biological molecules including small organic molecules, proteins, nucleic acids, lipids and carbohydrates are also addressed.

Contents

1 Introduction

2 Overview of ionization techniques in mass spectrometry

2.1 Electron impact/electron capture ionization

2.2 Electrospray ionization and matrix assisted ionization

2.3 Surface ionization

2.4 Atomic/ionic beam ionization

3 Overview of dissociation techniques in mass spectrometry

4 Fundamental principles of photo ionization/dissociation

4.1 Direct photo ionization and dissociation

4.2 Coupling of photo dissociation with other ionization techniques

5 Instrumentation

5.1 Infrared multiphoton dissociation

5.2 Ultraviolet photo dissociation

6 Structural identification of biomolecules

6.1 Small organic molecules

6.2 Monosaccharides and polysaccharides

6.3 Peptides/proteins

6.4 Nucleic acids

7 Conclusion and prospect

Fig.1 Dissociation pathways of peptides. (A) Chemical bond cleavages and resulting characteristic fragment ions; (B) representative dissociation techniques and instruments
Fig.2 Laser desorption dissociation of methyl violet. (A) Direct evaporation of solid methyl violet hydrochloride by laser heating effect; (B) Losses of low ionization potential electrons of neutral methyl violet by laser excitation
Table 1 Principle and application of different ionization techniques in mass spectrometry
No. Ionization Principles and products Molecular ions Fragment ions Whether the coupling to other techniques for fragmentation is needed (Y/N) Applications
1 Electron-initiated ionization Electron impact
(EI)
Loss of electrons with low ionization potential
Radical cation
Ions with odd-numbered electrons Radical/charge-initiated homolytic or heterolytic bond cleavages N Volatile small organic molecules
Laser activated
electron tunneling
(LAET)
Electron capture by charge deficient atoms
Radical anions
Ions with odd-numbered electrons Radical/charge-initiated homolytic or heterolytic bond cleavages N small organic molecules
2 Electrospray ionization (ESI) Protonation/deprotonation
Metal ion adducts
Ions with even-numbered electrons
multiple-charged ions
Difficult to occur spontaneously Y
Collision-activated dissociation, electron transfer dissociation and photo dissociation
biological macromolecules/small organic molecules
3
Matrix assisted laser desorption ionization (MALDI)
Protonation/deprotonation

Metal ion adducts
Ions with even-numbered electrons Difficult to occur spontaneously Y

Collision-activated dissociation and photo dissociation
biological macromolecules
4 Surface ionization Surface Enhanced Laser Desorption Ionization
(SALDI)
Protonation/deprotonation

Metal ion adducts
Ions with even-numbered electrons Difficult to occur spontaneously Y
Collision-activated dissociation and photo dissociation
biological macromolecules/small organic molecules
Desorption Ionization on Porous Silicon (DIOS) Protonation/deprotonation
Metal ion adducts
Ions with even-numbered electrons Difficult to occur spontaneously Y
Collision-activated dissociation and photo dissociation
biological macromolecules/small organic molecules
Nanostructure-Initiator Mass Spectrometry (NIMS) Protonation/deprotonation
Metal ion adducts
Ions with even-numbered electrons Difficult to occur spontaneously Y
Collision-activated dissociation and photo dissociation
biological macromolecules/small organic molecules
5 Atomic/ion beam ionization Fast Atom Bombardment (FAB) Protonation/deprotonation
Metal ion adducts
Ions with even-numbered electrons Difficult to occur spontaneously Y
Collision-activated dissociation
Polypeptide/small organic molecules
Secondary Ion Mass Spectrometry (SIMS) Positive/negative ions Ions with even-numbered electrons Vibration activated dissociation N Material elements/small organic molecules/insulators
Desorption Electrospray Ionization (DESI) Protonation/deprotonation
Metal ion adducts
Ions with even-numbered electrons
multiple-charged ions
Difficult to occur spontaneously Y
Collision-activated dissociation, electron transfer dissociation and photo dissociation
biological macromolecules/small organic molecules
Fig.3 Comparison of infrared multiphoton dissociation and electron impact ionization. (A) Radical/charge centers generated by electron impact ionization and resultant chemical bond cleavages; (B) Infrared multiphoton activated chemical bond cleavages
Fig.4 Ultraviolet photo ionization and characteristic neutral losses of three aromatic amino acids
Fig.5 Mechanisms of infrared multiphoton dissociation of drugs and biological small molecules. (A) Cephalosporins,(B) Penicillin, (C) Chlorophyl
Fig.6 Infrared multiphoton dissociation of monosaccharides and polysaccharides. (A) Erythromycin, (B) Neomycin
Fig.7 Ultraviolet photo dissociation of oligosaccharides
Fig.8 Vacuum ultraviolet photo dissociation of peptides/proteins
Fig.9 Infrared multiphoton dissociation of nucleic acids
Table 2 Mass spectrometric identification of biological molecules with photo ionization and dissociation
[1]
Chorev D S, Baker L A, Wu D, Beilsten-Edmands V, Rouse S L, Zeev-Ben-mordehai T, Jiko C, Samsudin F, Gerle C, Khalid S, Stewart A G, Matthews S J, Grünewald K, Robinson C V. Science, 2018, 362(6416): 829.

