中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (9): 1935-1946 DOI: 10.7536/PC211226 Previous Articles   Next Articles

• Review •

Microplastics: A Review on Biological Effects, Analysis and Degradation Methods

Li Zhou1, Abdelkrim Yasmine2, Zhiguo Jiang2(), Zhongzhen Yu1(), Jin Qu1()   

  1. 1 State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    2 Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology,Beijing 100029, China
  • Received: Revised: Online: Published:
  • Contact: *qujin@mail.buct.edu.cn(Jin Qu);jiangzg@mail.buct.edu.cn(Zhiguo Jiang);yuzz@mail.buct.edu.cn(Zhongzhen Yu)
Richhtml ( 154 ) PDF ( 1297 ) Cited
Export

EndNote

Ris

BibTeX

The emergence of microplastics (MPs) has aroused widespread concern around the world. They spread all over the ocean and land in various environmental media, causing serious environmental pollution. Microplastics are generally defined as plastic fibers, particles or films with a particle size of less than 5 mm, which can be absorbed and accumulated by organisms, causing ecological and health risks. In fact, many microplastics can reach the micron or even nanometer level and are invisible to the naked eye, so they are vividly compared to the “PM2.5” in the ocean. As a hot issue in the current academic and social circles, this review aims to systematically introduce the source and distribution, biological effects, analysis and identification methods of microplastics in the environment, and focus on the degradation strategies and research results of microplastics pollution, providing a reference for the future study of microplastics degradation.

Contents

1 Introduction

2 Biological effects of microplastics

3 Analysis methods of microplastics

3.1 Sample collection

3.2 Sample processing

3.3 Identification of microplastics

4 Degradation of microplastics

4.1 Biodegradation

4.2 Advanced oxidation degradation

4.3 Photocatalytic degradation

5 Conclusion

Fig. 2 Potential pathways of exposure and particle toxicity for microplastics in the human body[69]. Copyright 2020, Elsevier
Fig. 1 Adsorption/release mechanism diagram of bisphenol A from seawater on microplastic surface[51]. Copyright 2019, American Chemical Society
Fig. 3 Bacillus strain degrades microplastics[106]. Copyright 2017, Elsevier
Fig. 4 (a) Correlations between the O/C ratio and alteration time of (a) PS and (b) PE[118]. Copyright 2019, American Chemical Society
Fig. 5 Degradation of PVC microplastics by EF-like technology based on TiO2/C cathode[119]. Copyright 2020, Elsevier
Table 1 First order rate constant calculated under different reaction conditions[120]
Fig. 6 (a) In-situ DRIFTs spectrum of PS with a time interval; (b) thermogravimetric analysis of PS loaded TiO2 film before and after UV irradiation[123]. Copyright 2020, Cell Press
Fig. 7 Optical image of the photocatalytic module; Comparison of morphology of microplastics before and after reaction and photodegradation by-products[125]. Copyright 2021, Elsevier
Fig. 8 (a) XRD and (b) FTIR, (c) pyrolysis gas chromatography, (d) mass spectrometry, (e) XPS survey spectra, (f) high-resolution O 1s of the samples[126]. Copyright 2021, Elsevier
Table 2 Comparison of the CI of the as-extracted HDPE MPs with those subjected to visible-light photocatalytic degradation by C,N-TiO2 in the presence of scavengers[124]
[1]
Hammer J, Kraak M H, Parsons J R. Rev Environ Contam Toxicol. 2012, 220: 1.

doi: 10.1007/978-1-4614-3414-6_1 pmid: 22610295
[2]
MacArthur D E, Waughray D, Stuchtey R M. World Economic Forum. 2016.
[3]
Alimi O S, Farner Budarz J, Hernandez L M, Tufenkji N. Environ. Sci. Technol., 2018, 52(4): 1704.

