中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (1): 5-13 DOI: 10.7536/PC191218 Previous Articles   Next Articles

CRISPR Bioanalytical Chemistry Technology

Yue Li, Jinghong Li**()   

  1. 1. Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology(Ministry of Education), Tsinghua University, Beijing 100084, China
  • Received: Online: Published:
  • Contact: Jinghong Li
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21621003)
Richhtml ( 83 ) PDF ( 1018 ) Cited
Export

EndNote

Ris

BibTeX

CRISPR (Clustered regularly interspaced short palindromic repeats) technology is a revolutionary gene editing tool developed in recent years, which has quickly become a cutting-edge technology in the field of biology and medicine and widely used in gene function research and gene therapy. In addition to excellent gene editing capabilities, various new functions are also being continuously created with the efforts of scientists from different fields. CRISPR has excellent sequence recognition properties, nucleic acid cleavage ability, and is easy to program and design. Therefore, it exhibits unique charm in the field of bioanalytical chemistry, and has made breakthrough progress in virus detection, clinical diagnosis, and single cell imaging analysis. At present, there are many types of detection methods using CRISPR technology. Therefore, we summarize and classify the current research status of CRISPR analysis and detection methods, and look forward to its development trend.

Fig. 1 The nuclease activity of CRISPR-Cas protein: (a) Under the guidance of gRNA, the nuclease domains of Cas9 protein, RuvC and HNH, would target DNA double strands. Mutating of the nuclease domain on the basis of Cas9 can produce Cas9 nickase HNH+ and Cas9 nickase RuvC+, and deactivated dCas9. (b) Cas12a recognizes and cleaves ssDNA or dsDNA with specific sequences and activates non-specific DNase activity. (C) Cas13a recognizes and cleaves ssRNA with specific sequences and activates non-specific RNase activity
Fig. 2 CRISPR/Cas9 based nucleic acid detection: (a) ZIKV virus detection and genotyping on paper test strips[37]; (b) detection of human and transgenic soybean genes using CRISPR-Cas9-triggered nicking endonuclease mediated strand displacement amplification method (CRISDA)[40]; (c) detection of characteristic nucleic acid sequences of pathogenic bacteria with a pair of luciferase-modified dCas9[42]
Fig. 3 Workflow of Cas12a or Cas13a nucleic acid detection
Fig. 4 (a) CRISPR-Cas12a- and aTF-mediated small molecule detector (CaT-SMelor)[56]. (b) CRISPR-Cas12a- and aptamer-mediated small molecule detector[57]. (c) Cas12a-responsive smart materials[58]
Fig. 5 Illustration of CRISPR imaging technology: (a) dCas9 protein was fused with fluorescent protein; (b) The aptamer sequence was inserted into gRNA backbone and bound to a fluorescent protein fused to the phage capsid. (c) Repeated epitope determinants were fused on dCas9 and bound to antibodies fused to fluorescent proteins; (d) Repeated aptamers were inserted to the gRNA backbone to recruit multiple fluorescent proteins fused to the phage capsid
[1]
Hsu P D , Lander E S , Zhang F . Cell, 2014,157:1262. https://www.ncbi.nlm.nih.gov/pubmed/24906146

doi: 10.1016/j.cell.2014.05.010 pmid: 24906146
[2]
Terns R M , Terns M P . Trends Genet., 2014,30:111. https://www.ncbi.nlm.nih.gov/pubmed/24555991

doi: 10.1016/j.tig.2014.01.003 pmid: 24555991
[3]
Doudna J A , Charpentier E . Science, 2014,346:1077.
[4]
Wright A V , Nunez J K , Doudna J A . Cell, 2016,164:29. https://www.ncbi.nlm.nih.gov/pubmed/26771484

doi: 10.1016/j.cell.2015.12.035 pmid: 26771484
[5]
Li W , Teng F , Li T D , Zhou Q . Nat. Biotechnol., 2013,31:684. https://www.ncbi.nlm.nih.gov/pubmed/23929337