doi: 10.1126/science.aau0976 pmid: 30442809
[2]
Young G, Hundt N, Cole D C, Fineberg A, Andrecka J, Tyler A, Olerinyova A, Ansari A, Marklund E G, Collier M P, Chandler S A, Tkachenko O, Allen J A, Crispin M, Billington N, Takagi Y, Sellers J R, Eichmann C, Selenko P, Frey L, Riek R, Galpin M R, Struwe W B, Benesch J L P, Kukura P. Science, 2018, 360(6387): 423.

doi: 10.1126/science.aar5839
[3]
Pareek V, Tian H, Winograd N, Benkovic S J. Science, 2020, 368(6488): 283.

doi: 10.1126/science.aaz6465 pmid: 32299949
[4]
Aebersold R, Mann M. Nature, 2003, 422(6928): 198.

doi: 10.1038/nature01511
[5]
Guo J, Liu J H, Yang Z W, Li Y, He C Y. Anal. Chem., 2020, 48(10): 1351.

doi: 10.1021/ac50003a023
( 郭佳, 刘金华, 杨照微, 李毅, 何成彦. 分析化学, 2020, 48(10): 1351.)
[6]
Zhong H Y, Fu J Y, Wang X L, Zheng S. Anal. Chimica Acta, 2012, 729: 45.

doi: 10.1016/j.aca.2012.03.057
[7]
Tang X M, Huang L L, Zhang W Y, Zhong H Y. Anal. Chem., 2015, 87(5): 2693.

doi: 10.1021/ac504693v
[8]
Huang L L, Tang X M, Zhang W Y, Jiang R W, Chen D S, Zhang J, Zhong H Y. Sci. Rep., 2016, 6(1): 1.

doi: 10.1038/s41598-016-0001-8
[9]
Tang X M, Huang L L, Zhang W Y, Jiang R W, Zhong H Y. Sci. Rep., 2015, 5(1): 1.
[10]
Huang L L, Tang X M, Zhang W Y, Jiang R W, Zhong H Y. Anal. Chem., 2016, 88(1): 732.

doi: 10.1021/acs.analchem.5b02871 pmid: 26613184
[11]
Yamashita M, Fenn J B. J. Phys. Chem., 1984, 88(20): 4451.
[12]
Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, Matsuo T. Rapid Commun. Mass Spectrom., 1988, 2(8): 151.

doi: 10.1002/(ISSN)1097-0231
[13]
Krenkel H, Hartmane E, Piras C, Brown J, Morris M, Cramer R. Anal. Chem., 2020, 92(4): 2931.

doi: 10.1021/acs.analchem.9b05202
[14]
Zhong X Q, Chen H, Zare R N. Nat. Commun., 2020, 11(1): 1.

doi: 10.1038/s41467-019-13993-7
[15]
Kuang M, Zhang Y, Yang P Y, Lu H J. Acta Chim. Sinica, 2013, 71(7): 1007.)

doi: 10.6023/A13030299
( 匡敏, 张莹, 杨芃原, 陆豪杰. 化学学报, 2013, 71(7): 1007.)
[16]
Zhou Y Q, Jiang X G. Chin. J. Chromatogr., 2016, 34(8): 752.

doi: 10.3724/SP.J.1123.2016.04024
( 周艳卿, 蒋小岗. 色谱, 2016, 34(8): 752.)
[17]
Hansel A, Jordan A, Holzinger R, Prazeller P, Vogel W, Lindinger W. Int. J. Mass Spectrom. Ion Process., 1995, 149-150: 609.
[18]
Guo B Q, Sun Y, Chu M J, Wu L F, Jiang X H, Wang Y, Mu X L, J. Instrum. Anal., 2018, 37(3): 263.
( 郭冰清, 孙运, 褚美娟, 武隆丰, 蒋学慧, 汪曣, 穆新林. 分析测试学报, 2018, 37(3): 263.)
[19]
Merchant M, Weinberger S R. Electrophoresis, 2000, 21(6): 1164.

pmid: 10786889
[20]
Wright G L, Cazares L H, Leung S M, Nasim S, Adam B L, Yip T T, Schellhammer P F, Gong L, Vlahou A. Prostate Cancer Prostatic Dis., 1999, 25-6: 264.
[21]
Wu E H, Feng K, Shi R, Lv R, Ouyang F, Li S S C, Zhong J, Liu J. Chem. Sci., 2019, 10(1): 257.

doi: 10.1039/C8SC03692F
[22]
Li Y F, Luo P Q, Cao X H, Liu H H, Wang J N, Wang J Y, Zhan L P, Nie Z X. Chem. Commun., 2019, 55(41): 5769.

doi: 10.1039/C9CC02541C
[23]
Wei J, Buriak J M, Siuzdak G. Nature, 1999, 399(6733): 243.

doi: 10.1038/20400
[24]
Wang X Y, Teng F, Wang Y L, Lu N. Talanta, 2019, 198: 63.

doi: 10.1016/j.talanta.2019.01.051
[25]
Wang F L, Hong M, Xu L D, Geng Z R. Progress in Chemistry, 2015, 27(5): 571.
( 王方丽, 洪敏, 许丽丹, 耿志荣. 化学进展, 2015, 27(5): 571.)

doi: 10.7536/PC141117
[26]
Yasuhide N, Masahiro K, Takayuki O. Rapid Commun. Mass Spectrom, 2018, 32.
[27]
Northen T R, Yanes O, Northen M T, Marrinucci D, Uritboonthai W, Apon J, Golledge S L, Nordström A, Siuzdak G. Nature, 2007, 449(7165): 1033.