doi: 10.1021/acs.est.7b05559
[4]
Dris R, Gasperi J, Mirande C, Mandin C, Guerrouache M, Langlois V, Tassin B. Environ. Pollut., 2017, 221: 453.

doi: 10.1016/j.envpol.2016.12.013
[5]
Dris R, Gasperi J, Saad M, Mirande C, Tassin B. Mar. Pollut. Bull., 2016, 104(1/2): 290.

doi: 10.1016/j.marpolbul.2016.01.006
[6]
Ng K L, Obbard J P. Mar. Pollut. Bull., 2006, 52(7): 761.

pmid: 16388828
[7]
Fendall L S, Sewell M A. Mar. Pollut. Bull., 2009, 58(8): 1225.

doi: S0025-326X(09)00179-9 pmid: 19481226
[8]
Cole M, Lindeque P, Halsband C, Galloway T S. Mar. Pollut. Bull., 2011, 62(12): 2588.

doi: 10.1016/j.marpolbul.2011.09.025
[9]
Wang J D, Tan Z, Peng J P, Qiu Q X, Li M M. Mar. Environ. Res., 2016, 113: 7.

doi: 10.1016/j.marenvres.2015.10.014
[10]
Piehl S, Leibner A, Löder M G J, Dris R, Bogner C, Laforsch C. Sci. Rep., 2018, 8: 17950.

doi: 10.1038/s41598-018-36172-y
[11]
Guo J J, Huang X P, Xiang L, Wang Y Z, Li Y W, Li H, Cai Q Y, Mo C H, Wong M H. Environ. Int., 2020, 137: 105263.

doi: 10.1016/j.envint.2019.105263
[12]
Yuan W K, Liu X N, Wang W F, Di M X, Wang J. Ecotoxicol. Environ. Saf., 2019, 170: 180.

doi: 10.1016/j.ecoenv.2018.11.126
[13]
van Cauwenberghe L, Vanreusel A, Mees J, Janssen C R. Environ. Pollut., 2013, 182: 495.

doi: 10.1016/j.envpol.2013.08.013 pmid: 24035457
[14]
Reddy M S, Shaik Basha, Adimurthy S, Ramachandraiah G. Estuar. Coast. Shelf Sci., 2006, 68(3/4): 656.

doi: 10.1016/j.ecss.2006.03.018
[15]
Zhang L S, Liu J Y, Xie Y S, Zhong S, Yang B, Lu D L, Zhong Q P. Sci. Total. Environ., 2020, 708: 135176.

doi: 10.1016/j.scitotenv.2019.135176
[16]
Jiang C B, Yin L S, Wen X F, Du C Y, Wu L X, Long Y N, Liu Y Z, Ma Y, Yin Q D, Zhou Z Y, Pan H M. Int. J. Environ. Res. Public Heal., 2018, 15(10): 2164.
[17]
Carr S A, Liu J, Tesoro A G. Water Res., 2016, 91: 174.

doi: 10.1016/j.watres.2016.01.002
[18]
Nizzetto L, Futter M, Langaas S. Environ. Sci. Technol., 2016, 50(20): 10777.

pmid: 27682621
[19]
Hurley R R, Lusher A L, Olsen M, Nizzetto L. Environ. Sci. Technol., 2018, 52(13): 7409.

doi: 10.1021/acs.est.8b01517
[20]
Duis K, Coors A. Environ. Sci. Eur., 2016, 28: 2.

doi: 10.1186/s12302-015-0069-y
[21]
Andrady A L. Mar. Pollut. Bull., 2011, 62(8): 1596.

doi: 10.1016/j.marpolbul.2011.05.030
[22]
Mai L, Bao L J, Shi L, Wong C S, Zeng E Y. Environ. Sci. Pollut. Res., 2018, 25(12): 11319.

doi: 10.1007/s11356-018-1692-0
[23]
Eerkes-Medrano D, Thompson R C, Aldridge D C. Water Res., 2015, 75: 63.