doi: 10.1038/nbt.2652 pmid: 23929337
[6]
Feng C , Wang X , Shi H , Yan Q , Zheng M , Li J , Zhang Q , Qin Y , Zhong Y , Mi J , Lai L . J. Genet., 2018,45:47.
[7]
Gao C . Nat. Rev. Mol. Cell Biol. 2018,19:275. https://www.ncbi.nlm.nih.gov/pubmed/29382940

doi: 10.1038/nrm.2018.2 pmid: 29382940
[8]
Chen K , Wang Y , Zhang R , Zhang H , Gao C . Annu.Rev. Plant Biol., 2019,70:667. https://www.ncbi.nlm.nih.gov/pubmed/30835493

doi: 10.1146/annurev-arplant-050718-100049 pmid: 30835493
[9]
Sheets T P , Park KE , Park CH , Swift S M , Powell A , Donovan D M , Telugu B P . Sci. Rep., 2018,8:3582. https://www.ncbi.nlm.nih.gov/pubmed/29483633

doi: 10.1038/s41598-018-22050-0 pmid: 29483633
[10]
Pineda M , Moghadam F , Ebrahimkhani M R , Kiani S . ACS Synth. Biol., 2017,6:1614. https://www.ncbi.nlm.nih.gov/pubmed/28558198

doi: 10.1021/acssynbio.7b00011 pmid: 28558198
[11]
Cyranoski D . Nature, 2016,535:476. https://www.ncbi.nlm.nih.gov/pubmed/27466105

doi: 10.1038/nature.2016.20302 pmid: 27466105
[12]
Hu W , Kaminski R , Yang F , Zhang Y , Cosentino L , Li F , Luo B , Alvarez-Carbonell D , Garcia-Mesa Y , Karn J , Mo X , Khalili K . Proc. Natl. Acad. Sci. U. S. A., 2014,111:11461. https://www.ncbi.nlm.nih.gov/pubmed/25049410

doi: 10.1073/pnas.1405186111 pmid: 25049410
[13]
Knight S C , Tjian R , Doudna J A . Angew. Chem. Int. Edit., 2018,57:4329. https://www.ncbi.nlm.nih.gov/pubmed/29080263

doi: 10.1002/anie.201709201 pmid: 29080263
[14]
Perez-Pinera P , Kocak D D , Vockley C M , Adler A F , Kabadi A M , Polstein L R , Thakore P I , Glass K A , Ousterout D G , Leong K W , Guilak F , Crawford G E , Reddy T E , Gersbach C A . Nat. Methods, 2013,10:973. 6cca5b23-68a4-49cf-86c0-542ecf7226c2 https://www.ncbi.nlm.nih.gov/pubmed/23892895

doi: 10.1038/nmeth.2600 pmid: 23892895
[15]
Gilbert L A , Horlbeck M A , Adamson B , Villalta J E , Chen Y , Whitehead E H , Guimaraes C , Panning B , Ploegh H L , Bassik M C , Qi L S , Kampmann M , Weissman J S . Cell, 2014,159:647. https://www.ncbi.nlm.nih.gov/pubmed/25307932

doi: 10.1016/j.cell.2014.09.029 pmid: 25307932
[16]
Farzadfard F , Perli S D , Lu T K . ACS Synth. Biol., 2013,2:604. c561b0bf-9779-45d9-8410-67f5c8d14a2b http://dx.doi.org/10.1021/sb400081r

doi: 10.1021/sb400081r pmid: 23977949
[17]
Chavez A , Scheiman J , Vora S , Pruitt B W , Tuttle M , Iyer E P R , Lin S , Kiani S , Guzman C D , Wiegand D J , Ter-Ovanesyan D , Braff J L , Davidsohn N , Housden B E , Perrimon N , Weiss R , Aach J , Collins J J , Church G M . Nat. Methods, 2015,12:326. https://www.ncbi.nlm.nih.gov/pubmed/25730490

doi: 10.1038/nmeth.3312 pmid: 25730490
[18]
Vojta A , Dobrinic P , Tadic V , Bockor L , Korac P , Julg B , Klasic M , Zoldos V . Nucleic Acids Res., 2016,44:5615. https://www.ncbi.nlm.nih.gov/pubmed/26969735