doi: 10.1038/nature06195
[28]
Heinemann J, Deng K, Shih S C C, Gao J, Adams P D, Singh A K, Northen T R. Lab a Chip, 2017, 17(2): 323.

doi: 10.1039/C6LC01182A
[29]
Deng K, Zeng J J, Cheng G, Gao J, Sale K L, Simmons B A, Singh A K, Adams P D, Northen T R. Biotechnol. Biofuels, 2018, 11(1): 1.

doi: 10.1186/s13068-017-1003-x
[30]
Duncombe T A, De Raad M, Bowen B P, Singh A K, Northen T R. Anal. Chem., 2018, 90(16): 9657.

doi: 10.1021/acs.analchem.8b01989 pmid: 30063326
[31]
Li Y F, Cao X H, Zhan L P, Xue J J, Wang J Y, Xiong C Q, Nie Z X. Chem. Commun., 2018, 54(77): 10905.

doi: 10.1039/C8CC05793A
[32]
Barber M, Bordoli R S, Sedgwick R D, Tyler A N. Nature, 1981, 293(5830): 270.

doi: 10.1038/293270a0
[33]
Chang T T, Lay J O, Francel R J. Anal. Chem., 1984, 56(1): 109.

doi: 10.1021/ac00265a030
[34]
Williams P. Annu. Rev. Mater. Sci., 1985, 15(1): 517.

doi: 10.1146/matsci.1985.15.issue-1
[35]
Aubagnac J L, Enjalbal C, Drouot C, Combarieu R, Martinez J. J. Mass Spectrom., 1999, 34(7): 749.

pmid: 10407359
[36]
Pillatsch L, Östlund F, Michler J. Prog. Cryst. Growth Charact. Mater., 2019, 65(1): 1.

doi: 10.1016/j.pcrysgrow.2018.10.001
[37]
Wirtz T, Philipp P, Audinot J N, Dowsett D, Eswara S. Nanotechnology, 2015, 26(43): 434001.

doi: 10.1088/0957-4484/26/43/434001 pmid: 26436905
[38]
Benettoni P, Stryhanyuk G, Wagner S, Kollmer F. J. Anal. At Spectrom., 2019, 34(6): 1098.

doi: 10.1039/C8JA00439K
[39]
Pillatsch L, Östlund F, Michler J. Prog. Cryst. Growth Charact. Mater., 2019, 65(1): 1.

doi: 10.1016/j.pcrysgrow.2018.10.001
[40]
Benninghoven A. Molecules, 1979.
[41]
Touboul D, Kollmer F, Niehuis E, Brunelle A, LaprÉvote O. J. Am. Soc. Mass Spectrom., 2005, 16(10): 1608.

doi: 10.1016/j.jasms.2005.06.005
[42]
Belu A M, Graham D J, Castner D G. Biomaterials, 2003, 24(21): 3635.

doi: 10.1016/S0142-9612(03)00159-5
[43]
Takats Z, Wiseman J M, Gologan B, Cooks R G. Science, 2004, 306(5695): 471.

doi: 10.1126/science.1104404
[44]
Cordeiro F B, Jarmusch A K, LeÓn M, Ferreira C R, Pirro V, Eberlin L S, Hallett J, Miglino M A, Cooks R G. Anal. Bioanal. Chem., 2020, 412(6): 1251.

doi: 10.1007/s00216-019-02352-6
[45]
Huang X, Liu H H, Mao L Q, Xiong C Q, Nie Z X. Anal. Chem., 2019, 47(10): 1592.

doi: 10.1021/ac60359a012
( 黄熹, 刘会会, 毛兰群, 熊彩侨, 聂宗秀. 分析化学, 2019, 47(10): 1592.)
[46]
Shi J W, Zheng L N, Ma R L, Wang B, Chen H Q, Wang M, Wang H F, Feng W Y. Chin. J. Anal. Chem., 2019, 47(12): 1909.

doi: 10.1016/S1872-2040(19)61205-3
[47]
Curtis M E, Jones P R, Sparkman O D, Cody R B. J. Am. Soc. Mass Spectrom., 2009, 20(11): 2082.

doi: 10.1016/j.jasms.2009.07.012
[48]
Wang Y, Liu L, Ma L, Liu S Y. Int. J. Mass Spectrom., 2014, 357: 51.

doi: 10.1016/j.ijms.2013.09.008
[49]
Maeno K, Shida Y S, Shimada H. Anal. Methods, 2017, 9(33): 4851.

doi: 10.1039/C7AY01177F
[50]
Barry S, Wolff J C. Rapid Commun. Mass Spectrom., 2016, 30(15): 1829.

doi: 10.1002/rcm.7659
[51]
Song L G, Chuah W C, Quick J D, Remsen E, Bartmess J E. Rapid Commun. Mass Spectrom., 2020.
[52]
Halin E, Hoyas S, Lemaur V, de Winter J, Laurent S, Connolly M D, Zuckermann R N, Cornil J, Gerbaux P. J. Am. Soc. Mass Spectrom., 2019, 30(12): 2726.

doi: 10.1007/s13361-019-02342-z
[53]
Sekimoto K, Fukuyama D, Inomata S. J. Mass Spectrom., 2020, 55(6): e4508. DOI: 10.1002/jms.4508.

doi: 10.1002/jms.4508
[54]
Sauter M, Uhl P, Burhenne J, Haefeli W E. Anal. Chimica Acta, 2020, 1114: 42.