doi: 10.1016/j.watres.2015.02.012 pmid: 25746963
[24]
Mekaru H. ACS Omega, 2020, 5(7): 3218.

doi: 10.1021/acsomega.9b03278
[25]
Dawson A L, Kawaguchi S, King C K, Townsend K A, King R, Huston W M, Bengtson Nash S M. Nat. Commun., 2018, 9: 1001.

doi: 10.1038/s41467-018-03465-9
[26]
Yousefi N, Tufenkji N. Front. Chem., 2016, 4: 46.
[27]
Hernandez L M, Yousefi N, Tufenkji N. Environ. Sci. Technol. Lett., 2017, 4(7): 280.

doi: 10.1021/acs.estlett.7b00187
[28]
Bothun G D. J. Nanobiotechnology, 2008, 6(1): 13.

doi: 10.1186/1477-3155-6-13
[29]
McDermid K J, McMullen T L. Mar. Pollut. Bull., 2004, 48(7/8): 790.

doi: 10.1016/j.marpolbul.2003.10.017
[30]
Pan Z, Guo H G, Chen H Z, Wang S M, Sun X W, Zou Q P, Zhang Y B, Lin H, Cai S Z, Huang J. Sci. Total. Environ., 2019, 650: 1913.

doi: 10.1016/j.scitotenv.2018.09.244
[31]
Martins J, Sobral P. Mar. Pollut. Bull., 2011, 62(12): 2649.

doi: 10.1016/j.marpolbul.2011.09.028 pmid: 22019196
[32]
Li L, Geng S X, Wu C X, Song K, Sun F H, Visvanathan C, Xie F Z, Wang Q L. Environ. Pollut., 2019, 254: 112951.

doi: 10.1016/j.envpol.2019.07.119
[33]
Barnes D K A, Walters A, Gonçalves L. Mar. Environ. Res., 2010, 70(2): 250.

doi: 10.1016/j.marenvres.2010.05.006 pmid: 20621773
[34]
Bergmann M, Sandhop N, Schewe I, D’Hert D. Polar Biol., 2016, 39(3): 553.

doi: 10.1007/s00300-015-1795-8
[35]
Liebezeit G, Dubaish F. Bull. Environ. Contam. Toxicol., 2012, 89(1): 213.

doi: 10.1007/s00128-012-0642-7
[36]
Desforges J P W, Galbraith M, Dangerfield N, Ross P S. Mar. Pollut. Bull., 2014, 79(1/2): 94.

doi: 10.1016/j.marpolbul.2013.12.035
[37]
Browne M A, Crump P, Niven S J, Teuten E, Tonkin A, Galloway T, Thompson R. Environ. Sci. Technol., 2011, 45(21): 9175.

doi: 10.1021/es201811s
[38]
Mohamed Nor N H, Obbard J P. Mar. Pollut. Bull., 2014, 79(1/2): 278.

doi: 10.1016/j.marpolbul.2013.11.025
[39]
Ballent A, Purser A, de Jesus Mendes P, Pando S, Thomsen L. Biogeosci Discuss. 2012, 9 (12): 18755.
[40]
Law K L, MorÉt-Ferguson S, Maximenko N A, Proskurowski G, Peacock E E, Hafner J, Reddy C M. Science, 2010, 329(5996): 1185.

doi: 10.1126/science.1192321
[41]
Eriksen M, Mason S, Wilson S, Box C, Zellers A, Edwards W, Farley H, Amato S. Mar. Pollut. Bull., 2013, 77(1/2): 177.

doi: 10.1016/j.marpolbul.2013.10.007
[42]
CÓzar A, Echevarría F, González-Gordillo J I, Irigoien X, Úbeda B, Hernández-LeÓn S, Palma Á T, Navarro S, García-de-Lomas J, Ruiz A, Fernández-de-Puelles M L, Duarte C M. PNAS, 2014, 111(28): 10239.