doi: 10.1093/nar/gkw159 pmid: 26969735
[19]
Thakore P I D’Ippolito A M , Song L , Safi A , Shivakumar N K , Kabadi A M , Reddy T E , Crawford G E , Gersbach C A . Nat. Methods, 2015,12:1143. https://www.ncbi.nlm.nih.gov/pubmed/26501517

doi: 10.1038/nmeth.3630 pmid: 26501517
[20]
Liu X S , Wu H , Ji X , Stelzer Y , Wu X , Czauderna S , Shu J , Dadon D , Young R A , Jaenisch R . Cell, 2016,167:233. https://www.ncbi.nlm.nih.gov/pubmed/27662091

doi: 10.1016/j.cell.2016.08.056 pmid: 27662091
[21]
Hilton I B , D’Ippolito A M , Vockley C M , Thakore P I , Crawford G E , Reddy T E , Gersbach C A . Nat. Biotechnol., 2015,33:510. https://www.ncbi.nlm.nih.gov/pubmed/25849900

doi: 10.1038/nbt.3199 pmid: 25849900
[22]
Sander J D , Joung J K . Nat. Biotechnol., 2014,32:347. https://www.ncbi.nlm.nih.gov/pubmed/24584096

doi: 10.1038/nbt.2842 pmid: 24584096
[23]
Knott G J , Doudna J A . Science, 2018,361:866. https://www.ncbi.nlm.nih.gov/pubmed/30166482

doi: 10.1126/science.aat5011 pmid: 30166482
[24]
Makarova K S , Haft D H , Barrangou R , Brouns S J J , Charpentier E , Horvath P , Moineau S , Mojica F J M , Wolf Y I , Yakunin A F , van der Oost J , Koonin E V . Nat. Rev. Microbiol., 2011,9:467. https://www.ncbi.nlm.nih.gov/pubmed/21552286

doi: 10.1038/nrmicro2577 pmid: 21552286
[25]
Gaj T , Gersbach C A , Barbas C F . Trends Biotechnol., 2013,31:397. https://www.ncbi.nlm.nih.gov/pubmed/23664777

doi: 10.1016/j.tibtech.2013.04.004 pmid: 23664777
[26]
Horvath P , Barrangou R . Science, 2010,327:167. https://www.ncbi.nlm.nih.gov/pubmed/20056882

doi: 10.1126/science.1179555 pmid: 20056882
[27]
Hille F , Richter H , Wong S P , Bratovic M , Ressel S , Charpentier E . Cell, 2018,172:1239. https://www.ncbi.nlm.nih.gov/pubmed/29522745

doi: 10.1016/j.cell.2017.11.032 pmid: 29522745
[28]
Zetsche B , Gootenberg J S , Abudayyeh O O , Slaymaker I M , Makarova K S , Essletzbichler P , Volz S E , Joung J , van der Oost J , Regev A , Koonin E V , Zhang F . Cell, 2015,163:759. https://www.ncbi.nlm.nih.gov/pubmed/26422227

doi: 10.1016/j.cell.2015.09.038 pmid: 26422227
[29]
Abudayyeh O O , Gootenberg J S , Konermann S , Joung J , Slaymaker I M , Cox D B T , Shmakov S , Makarova K S , Semenova E , Minakhin L , Severinov K , Regev A , Lander E S , Koonin E V , Zhang F . Science, 2016, 353:aaf5573. https://www.ncbi.nlm.nih.gov/pubmed/27256883

doi: 10.1126/science.aaf5573 pmid: 27256883
[30]
Shmakov S , Smargon A , Scott D , Cox D , Pyzocha N , Yan W , Abudayyeh O O , Gootenberg J S , Makarova K S , Wolf Y I , Severinov K , Zhang F , Koonin E V . Nat. Rev. Microbiol., 2017,15:169. https://www.ncbi.nlm.nih.gov/pubmed/28111461

doi: 10.1038/nrmicro.2016.184 pmid: 28111461
[31]
Gootenberg J S , Abudayyeh O O , Kellner M J , Joung J , Collins J J , Zhang F . Science, 2018,360:439. https://www.ncbi.nlm.nih.gov/pubmed/29449508