doi: 10.1016/j.aca.2020.04.016
[55]
Martin Somer A, Macaluso V, Barnes G L, Yang L, Pratihar S, Song K, Hase W L, Spezia R. J. Am. Soc. Mass Spectrom., 2020, 31(1): 2.

doi: 10.1021/jasms.9b00062
[56]
Chiu C K C, Lam Y P Y, Wootton C A, Barrow M P, Sadler P J, O’Connor P B. J. Am. Soc. Mass Spectrom., 2020, 31(3): 594.

doi: 10.1021/jasms.9b00054
[57]
Li X, Fang X W, Li Y P, Chen H W. Chemical Journal of Chinese Universities, 2013, 34(8): 1840.
( 李雪, 方小伟, 李银萍, 陈焕文. 高等学校化学学报, 2013, 34(8): 1840.)
[58]
Wu Y F, Huo D, Zu L L. Spectrosc. Spectr. Anal., 2018, 38(S1): 365.
( 吴镛峰, 霍妲雨佳, 祖莉莉. 光谱学与光谱分析, 2018, 38(S1): 365.)
[59]
Kumar R, Yerabolu R, Kenttämaa H I. J. Am. Soc. Mass Spectrom., 2020, 31(1): 124.

doi: 10.1021/jasms.9b00001
[60]
Randolph C E, Blanksby S J, McLuckey S A. Anal. Chem., 2020, 92(1): 1219.

doi: 10.1021/acs.analchem.9b04376 pmid: 31763816
[61]
Kelleher N L, Zubarev R A, Bush K, Furie B, Furie B C, McLafferty F W, Walsh C T. Anal. Chem., 1999, 71(19): 4250.

pmid: 10517147
[62]
Williams J P, Morrison L J, Brown J M, Beckman J S, Voinov V G, Lermyte F. Anal. Chem., 2020, 92(5): 3674.

doi: 10.1021/acs.analchem.9b04763
[63]
Straus R N, Jockusch R A. J. Am. Soc. Mass Spectrom., 2019, 30(5): 864.

doi: 10.1007/s13361-019-02150-5
[64]
Qi Y L, Volmer D A. Mass Spectrom. Rev., 2017, 36(1): 4.

doi: 10.1002/mas.v36.1
[65]
Jia W, Ying W T, Qian X H. J. Chin. Mass Spectrom. Soc., 2007, 28(1): 55.
( 贾伟, 应万涛, 钱小红. 质谱学报, 2007, 28(1): 55.)
[66]
Peters-Clarke T M, Quan Q W, Brademan D R, Hebert A S, Westphall M S, Coon J J. Anal. Chem., 2020, 92(6): 4436.

doi: 10.1021/acs.analchem.9b05388 pmid: 32091202
[67]
Kuiper H C, Wei N, McGunigale S L, Vesper H W. J. Chromatogr. B, 2018, 1076: 35.

doi: 10.1016/j.jchromb.2017.12.038
[68]
Leach F E III, Riley N M, Westphall M S, Coon J J, Amster I J J. Am. Soc. Mass Spectrom., 2017, 28(9): 1844.

doi: 10.1007/s13361-017-1709-9
[69]
Liu K H, Qian X H J. Chin Mass Spectrom. Soc., 2008, 29(2): 115.
( 刘科辉, 钱小红. 质谱学报, 2008, 29(2): 115.)
[70]
Penkert M, Hauser A, Harmel R, Fiedler D, Hackenberger C P R, Krause E. J. Am. Soc. Mass Spectrom., 2019, 30(9): 1578.

doi: 10.1007/s13361-019-02240-4
[71]
Darula Z, Ádám Pap, Medzihradszky K F. J. Proteome Res., 2019, 18(1): 280.
[72]
Su Y M, Rao U, Khor C M, Jensen M G, Teesch L M, Wong B M, Cwiertny D M, Jassby D. ACS Appl. Mater. Interfaces, 2019, 11(37): 33913.

doi: 10.1021/acsami.9b10449
[73]
Chen B F, Lin Z Q, Zhu Y L, Jin Y T, Larson E, Xu Q G, Fu C X, Zhang Z R, Zhang Q Y, Pritts W A, Ge Y. Anal. Chem., 2019, 91(18): 11661.

doi: 10.1021/acs.analchem.9b02194
[74]
McCool E N, Lodge J M, Basharat A R, Liu X W, Coon J J, Sun L L. J. Am. Soc. Mass Spectrom., 2019, 30(12): 2470.

doi: 10.1007/s13361-019-02206-6
[75]
Kim J D, Pike D H, Tyryshkin A M, Swapna G V T, Raanan H, Montelione G T, Nanda V, Falkowski P G. J. Am. Chem. Soc., 2018, 140(36): 11210.

doi: 10.1021/jacs.8b07553
[76]
Siegel J, Allison J, Mohr D, Dunn J. Talanta, 2005, 67(2): 425.

doi: 10.1016/j.talanta.2005.03.028 pmid: 18970184
[77]
Matthews B, Walker G S, Kobus H, Pigou P, Bird C, Smith G. Forensic Sci. Int., 2011, 2091-3: e26.
[78]
Lin Z A, Cai Z W. Mass Spectrom. Rev., 2018, 37(5): 681.

doi: 10.1002/mas.v37.5
[79]
Hayashi Y, Ohara K, Taki R, Saeki T, Yamaguchi K. Anal. Chimica Acta, 2019, 1064: 80.

doi: 10.1016/j.aca.2019.03.011
[80]
Barros R M, Clemente M C H, Martins G A V, Silva L P. Sci. Justice, 2018, 58(4): 264.