doi: 10.1073/pnas.1314705111
[43]
Li J Y, Liu H H, Paul Chen J. Water Res., 2018, 137: 362.

doi: 10.1016/j.watres.2017.12.056
[44]
Hahladakis J N, Velis C A, Weber R, Iacovidou E, Purnell P. J. Hazard. Mater., 2018, 344: 179.

doi: S0304-3894(17)30763-X pmid: 29035713
[45]
Talsness C E, Andrade A J M, Kuriyama S N, Taylor J A, vom Saal F S. Phil. Trans. R. Soc. B, 2009, 364(1526): 2079.

doi: 10.1098/rstb.2008.0281
[46]
Carbery M, O’Connor W, Palanisami T. Environ. Int., 2018, 115: 400.

doi: 10.1016/j.envint.2018.03.007
[47]
Horton A A, Walton A, Spurgeon D J, Lahive E, Svendsen C. Sci. Total. Environ., 2017, 586: 127.

doi: 10.1016/j.scitotenv.2017.01.190
[48]
Takada H. Mar. Pollut. Bull., 2006, 52(12): 1547.

doi: 10.1016/j.marpolbul.2006.10.010
[49]
Velzeboer I, Kwadijk C J A F, Koelmans A A. Environ. Sci. Technol., 2014, 48(9): 4869.

doi: 10.1021/es405721v pmid: 24689832
[50]
Beckingham B, Ghosh U. Environ. Pollut., 2017, 220: 150.

doi: S0269-7491(16)31263-5 pmid: 27650963
[51]
Liu X M, Shi H H, Xie B, Dionysiou D D, Zhao Y P. Environ. Sci. Technol., 2019, 53(17): 10188.

doi: 10.1021/acs.est.9b02834
[52]
Sussarellu R, Suquet M, Thomas Y, Lambert C, Fabioux C, Pernet M E J, Le Goïc N, Quillien V, Mingant C, Epelboin Y, Corporeau C, Guyomarch J, Robbens J, Paul-Pont I, Soudant P, Huvet A. PNAS, 2016, 113(9): 2430.

doi: 10.1073/pnas.1519019113 pmid: 26831072
[53]
Cole M, Lindeque P, Fileman E, Halsband C, Galloway T S. Environ. Sci. Technol., 2015, 49(2): 1130.

doi: 10.1021/es504525u
[54]
Jin Y X, Lu L, Tu W Q, Luo T, Fu Z W. Sci. Total. Environ., 2019, 649: 308.

doi: 10.1016/j.scitotenv.2018.08.353
[55]
Barboza L G A, Vieira L R, Branco V, Figueiredo N, Carvalho F, Carvalho C, Guilhermino L. Aquat. Toxicol., 2018, 195: 49.

doi: 10.1016/j.aquatox.2017.12.008
[56]
Lei L L, Wu S Y, Lu S B, Liu M T, Song Y, Fu Z H, Shi H H, Raley-Susman K M, He D F. Sci. Total. Environ., 2018, 619/620: 1.

doi: 10.1016/j.scitotenv.2017.11.103
[57]
Cole M, Galloway T S. Environ. Sci. Technol., 2015, 49(24): 14625.

doi: 10.1021/acs.est.5b04099
[58]
Moore C J. Environ. Res., 2008, 108(2): 131.

doi: 10.1016/j.envres.2008.07.025
[59]
Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, Galloway T S. Environ. Sci. Technol., 2013, 47(12): 6646.

doi: 10.1021/es400663f
[60]
Li J N, Lusher A L, Rotchell J M, Deudero S, Turra A, Bråte I L N, Sun C J, Hossain M S, Li Q P, Kolandhasamy P, Shi H H. Environ. Pollut., 2019, 244: 522.

doi: 10.1016/j.envpol.2018.10.032
[61]
Browne M A, Dissanayake A, Galloway T S, Lowe D M, Thompson R C. Environ. Sci. Technol., 2008, 42(13): 5026.