doi: 10.1126/science.aaq0179 pmid: 29449508
[32]
Cong L , Ran F A , Cox D , Lin S , Barretto R , Habib N , Hsu P D , Wu X , Jiang W , Marraffini L A , Zhang F . Science, 2013,339:819. c45b480b-2272-47f5-ad31-48297cab8820 http://dx.doi.org/10.1126/science.1229223

doi: 10.1126/science.1229223
[33]
Gasiunas G , Barrangou R , Horvath P , Siksnys V . Proc. Natl. Acad. Sci. U. S. A., 2012,109:E2579. https://www.ncbi.nlm.nih.gov/pubmed/22949671

doi: 10.1073/pnas.1208507109 pmid: 22949671
[34]
Jinek M , Chylinski K , Fonfara I , Hauer M , Doudna J A , Charpentier E . Science, 2012,337:816. https://www.ncbi.nlm.nih.gov/pubmed/22745249

doi: 10.1126/science.1225829 pmid: 22745249
[35]
Ran F A , Hsu P D , Lin C Y , Gootenberg J S , Konermann S , Trevino A E , Scott D A , Inoue A , Matoba S , Zhang Y , Zhang F . Cell, 2013,154:1380. be0ef74e-49d9-4232-8cf8-f1ae66a8fc52 http://dx.doi.org/10.1016/j.cell.2013.08.021

doi: 10.1016/j.cell.2013.08.021
[36]
Mali P , Esvelt K M , Church G M . Nat. Methods, 2013,10:957. 420f53d6-83dd-48a5-861f-018bd2792ef0 http://dx.doi.org/10.1038/NMETH.2649

doi: 10.1038/NMETH.2649
[37]
Pardee K , Green A A , Takahashi M K , Braff D , Lambert G , Lee J W , Ferrante T , Ma D , Donghia N , Fan M , Daringer N M , Bosch I , Dudley D M , O’Connor D H , Gehrke L , Collins J J . Cell, 2016,165:1255. https://www.ncbi.nlm.nih.gov/pubmed/27160350

doi: 10.1016/j.cell.2016.04.059 pmid: 27160350
[38]
Takahashi M K , Tan X , Dy A J , Braff D , Akana R T , Furuta Y , Donghia N , Ananthakrishnan A , Collins J J . Nat. Commun., 2018,9:3347. https://www.ncbi.nlm.nih.gov/pubmed/30131493

doi: 10.1038/s41467-018-05864-4 pmid: 30131493
[39]
Zhang K , Deng R , Li Y , Zhang L , Li J . Chem. Sci., 2016,7:4951. https://www.ncbi.nlm.nih.gov/pubmed/30155144

doi: 10.1039/c6sc01355d pmid: 30155144
[40]
Zhou W , Hu L , Ying L , Zhao Z , Chu P K , Yu X F . Nat. Commun., 2018,9:5012. https://www.ncbi.nlm.nih.gov/pubmed/30479331

doi: 10.1038/s41467-018-07324-5 pmid: 30479331
[41]
Wang T , Liu Y , Sun H H , Yin B C , Ye B C . Angew. Chem. Int. Edit., 2019,58:5382. https://www.ncbi.nlm.nih.gov/pubmed/30773764

doi: 10.1002/anie.201901292 pmid: 30773764
[42]
Zhang Y , Qian L , Wei W , Wang Y , Wang B , Lin P , Liu W , Xu L , Li X , Liu D , Cheng S , Li J , Ye Y , Li H , Zhang X , Dong Y , Zhao X , Liu C , Zhang H M , Ouyang Q , Lou C . . ACS Synth. Biol., 2017,6:211. https://www.ncbi.nlm.nih.gov/pubmed/27718551

doi: 10.1021/acssynbio.6b00215 pmid: 27718551
[43]
Gootenberg J S , Abudayyeh O O , Lee J W , Essletzbichler P , Dy A J , Joung J , Verdine V , Donghia N , Daringer N M , Freije C A , Myhrvold C , Bhattacharyya R P , Livny J , Regev A , Koonin E V , Hung D T , Sabeti P C , Collins J J , Zhang F . Science, 2017,356:438. https://www.sciencemag.org/lookup/doi/10.1126/science.aam9321