doi: S1355-0306(18)30083-2 pmid: 29895458
[81]
Goolsby B J, Brodbelt J S. J. Mass Spectrom., 2000, 35(8): 1011.

pmid: 10973001
[82]
Maitre P, Scuderi D, Corinti D, Chiavarino B, Crestoni M E, Fornarini S. Chem. Rev., 2020, 120(7): 3261.

doi: 10.1021/acs.chemrev.9b00395
[83]
Dass C. Curr. Proteom., 2009, 6(1): 32.

doi: 10.2174/157016409787847394
[84]
Borotto N B, McClory P J, Martin B R, Håkansson K. Anal. Chem., 2017, 89(16): 8304.

doi: 10.1021/acs.analchem.7b01461
[85]
Brodbelt J S, Wilson J J. Mass Spectrom. Rev., 2009, 28(3): 390.

doi: 10.1002/mas.v28:3
[86]
Stephenson J L, Booth M M, Shalosky J A, Eyler J R, Yost R A. J. Am. Soc. Mass Spectrom., 1994, 5(10): 886.

doi: 10.1016/1044-0305(94)87013-6
[87]
Joly L, Antoine R, Broyer M, Dugourd P, Lemoine J. J. Mass Spectrom., 2007, 42(6): 818.

doi: 10.1002/(ISSN)1096-9888
[88]
Wang M, Chen J, Fei W F, Li Z H, Yu Y P, Lin X, Dan X B, Liu F Y, Shen L S. Chinese Journal of Chemical Physics, 2017(30): 379.9.
( 王明, 陈军, 费维飞, 李照辉, 余业鹏, 林烜, 单晓斌, 刘付轶, 盛六四. 化学物理学报, 2017(30): 379.9)
[89]
Sun W Q, Zhang Y, Fang S X. Chin. J. Anal. Chem., 2019, 47(7): 976.

doi: 10.1016/S1872-2040(19)61170-9
( 孙万启, 张勇, 方双喜. 分析化学, 2019, 47(7): 976.)
[90]
Ning M, Hu Y H, Xu Y B, Wang C H, Tian Z F. Acta Tabacaria Sinica, 2013, 19(04): 11.
( 宁敏, 胡永华, 徐迎波, 王程辉, 田振峰. 中国烟草学报, 2013, 19(04): 11.)
[91]
He M Q, Hua L, Li Q Y, Hou K Y, Chen P, Chai S, Li H Y. Anal. Chem., 2019, 047(003): 447.

doi: 10.1021/ac60353a039
( 何梦琦, 花磊, 李庆运, 侯可勇, 陈平, 柴硕, 李海洋. 分析化学, 2019, 047(003): 447.)
[92]
Dou J, Hua L, Hou K Y, Jiang L, Chen S S, Qi G C, Li Q Y, Tian D, Li H Y. Anal. Chem., 2014, 42(07): 1017.
( 窦健, 花磊, 侯可勇, 蒋蕾, 程沙沙, 齐国臣, 李庆运, 田地, 李海洋. 分析化学, 2014, 42(07): 1017.)
[93]
Robinson M R, Taliaferro J M, Dalby K N, Brodbelt J S. J. Proteome Res., 2016, 15(8): 2739.

doi: 10.1021/acs.jproteome.6b00289
[94]
Ehsan M U, Bozai Y, Pearson W L, Horenstein N A, Eyler J R. Phys. Chem. Chem. Phys., 2015, 17(39): 25877.

doi: 10.1039/c5cp01752a pmid: 26007681
[95]
Hamlow L A, Zhu Y, Devereaux Z J, Cunningham N A, Berden G, Oomens J, Rodgers M T. J. Am. Soc. Mass Spectrom., 2018, 29(11): 2125.

doi: 10.1007/s13361-018-2047-2
[96]
Colorado A, Shen J X, Vartanian V H, Brodbelt J. Anal. Chem., 1996, 68(22): 4033.

pmid: 8916455
[97]
Boue S M, Stephenson J L, Yost R A. Rapid Commun. Mass Spectrom., 2000, 14(15): 1391.

doi: 10.1002/(ISSN)1097-0231
[98]
Drader J J, Hannis J C, Hofstadler S A. Anal. Chem., 2003, 75(15): 3669.

pmid: 14572028
[99]
Payne A H, Glish G L. Anal. Chem., 2001, 73(15): 3542.

pmid: 11510816
[100]
Ren J, Zhang X Y, Kong X L. Chinese Journal of Chemical Physics, 2020, 33(05): 590.

doi: 10.1063/1674-0068/cjcp2006089
( 任娟, 张先燚, 孔祥蕾. 化学物理学报, 2020, 33(05): 590.)
[101]
Comisarow M B, Marshall A G. Chem. Phys. Lett., 1974, 25(2): 282.

doi: 10.1016/0009-2614(74)89137-2
[102]
Lawrence E O, Edlefsen N E. Rev. Sci. Instrum., 1930, 1(1): 45.

doi: 10.1063/1.1748637
[103]
Lawrence E O, Livingston M S, White M G. Phys. Rev., 1932, 42(1): 150.
[104]
Polfer N C. Chem. Soc. Rev., 2011, 40(5): 2211.

doi: 10.1039/c0cs00171f pmid: 21286594
[105]
Woodin R L, Bomse D S, Beauchamp J L. J. Am. Chem. Soc., 1978, 100(10): 3248.