pmid: 18678044
[62]
Wang F, Wong C S, da Chen, Lu X W, Wang F, Zeng E Y. Water Res., 2018, 139: 208.

doi: S0043-1354(18)30283-5 pmid: 29653356
[63]
Derraik J G B. Mar. Pollut. Bull., 2002, 44(9): 842.

pmid: 12405208
[64]
Li Q P, Ma C Z, Zhang Q, Shi H H. Curr. Opin. Food Sci., 2021, 40: 192.
[65]
Li Q P, Feng Z H, Zhang T, Ma C Z, Shi H H. J. Hazard. Mater., 2020, 388: 122060.

doi: 10.1016/j.jhazmat.2020.122060
[66]
Du F N, Cai H W, Zhang Q, Chen Q Q, Shi H H. J. Hazard. Mater., 2020, 399: 122969.

doi: 10.1016/j.jhazmat.2020.122969
[67]
Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V, Carnevali O, Papa F, Rongioletti M C A, Baiocco F, Draghi S, D’Amore E, Rinaldo D, Matta M, Giorgini E. Environ Int. 2021, 146: 106274.

doi: 10.1016/j.envint.2020.106274
[68]
Yan Z H, Zhao H J, Zhao Y P, Zhu Q D, Qiao R X, Ren H Q, Zhang Y. J. Hazard. Mater., 2020, 384: 121489.

doi: 10.1016/j.jhazmat.2019.121489
[69]
Prata J C, da Costa J P, Lopes I, Duarte A C, Rocha-Santos T. Sci. Total. Environ., 2020, 702: 134455.

doi: 10.1016/j.scitotenv.2019.134455
[70]
Hidalgo-Ruz V, Gutow L, Thompson R C, Thiel M. Environ. Sci. Technol., 2012, 46(6): 3060.

doi: 10.1021/es2031505 pmid: 22321064
[71]
Frias J P G L, Sobral P, Ferreira A M. Mar. Pollut. Bull., 2010, 60(11): 1988.

doi: 10.1016/j.marpolbul.2010.07.030 pmid: 20800853
[72]
Hanvey J S, Lewis P J, Lavers J L, Crosbie N D, Pozo K, Clarke B O. Anal. Methods, 2017, 9(9): 1369.

doi: 10.1039/C6AY02707E
[73]
Claessens M, de Meester S, Landuyt L V, de Clerck K, Janssen C R. Mar. Pollut. Bull., 2011, 62(10): 2199.

doi: 10.1016/j.marpolbul.2011.06.030 pmid: 21802098
[74]
Corcoran P L. Environ. Sci.: Processes Impacts, 2015, 17(8): 1363.
[75]
Corcoran P L, Biesinger M C, Grifi M. Mar. Pollut. Bull., 2009, 58(1): 80.

doi: 10.1016/j.marpolbul.2008.08.022
[76]
Stolte A, Forster S, Gerdts G, Schubert H. Mar. Pollut. Bull., 2015, 99(1/2): 216.

doi: 10.1016/j.marpolbul.2015.07.022
[77]
Liu M T, Song Y, Lu S B, Qiu R, Hu J N, Li X Y, Bigalke M, Shi H H, He D F. Sci. Total. Environ., 2019, 691: 341.

doi: 10.1016/j.scitotenv.2019.07.144
[78]
Nuelle M T, Dekiff J H, Remy D, Fries E. Environ. Pollut., 2014, 184: 161.

doi: 10.1016/j.envpol.2013.07.027
[79]
Crawford C B, Quinn B. In Microplastic Pollutants. 2017, 203.
[80]
Imhof H K, Schmid J, Niessner R, Ivleva N P, Laforsch C. Limnol. Oceanogr.: Methods. 2012, 10 (7): 524.
[81]
Fuller S, Gautam A. Environ. Sci. Technol., 2016, 50(11): 5774.