doi: 10.1126/science.aam9321 pmid: 28408723
[44]
Myhrvold C , Freije C A , Gootenberg J S , Abudayyeh O O , Metsky H C , Durbin A F , Kellner M J , Tan A L , Paul L M , Parham L A , Garcia K F , Barnes K G , Chak B , Mondini A , Nogueira M L , Isern S , Michael S F , Lorenzana I , Yozwiak N L , MacInnis B L , Bosch I , Gehrke L , Zhang F , Sabeti P C . Science, 2018,360:444. https://www.ncbi.nlm.nih.gov/pubmed/29700266

doi: 10.1126/science.aas8836 pmid: 29700266
[45]
Fonfara I , Richter H , Bratovic M , Le Rhun A , Charpentier E . Nature, 2016,532:517. https://www.ncbi.nlm.nih.gov/pubmed/27096362

doi: 10.1038/nature17945 pmid: 27096362
[46]
Chen J S , Ma E , Harrington L B , Da Costa M , Tian X , Palefsky J M , Doudna J A . Science, 2018,360:436. https://www.ncbi.nlm.nih.gov/pubmed/29449511

doi: 10.1126/science.aar6245 pmid: 29449511
[47]
Li S Y , Cheng Q X , Wang J M , Li X Y , Zhang Z L , Gao S , Cao R B , Zhao G P , Wang J . Cell Discov., 2018,4:20. https://www.ncbi.nlm.nih.gov/pubmed/29707234

doi: 10.1038/s41421-018-0028-z pmid: 29707234
[48]
Qian C , Wang R , Wu H , Zhang F , Wu J , Wang L . Anal. Chem., 2019,91:11362. https://www.ncbi.nlm.nih.gov/pubmed/31403279

doi: 10.1021/acs.analchem.9b02554 pmid: 31403279
[49]
Li Y , Mansour H , Wang T , Poojari S , Li F . Anal. Chem., 2019,91:11510. https://www.ncbi.nlm.nih.gov/pubmed/31478642

doi: 10.1021/acs.analchem.9b03545 pmid: 31478642
[50]
Shao N , Han X , Song Y , Zhang P , Qin L . Anal. Chem., 2019,91:12384. https://www.ncbi.nlm.nih.gov/pubmed/31461619

doi: 10.1021/acs.analchem.9b02925 pmid: 31461619
[51]
Wang B , Wang R , Wang D , Wu J , Li J , Wang J , Liu H , Wang Y . Anal. Chem., 2019,91:12156. https://www.ncbi.nlm.nih.gov/pubmed/31460749

doi: 10.1021/acs.analchem.9b01526 pmid: 31460749
[52]
Li L , Li S , Wu N , Wu J , Wang G , Zhao G , Wang J . ACS Synth. Biol., 2019,8:2228. https://www.ncbi.nlm.nih.gov/pubmed/31532637

doi: 10.1021/acssynbio.9b00209 pmid: 31532637
[53]
Hajian R , Balderston S Tran T , deBoer T , Etienne J , Sandhu M , Wauford N A , Chung J Y , Nokes J , Athaiya M , Paredes J , Peytavi R , Goldsmith B , Murthy N , Conboy I M , Aran K . Nat. Biomed. Eng., 2019,3:427. https://doi.org/10.1038/s41551-019-0371-x

doi: 10.1038/s41551-019-0371-x pmid: 31097816
[54]
Yang W , Restrepo-Perez L , Bengtson M , Heerema S J Birnie A , van der Torre J , Dekker C . Nano Lett., 2018,18:6469. https://www.ncbi.nlm.nih.gov/pubmed/30187755

doi: 10.1021/acs.nanolett.8b02968 pmid: 30187755
[55]
Qin P , Park M , Alfson K J , Tamhankar M , Carrion R , Patterson J L , Griffiths A , He Q , Yildiz A , Mathies R , Du K . ACS Sensors, 2019,4:1048. https://www.ncbi.nlm.nih.gov/pubmed/30860365