doi: 10.1021/ja00478a065
[106]
Tonner D S, McMahon T B. Anal. Chem., 1997, 69(23): 4735.

doi: 10.1021/ac970727e pmid: 21639151
[107]
Gulyuz K, Stedwell C N, Wang D, Polfer N C. Rev. Sci. Instrum., 2011, 82(5): 054101.

doi: 10.1063/1.3585982
[108]
Wu X, Zhao L L, Jin J Y, Pan S, Li W, Jin X Y, Wang G J, Zhou M F, Frenking G. Science, 2018, 361(6405): 912.

doi: 10.1126/science.aau0839
[109]
Deng G H, Lei S J, Pan S, Jin J Y, Wang G J, Zhao L L, Zhou M F, Frenking G. Chem. Eur. J., 2020, 26(46): 10487.

doi: 10.1002/chem.v26.46
[110]
Julian R R. J. Am. Soc. Mass Spectrom., 2017, 28(9): 1823.

doi: 10.1007/s13361-017-1721-0
[111]
Antoine R, Dugourd P. Phys. Chem. Chem. Phys., 2011, 13(37): 16494.

doi: 10.1039/c1cp21531k
[112]
Antoine R, Lemoine J, Dugourd P. Mass Spectrom. Rev., 2014, 33(6): 501.

doi: 10.1002/mas.v33.6
[113]
Halim M A, Girod M, MacAleese L, Lemoine J, Antoine R, Dugourd P. J. Am. Soc. Mass Spectrom., 2016, 27(9): 1435.

doi: 10.1007/s13361-016-1419-8
[114]
Wang N, Liu X W, Ou Y Z. Journal of Chinese Mass Spectrometry Society, 2020, 41(02): 142.
( 王南, 刘新玮, 欧阳证. 质谱学报, 2020, 41(02): 142.)
[115]
Huang Z J, Tang X Q, Fang X. J. Chin. Mass Spectrom. Soc., 2009, 30(2): 65.
( 黄泽建, 唐晓强, 方向. 质谱学报, 2009, 30(2): 65.)
[116]
Mistarz U H, Bellina B, Jensen P F, Brown J M, Barran P E, Rand K D. Anal. Chem., 2018, 90(2): 1077.

doi: 10.1021/acs.analchem.7b04683 pmid: 29266933
[117]
Goolsby B J, Brodbelt J S. Anal. Chem., 2001, 73(6): 1270.

pmid: 11305662
[118]
Wei J, O’Connor P B. Rapid Commun. Mass Spectrom., 2015, 29(24): 2411.

doi: 10.1002/rcm.7391
[119]
Cui L J, Li K, Li Z Y, Qin X M, Du Y G. Acta Pharmaceutica Sinica, 2020, 55(05): 843.
( 崔连杰, 李科, 李震宇, 秦雪梅, 杜昱. 药学学报, 2020, 55(05): 843.)
[120]
Tan Y L, Zhao N, Liu J F, Li P F, Stedwell C N, Yu L, Polfer N C. J. Am. Soc. Mass Spectrom., 2017, 28(3): 539.

doi: 10.1007/s13361-016-1575-x
[121]
Lancaster K S, An H J, Li B S, Lebrilla C B. Anal. Chem., 2006, 78(14): 4990.

doi: 10.1021/ac0600656
[122]
Leach F E III, Xiao Z P, Laremore T N, Linhardt R J, Amster I J. Int. J. Mass Spectrom., 2011, 308(2-3): 253.
[123]
Zhang J H, Schubothe K, Li B S, Russell S, Lebrilla C B. Anal. Chem., 2005, 77(1): 208.

doi: 10.1021/ac0489824
[124]
Ko B J, Brodbelt J S. Anal. Chem., 2011, 83(21): 8192.

doi: 10.1021/ac201751u
[125]
Devakumar A, Thompson M S, Reilly J P. Rapid Commun. Mass Spectrom., 2005, 19(16): 2313.

doi: 10.1002/(ISSN)1097-0231
[126]
Ko B J, Brodbelt J S. Anal. Chem., 2011, 83(21): 8192.

doi: 10.1021/ac201751u
[127]
Crowe M C, Brodbelt J S. J. Am. Soc. Mass Spectrom., 2004, 15(11): 1581.

doi: 10.1016/j.jasms.2004.07.016
[128]
Flora J W, Muddiman D C. Anal. Chem., 2001, 73(14): 3305.

pmid: 11476230
[129]
Little D P, Speir J P, Senko M W, O’Connor P B, McLafferty F W. Anal. Chem., 1994, 66(18): 2809.

pmid: 7526742
[130]
Flora J W, Muddiman D C. J. Am. Chem. Soc., 2002, 124(23): 6546.

doi: 10.1021/ja0261170
[131]
Flora J W, Muddiman D C. J. Am. Soc. Mass Spectrom., 2004, 15(1): 121.

doi: 10.1016/j.jasms.2003.10.004
[132]
Crowe M C, Brodbelt J S. Anal. Chem., 2005, 77(17): 5726.

doi: 10.1021/ac0509410
[133]
Borotto N B, McClory P J, Martin B R, Håkansson K. Anal. Chem., 2017, 89(16): 8304.

doi: 10.1021/acs.analchem.7b01461
[134]
Zhou M, Shi Y Y, Zhang K L, Zhang X Y, Kong X L. Anal. Chem., 2019, 47(08): 1153.
( 周敏, 石莹莹, 张凯林, 张先燚, 孔祥蕾. 分析化学, 2019, 47(08): 1153.)
[135]
Madsen J A, Gardner M W, Smith S I, Ledvina A R, Coon J J, Schwartz J C, Stafford G C, Brodbelt J S. Anal. Chem., 2009, 81(21): 8677.