doi: 10.1021/acs.est.6b00816
[82]
Thompson R C, Olsen Y, Mitchell R P, Davis A, Rowland S J, John A W G, McGonigle D, Russell A E. Science, 2004, 304(5672): 838.

pmid: 15131299
[83]
NorÉn F. KIMO Report. 2007, 11: 1.
[84]
Zettler E R, Mincer T J, Amaral-Zettler L A. Environ. Sci. Technol., 2013, 47(13): 7137.

doi: 10.1021/es401288x pmid: 23745679
[85]
Zhao S Y, Danley M, Ward J E, Li D J, Mincer T J. Anal. Methods, 2017, 9(9): 1470.

doi: 10.1039/C6AY02302A
[86]
Imhof H K, Ivleva N P, Schmid J, Niessner R, Laforsch C. Curr. Biol., 2013, 23(19): R867.

doi: 10.1016/j.cub.2013.09.001
[87]
Cole M, Webb H, Lindeque P K, Fileman E S, Halsband C, Galloway T S. Sci. Rep., 2014, 4: 4528.

doi: 10.1038/srep04528
[88]
Rios L M, Jones P R, Moore C, Narayan U V. J. Environ. Monit., 2010, 12(12): 2226.

doi: 10.1039/c0em00239a
[89]
Doyle M J, Watson W, Bowlin N M, Sheavly S B. Mar. Environ. Res., 2011, 71(1): 41.

doi: 10.1016/j.marenvres.2010.10.001
[90]
Moller J N, Loder M G J, Laforsch C. Environ Sci Technol. 2020, 54 (4): 2078.

doi: 10.1021/acs.est.9b04618
[91]
Cooper D A, Corcoran P L. Mar. Pollut. Bull., 2010, 60(5): 650.

doi: 10.1016/j.marpolbul.2009.12.026 pmid: 20106491
[92]
Tagg A S, Sapp M, Harrison J P, Ojeda J J. Anal. Chem., 2015, 87(12): 6032.

doi: 10.1021/acs.analchem.5b00495
[93]
Murray F, Cowie P R. Mar. Pollut. Bull., 2011, 62(6): 1207.

doi: 10.1016/j.marpolbul.2011.03.032 pmid: 21497854
[94]
Fries E, Dekiff J H, Willmeyer J, Nuelle M T, Ebert M, Remy D. Environ. Sci.: Processes Impacts, 2013, 15(10): 1949.
[95]
Majewsky M, Bitter H, Eiche E, Horn H. Sci. Total. Environ., 2016, 568: 507.

doi: 10.1016/j.scitotenv.2016.06.017
[96]
Qiu Q X, Tan Z, Wang J D, Peng J P, Li M M, Zhan Z W. Estuar. Coast. Shelf Sci., 2016, 176: 102.

doi: 10.1016/j.ecss.2016.04.012
[97]
Löder M G J, Gerdts G. Marine Anthropogenic Litter. Cham: Springer International Publishing, 2015: 201.
[98]
Huppertsberg S, Knepper T P. Anal. Bioanal. Chem., 2018, 410(25): 6343.

doi: 10.1007/s00216-018-1210-8 pmid: 29959485
[99]
Araujo C F, Nolasco M M, Ribeiro A M P, Ribeiro-Claro P J A. Water Res., 2018, 142: 426.

doi: 10.1016/j.watres.2018.05.060
[100]
Käppler A, Fischer D, Oberbeckmann S, Schernewski G, Labrenz M, Eichhorn K J, Voit B. Anal. Bioanal. Chem., 2016, 408(29): 8377.

pmid: 27722940
[101]
Chen M, Liu Y, Lin J, Liu C. J Appl Polym Sci. 2019, 136 (18).
[102]
Fischer M, Scholz-Böttcher B M. Environ. Sci. Technol., 2017, 51(9): 5052.