doi: 10.1021/acssensors.9b00239 pmid: 30860365
[56]
Liang M , Li Z , Wang W , Liu J , Liu L , Zhu G , Karthik L , Wang M , Wang K F , Wang Z , Yu J , Shuai Y , Yu J , Zhang L , Yang Z , Li C , Zhang Q , Shi T , Zhou L , Xie F , Dai H , Liu X , Zhang J , Liu G , Zhuo Y , Zhang B , Liu C , Li S , Xia X , Tong Y , Liu Y , Alterovitz G , Tan G Y , Zhang L X . Nat. Commun., 2019,10:3672.
[57]
Xiong Y , Zhang J , Yang Z , Mou Q , Ma Y , Xiong Y , Lu Y . J. Am. Chem. Soc., 2019, DOI: 10.1021/jacs.9b09211.
[58]
English M A , Soenksen L R , Gayet R V , de Puig H , Angenent-Mari N M , Mao A S , Nguyen P Q , Collins J J . Science, 2019,365:780. https://www.ncbi.nlm.nih.gov/pubmed/31439791

doi: 10.1126/science.aaw5122 pmid: 31439791
[59]
Han D , Li J , Tan W . Science, 2019,365:754. https://www.ncbi.nlm.nih.gov/pubmed/31439783

doi: 10.1126/science.aay4198 pmid: 31439783
[60]
Misteli T . Cell, 2013,152:1209. https://www.ncbi.nlm.nih.gov/pubmed/23498929

doi: 10.1016/j.cell.2013.02.048 pmid: 23498929
[61]
Deng W , Shi X , Tjian R , Lionnet T , Singer R H . Proc. Natl. Acad. Sci. U. S. A., 2015,112:11870. https://www.ncbi.nlm.nih.gov/pubmed/26324940

doi: 10.1073/pnas.1515692112 pmid: 26324940
[62]
Zhang K , Deng R , Teng X , Li Y , Sun Y , Ren X , Li J . J. Am. Chem. Soc., 2018,140:11293. https://www.ncbi.nlm.nih.gov/pubmed/30125486

doi: 10.1021/jacs.8b05309 pmid: 30125486
[63]
Chen B , Gilbert L A , Cimini B A , Schnitzbauer J , Zhang W , Li G W , Park J , Blackburn E H , Weissman J S , Qi L S , Huang B . Cell, 2013,155:1479. https://www.ncbi.nlm.nih.gov/pubmed/24360272

doi: 10.1016/j.cell.2013.12.001 pmid: 24360272
[64]
Gu B , Swigut T , Spencley A , Bauer M R , Chung M Y , Meyer T , Wysocka J . Science, 2018,359:1050. https://www.ncbi.nlm.nih.gov/pubmed/29371426

doi: 10.1126/science.aao3136 pmid: 29371426
[65]
Tanenbaum M E , Gilbert L A , Qi L S , Weissman J S , Vale R D . Cell, 2014,159:635. https://www.ncbi.nlm.nih.gov/pubmed/25307933

doi: 10.1016/j.cell.2014.09.039 pmid: 25307933
[66]
Qin P W , Parlak M , Kuscu C , Bandaria J , Mir M , Szlachta K , Singh R , Darzacq X , Yildiz A , Adli M . Nat. Commun., 2017,8:14725. https://www.ncbi.nlm.nih.gov/pubmed/28290446

doi: 10.1038/ncomms14725 pmid: 28290446
[67]
Ma H H , Tu L C , Naseri A , Chung Y C , Grunwald D , Zhang S J , Pederson T . Nat. Methods, 2018,15:928. https://www.ncbi.nlm.nih.gov/pubmed/30377374

doi: 10.1038/s41592-018-0174-0 pmid: 30377374
[68]
Hong Y , Lu G , Duan J , Liu W , Zhang Y . Genome Biol., 2018,19:39. https://www.ncbi.nlm.nih.gov/pubmed/29566733

doi: 10.1186/s13059-018-1413-5 pmid: 29566733
[69]
Shao S P , Zhang W W , Hu H , Xue B X , Qin J S , Sun C Y , Sun Y A , Wei W S , Sun Y J . Nucleic Acids Res., 2016,44:e86. https://www.ncbi.nlm.nih.gov/pubmed/26850639