doi: 10.1021/ac901554z pmid: 19785447
[136]
Song H T, Håkansson K. Anal. Chem., 2012, 84(2): 871.

doi: 10.1021/ac202909z
[137]
Qi F. Journal of University of Science and Technology of China, 2007(Z1): 414.(齐飞. 中国科学技术大学学报,2007(Z1): 414.).
[138]
Oh J Y, Moon J H, Lee Y H, Hyung S W, Lee S W, Kim M S. Rapid Commun. Mass Spectrom., 2005, 19(10): 1283.

doi: 10.1002/(ISSN)1097-0231
[139]
Wilson J J, Kirkovits G J, Sessler J L, Brodbelt J S. J. Am. Soc. Mass Spectrom., 2008, 19(2): 257.

doi: 10.1016/j.jasms.2007.10.024
[140]
Wilson J J, Brodbelt J S. Anal. Chem., 2007, 79(20): 7883.

doi: 10.1021/ac071241t
[141]
O’Brien J P, Mayberry L K, Murphy P A, Browning K S, Brodbelt J S. J. Proteome Res., 2013, 12(12): 5867.

doi: 10.1021/pr400869u
[142]
O’Brien J P, Pruet J M, Brodbelt J S. Anal. Chem., 2013, 85(15): 7391.

doi: 10.1021/ac401305f
[143]
Gardner M W, Brodbelt J S. Anal. Chem., 2009, 81(12): 4864.

doi: 10.1021/ac9005233 pmid: 19449860
[144]
Agarwal A, Diedrich J K, Julian R R. Anal. Chem., 2011, 83(17): 6455.

doi: 10.1021/ac201650v pmid: 21797266
[145]
Bowers W D, Delbert S S, Hunter R L, McIver R T. J. Am. Chem. Soc., 1984, 106(23): 7288.

doi: 10.1021/ja00335a094
[146]
Ni C K, Huang J D, Chen Y T, Kung A H, Jackson W M. J. Chem. Phys., 1999, 110(7): 3320.
[147]
Ross P L, van Bramer S E, Johnston M V. Appl. Spectrosc., 1996, 50(5): 608.

doi: 10.1366/0003702963905862
[148]
Williams E R, Furlong J J P, McLafferty F W. J. Am. Soc. Mass Spectrom., 1990, 1(4): 288.

doi: 10.1016/1044-0305(90)85003-5
[149]
Guan Z Q, Kelleher N L, O’Connor P B, Aaserud D J, Little D P, McLafferty F W. Int. J. Mass Spectrom. Ion Process., 1996, 157-158: 357.
[150]
Shaw J B, Robinson E W, Paša-Toli L.: Anal. Chem., 2016, 88(6): 3019.

doi: 10.1021/acs.analchem.6b00148
[151]
Barbacci D C, Russell D H. J. Am. Soc. Mass Spectrom., 1999, 10(10): 1038.

doi: 10.1016/S1044-0305(99)00077-X
[152]
Choi K M, Yoon S H, Sun M L, Oh J Y, Moon J H, Kim M S. J. Am. Soc. Mass Spectrom., 2006, 17(12): 1643.

doi: 10.1016/j.jasms.2006.07.021
[153]
Moon J H, Yoon S H, Kim M S. Rapid Commun. Mass Spectrom., 2005, 19(22): 3248.

doi: 10.1002/(ISSN)1097-0231
[154]
Beussman D J, Vlasak P R, McLane R D, Seeterlin M A, Enke C G. Anal. Chem., 1995, 67(21): 3952.

pmid: 8633759
[155]
Moon J H, Shin Y S, Cha H J, Kim M S. Rapid Commun. Mass Spectrom., 2007, 21(3): 359.

doi: 10.1002/(ISSN)1097-0231
[156]
Kim T Y, Thompson M S, Reilly J P. Rapid Commun. Mass Spectrom., 2005, 19(12): 1657.

doi: 10.1002/(ISSN)1097-0231
[157]
Madsen J A, Boutz D R, Brodbelt J S. J. Proteome Res., 2010, 9(8): 4205.

doi: 10.1021/pr100515x pmid: 20578723
[158]
Madsen J A, Kaoud T S, Dalby K N, Brodbelt J S. PROTEOMICS, 2011, 11(7): 1329.

doi: 10.1002/pmic.201000565 pmid: 21365762
[159]
Devakumar A, Thompson M S, Reilly J P. Rapid Commun. Mass Spectrom., 2005, 19(16): 2313.

doi: 10.1002/(ISSN)1097-0231
[160]
Madsen J A, Cullen T W, Trent M S, Brodbelt J S. Anal. Chem., 2011, 83(13): 5107.

doi: 10.1021/ac103271w pmid: 21595441
[161]
Kim T Y, Schwartz J C, Reilly J P. Anal. Chem., 2009, 81(21): 8809.

doi: 10.1021/ac9013258
[162]
Shaw J B, Li W Z, Holden D D, Zhang Y, Griep-Raming J, Fellers R T, Early B P, Thomas P M, Kelleher N L, Brodbelt J S. J. Am. Chem. Soc., 2013, 135(34): 12646.

doi: 10.1021/ja4029654
[163]
O’Brien J P, Li W Z, Zhang Y, Brodbelt J S. J. Am. Chem. Soc., 2014, 136(37): 12920.