doi: 10.1021/acs.est.6b06362 pmid: 28391690
[103]
Herrera M, Matuschek G, Kettrup A. J. Anal. Appl. Pyrolysis, 2003, 70(1): 35.

doi: 10.1016/S0165-2370(02)00078-5
[104]
Peñalver R, Arroyo-Manzanares N, LÓpez-García I, Hernández-CÓrdoba M. Chemosphere, 2020, 242: 125170.

doi: 10.1016/j.chemosphere.2019.125170
[105]
Rodríguez Chialanza M, Sierra I, PÉrez Parada A, Fornaro L. Environ. Sci. Pollut. Res., 2018, 25(17): 16767.

doi: 10.1007/s11356-018-1846-0
[106]
Auta H S, Emenike C U, Fauziah S H. Environ. Pollut., 2017, 231: 1552.

doi: S0269-7491(17)30964-8 pmid: 28964604
[107]
Auta H S, Emenike C U, Jayanthi B, Fauziah S H. Mar. Pollut. Bull., 2018, 127: 15.

doi: S0025-326X(17)30993-1 pmid: 29475646
[108]
Dobretsov S, Abed R M M, Teplitski M. Biofouling, 2013, 29(4): 423.

doi: 10.1080/08927014.2013.776042 pmid: 23574279
[109]
Yuan J H, Ma J, Sun Y R, Zhou T, Zhao Y C, Yu F. Sci. Total. Environ., 2020, 715: 136968.

doi: 10.1016/j.scitotenv.2020.136968
[110]
Skariyachan S, Manjunatha V, Sultana S, Jois C, Bai V, Vasist K S. Environ. Sci. Pollut. Res., 2016, 23(18): 18307.

doi: 10.1007/s11356-016-7000-y
[111]
Tsiota P, Karkanorachaki K, Syranidou E, Franchini M, Kalogerakis N. In Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea. Springer, Chapter Cham, 2018, 181.
[112]
Hao S M, Yu M Y, Zhang Y J, Abdelkrim Y, Qu J. J. Colloid Interface Sci., 2019, 545: 128.

doi: 10.1016/j.jcis.2019.03.017
[113]
Zhu Z S, Qu J, Hao S M, Han S, Jia K L, Yu Z Z. ACS Appl. Mater. Interfaces, 2018, 10(36): 30670.

doi: 10.1021/acsami.8b10128
[114]
Zhu Z S, Yu X J, Qu J, Jing Y Q, Abdelkrim Y, Yu Z Z. Appl. Catal. B Environ., 2020, 261: 118238.

doi: 10.1016/j.apcatb.2019.118238
[115]
Yu X J, Qu J, Yuan Z Y, Min P, Hao S M, Zhu Z S, Li X F, Yang D Z, Yu Z Z. ACS Appl. Mater. Interfaces, 2019, 11(37): 34222.

doi: 10.1021/acsami.9b10287
[116]
Hao S M, Qu J, Zhu Z S, Zhang X Y, Wang Q Q, Yu Z Z. Adv. Funct. Mater., 2016, 26(40): 7334.

doi: 10.1002/adfm.201603315
[117]
Kang J, Zhou L, Duan X G, Sun H Q, Ao Z M, Wang S B. Matter, 2019, 1(3): 745.

doi: 10.1016/j.matt.2019.06.004
[118]
Liu P, Qian L, Wang H Y, Zhan X, Lu K, Gu C, Gao S X. Environ. Sci. Technol., 2019, 53(7): 3579.

doi: 10.1021/acs.est.9b00493
[119]
Miao F, Liu Y F, Gao M M, Yu X, Xiao P W, Wang M, Wang S G, Wang X H. J. Hazard. Mater., 2020, 399: 123023.

doi: 10.1016/j.jhazmat.2020.123023
[120]
Ariza-Tarazona M C, Villarreal-Chiu J F, Barbieri V, Siligardi C, Cedillo-González E I. Ceram. Int., 2019, 45(7): 9618.