doi: 10.1093/nar/gkw066 pmid: 26850639
[70]
Fu Y , Rocha P P , Luo V M , Raviram R , Deng Y , Mazzoni E O , Skok J A . Nat. Commun., 2016,7:11707. https://www.ncbi.nlm.nih.gov/pubmed/27222091

doi: 10.1038/ncomms11707 pmid: 27222091
[71]
Ma H , Tu L C , Naseri A , Huisman M , Zhang S , Grunwald D , Pederson T . Nat. Biotechnol., 2016,34:528. https://www.ncbi.nlm.nih.gov/pubmed/27088723

doi: 10.1038/nbt.3526 pmid: 27088723
[72]
Yang L Z , Wang Y , Li S Q , Yao R W , Luan P F , Wu H , Carmichael G G , Chen L L . Mol. Cell, 2019, DOI: 10.1016/j.molcel.2019.10.024.
[73]
Nelles D A , Fang M Y , O’Connell M R , Xu J L , Markmiller S J , Doudna J A , Yeo G W . Cell, 2016,165:488. https://www.ncbi.nlm.nih.gov/pubmed/26997482

doi: 10.1016/j.cell.2016.02.054 pmid: 26997482
[1] Gehui Chen, Nan Ma, Shuaibing Yu, Jiao Wang, Jinming Kong, Xueji Zhang. Immunity and Aptamer Biosensors for Cocaine Detection [J]. Progress in Chemistry, 2023, 35(5): 757-770.
[2] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[3] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[4] Qian Peng, Jingjing Zhang, Xinyue Fang, Jie Ni, Chunyuan Song. Surface-Enhanced Raman Spectroscopy on Detection of Myocardial Injury-Related Biomarkers [J]. Progress in Chemistry, 2022, 34(12): 2573-2587.
[5] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[6] Han Zhang, Jiawang Ding, Wei Qin. Recent Advances in Peptide-Based Electrochemical Biosensor [J]. Progress in Chemistry, 2021, 33(10): 1756-1765.
[7] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[8] Miao Gong, Xiaoying Wang, Xiaoning Wang. Electrochemical Sensing Detection of Biomarkers in Hematological Malignancies [J]. Progress in Chemistry, 2019, 31(6): 894-905.
[9] Yangyang Zhou, Jian Zhong, Xiaojun Bian, Gang Liu, Liang Li, Juan Yan. Application of Signal Amplification Technology in the Area of Food Safety Detection [J]. Progress in Chemistry, 2018, 30(2/3): 206-224.
[10] Deng Wangping, Wang Lihua, Song Shiping, Zuo Xiaolei. Biosensors in POCT Application [J]. Progress in Chemistry, 2016, 28(9): 1341-1350.
[11] Dai Yingping, Ji Zhengping, Wang Chengyin, Hu Xiaoya, Wang Guoxiu. Microcantilever Biosensors [J]. Progress in Chemistry, 2016, 28(5): 697-710.
[12] Song Ping, Ye Dekai, Song Shiping, Wang Lihua, Zuo Xiaolei. Preparation and Biological Applications of DNA Hydrogel [J]. Progress in Chemistry, 2016, 28(5): 628-636.
[13] Tian Liang, Yao Chen, Wang Yihong*. Recent Advances in Electrochemical Biosensors for In Vitro Diagnostic [J]. Progress in Chemistry, 2016, 28(12): 1824-1833.
[14] Dong Shibiao, Jiao Xiong, Zhao Rongtao, Xu Jinkun, Song Hongbin, Hao Rongzhang. The DNA Tetrahedron Nanostructure Materials and Their Applications [J]. Progress in Chemistry, 2015, 27(9): 1191-1197.
[15] Gui Zhen, Yan Feng, Li Jinchang, Ge Mengyuan, Ju Huangxian. Applications of Locked Nucleic Acid Molecular Beacons in Molecular Recognition and Bioanalysis [J]. Progress in Chemistry, 2015, 27(10): 1448-1458.
Viewed
Full text


Abstract

CRISPR Bioanalytical Chemistry Technology