doi: 10.1021/ja505217w
[164]
Cammarata M B, Thyer R, Rosenberg J, Ellington A, Brodbelt J S. J. Am. Chem. Soc., 2015, 137(28): 9128.

doi: 10.1021/jacs.5b04628 pmid: 26125523
[165]
Zhang L Y, Cui W D, Thompson M S, Reilly J P. J. Am. Soc. Mass Spectrom., 2006, 17(9): 1315.

doi: 10.1016/j.jasms.2006.06.007
[166]
Liere P, Steiner V, Jennings K R, March R E, Tabet J C. Int. J. Mass Spectrom. Ion Process., 1997, 167: 735.
[167]
Cui W D, Thompson M S, Reilly J P. J. Am. Soc. Mass Spectrom., 2005, 16(8): 1384.

doi: 10.1016/j.jasms.2005.03.050
[168]
Thompson M S, Cui W, Reilly J P. Angew. Chem., 2004, 43(36): 4791.
[169]
Madsen J A, Cheng R R, Kaoud T S, Dalby K N, Makarov D E, Brodbelt J S. Chem. Eur. J., 2012, 18(17): 5374.

doi: 10.1002/chem.v18.17
[170]
Morgan J W, Russell D H. J. Am. Soc. Mass Spectrom., 2006, 17(5): 721.

doi: 10.1016/j.jasms.2006.02.004
[171]
Fort K L, Dyachenko A, Potel C M, Corradini E, Marino F, Barendregt A, Makarov A A, Scheltema R A, Heck A J R. Anal. Chem., 2016, 88(4): 2303.

doi: 10.1021/acs.analchem.5b04162
[172]
Kim T Y, Reilly J P. J. Am. Soc. Mass Spectrom., 2009, 20(12): 2334.

doi: 10.1016/j.jasms.2009.08.021
[173]
Robinson M R, Taliaferro J M, Dalby K N, Brodbelt J S. J. Proteome Res., 2016, 15(8): 2739.

doi: 10.1021/acs.jproteome.6b00289
[174]
Little D P, Speir J P, Senko M W, O’Connor P B, McLafferty F W. Anal. Chem., 1994, 66(18): 2809.

pmid: 7526742
[175]
Gardner M W, Li N, Ellington A D, Brodbelt J S. J. Am. Soc. Mass Spectrom., 2010, 21(4): 580.

doi: 10.1016/j.jasms.2009.12.011
[1] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[2] Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518.
[3] Lili Feng, Yiman Liu, Lin Yao, Rui Sun, Junhui He. Infrared Stealth and Multi-Band Compatible Stealth Materials [J]. Progress in Chemistry, 2021, 33(6): 1044-1058.
[4] Yecheng Dang, Yangzhen Feng, Dugang Chen. Red/Near-Infrared Biothiol Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(5): 868-882.
[5] Fei Ren, Jianbing Shi, Bin Tong, Zhengxu Cai, Yuping Dong. Near Infrared Fluorescent Dyes with Aggregation-Induced Emission [J]. Progress in Chemistry, 2021, 33(3): 341-354.
[6] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[7] Zhijun Pan, Wei Zhuang, Hongfei Wang. Dynamic Vibrational Spectroscopy in Condensed Matter Chemistry: Theory and Techniques [J]. Progress in Chemistry, 2020, 32(8): 1203-1218.
[8] Meng Wang, Danyang Ma, Chengjie Wang. Near-Infrared Light Responsive Liquid Crystal Elastomers [J]. Progress in Chemistry, 2020, 32(10): 1452-1461.
[9] Man Du, Baolong Huo, Jiemin Liu*, Mengwen Li, Leqiu Fang, Yunxu Yang*. Fluorescent Probes Based on Silicon-Substituted Xanthene Dyes and Their Applications in Bioimaging [J]. Progress in Chemistry, 2018, 30(6): 809-830.
[10] Jin Zhang, Wensheng Cai, Xueguang Shao. New Algorithms for Calibration Transfer in Near Infrared Spectroscopy [J]. Progress in Chemistry, 2017, 29(8): 902-910.
[11] Yaoyao Li, Jingmin Liu, Guozhen Fang, Dongdong Zhang, Qinghua Wang, Shuo Wang. Biosensor Detection and Imaging Based on Persistence Luminescence Nanoprobe [J]. Progress in Chemistry, 2017, 29(6): 667-682.
[12] Xiaomei Lu, Pengfei Chen, Wenbo Hu, Yufu Tang, Wei Huang, Quli Fan. Organic Optoelectronic Materials for Photoacoustic Imaging [J]. Progress in Chemistry, 2017, 29(1): 119-126.
[13] Wang Xiaochi, Chang Gang, Cao Ruijun, Meng Lingjie. Structure and Properties of Near-Infrared Fluorescent Dyes and the Bioimaging Application [J]. Progress in Chemistry, 2015, 27(7): 794-805.
[14] Chen Yuanzhi, Zhang Le, Huang Cunxin, Zhang Jian, Tang Dingyuan, Shen Deyuan. TM2+:Ⅱ-Ⅵ Mid-Infrared Materials [J]. Progress in Chemistry, 2015, 27(5): 511-521.
[15] Fan Mengli, Zhao Yue, Liu Yan, Cai Wensheng, Shao Xueguang. Aquaphotomics of Near Infrared Spectroscopy [J]. Progress in Chemistry, 2015, 27(2/3): 242-250.