doi: 10.1016/j.ceramint.2018.10.208
[121]
Napper I E, Bakir A, Rowland S J, Thompson R C. Mar. Pollut. Bull., 2015, 99(1/2): 178.

doi: 10.1016/j.marpolbul.2015.07.029
[122]
Tofa T S, Kunjali K L, Paul S, Dutta J. Environ. Chem. Lett., 2019, 17(3): 1341.

doi: 10.1007/s10311-019-00859-z
[123]
Nabi I, Bacha A U R, Li K J, Cheng H Y, Wang T, Liu Y Y, Ajmal S, Yang Y, Feng Y Q, Zhang L W. iScience, 2020, 23(7): 101326.

doi: 10.1016/j.isci.2020.101326
[124]
Vital-Grappin A D, Ariza-Tarazona M C, Luna-Hernández V M, Villarreal-Chiu J F, Hernández-LÓpez J M, Siligardi C, Cedillo-González E I. Polymers, 2021, 13(7): 999.

doi: 10.3390/polym13070999
[125]
Uheida A, Mejía H G, Abdel-Rehim M, Hamd W, Dutta J. J. Hazard. Mater., 2021, 406: 124299.

doi: 10.1016/j.jhazmat.2020.124299
[126]
Jiang R R, Lu G H, Yan Z H, Liu J C, Wu D H, Wang Y H. J. Hazard. Mater., 2021, 405: 124247.

doi: 10.1016/j.jhazmat.2020.124247
[127]
Ariza-Tarazona M C, Villarreal-Chiu J F, Hernández-LÓpez J M, Rivera de la Rosa J, Barbieri V, Siligardi C, Cedillo-González E I. J. Hazard. Mater., 2020, 395: 122632.

doi: 10.1016/j.jhazmat.2020.122632
[1] Zhihua Song, Shenghong Li, Gangqiang Yang, Na Zhou, Lingxin Chen. Sample Pretreatment, Analysis and Detection of Ginsenosides [J]. Progress in Chemistry, 2020, 32(2/3): 239-248.
[2] Yang Yin, Fan Mengxing, Guo Zhihui, Zhang Hui, Wu Ping, Cai Chenxin. Electrochemical Analysis for DNA Methylation [J]. Progress in Chemistry, 2014, 26(12): 1977-1986.
[3] Xu Zhizhen, Yan Xiaomin, Zhang Jie, Wang Yuqian, Tang Shichuan, Zhong Rugang. Molecular Interaction of Nanoparticles with Proteins [J]. Progress in Chemistry, 2013, 25(08): 1383-1391.
[4] Wang Kui*, Yang Xiaogai*. Metal-Based Particles in Biological Media: Impact and Challenge [J]. Progress in Chemistry, 2013, 25(04): 457-468.
[5] . Interactions between Carbon Nanotubes and Biomolecules [J]. Progress in Chemistry, 2010, 22(09): 1767-1775.
[6] . Degradation Methods of NDMA in Surface and Drinking Water [J]. Progress in Chemistry, 2010, 22(04): 734-739.
[7] . Cellular Biological Effects of Carbon Nanomaterials [J]. Progress in Chemistry, 2009, 21(0203): 430-435.
[8] Yang Xiaogai|Yang Xiaoda|Wang Kui**. Trends and Problems in Studies of Rare-Earths-Based Drugs [J]. Progress in Chemistry, 2007, 19(0203): 201-204.
[9] Yang Xiaogai,Yang Xiaoda,Wang Kui*. Biological Effects of Vanadium and Its Potential for Pharmaceutical Applications-The Chemical Issues in the Studies on Metal Drugs [J]. Progress in Chemistry, 2002, 14(04): 279-.
[10] Tian Xiaobing,Min Jimei,Zhang Lihe. Biology Functions of Nucleoprotein and Synthesis, Applications of Nucleopeptide [J]. Progress in Chemistry, 1999, 11(04): 403-.