中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (3): 406-416 DOI: 10.7536/PC200555 Previous Articles   Next Articles

• Review •

Chemical Derivatization for Mass Spectrometric Analysis of Metabolite Isomers

Zixuan Wang1, Xin Li1,*(), Zeper Abliz1,2   

  1. 1 State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100050, China
    2 Center for Imaging and Systems Biology, Minzu University of China,Beijing 100081, China
  • Received: Revised: Online: Published:
  • Contact: Xin Li
  • Supported by:
    the National Natural Science Foundation of China(21927808); the Medical Science and Health Technology Innovation Project of Chinese Academy of Medical Sciences(2017-I2M-3-010)
Richhtml ( 18 ) PDF ( 1085 ) Cited
Export

EndNote

Ris

BibTeX

Being the intermediates and final products of life metabolic activities, endogenous metabolites precisely mirror metabolic changes in vivo, providing clues for the study of diseases and other life processes. Mass spectrometry has become a universal technique for qualitative and quantitative analysis of endogenous metabolites, with high sensitivity, high specificity and wide dynamic range. However, it remains a limitation on the detection and differentiation of subtle structural differences of metabolite isomers in heterogeneous biological tissue using mass spectrometry. Therefore, how to improve sensitivity and specificity of mass spectrometry needs to be solved in the study of metabolite isomers’ analysis. Chemical derivatization takes advantage of bringing high proton affinity groups, hydrophobicity or chiral selectors to desired analytes, which is expected to broaden the applications of mass spectrometry for analysis of metabolite isomers. In this review, advances in chemical derivatization-based mass spectrometric analysis of metabolic isomers are summarized, including(1) reaction approaches and(2) methods and applications of lipids, carbohydrates and chiral amino acids. Special emphasis is placed on on-line derivatization microdroplet accelerate reaction by mass spectrometry, in which chemical derivatization of analytes occurring simultaneously with spray ionization, providing a promising way for instant and in-situ metabolite derivatization. The emerging study of on-tissue derivatization mass spectrometry imaging is of great value for providing spatial distribution of low abundance, non-polar and isomer metabolites. In the second part, different approach of detailed structural characterization of various compound classes are discussed, with a focus on lipids, carbohydrates and chiral amino acids.

Contents

1 Introduction

2 Chemical derivatization for mass spectrometric analysis of metabolites

2.1 Online chemical derivatization of metabolites

2.2 Offline chemical derivatization of metabolites

2.3 Chemical derivatization for mass spectrometry imaging of metabolites

3 Chemical derivatization for mass spectrometric analysis of metabolite isomers

3.1 Chemical derivatization for mass spectrometric analysis of lipids

3.2 Chemical derivatization for mass spectrometric analysis of glycans

3.3 Chemical derivatization for mass spectrometric analysis of chiral amino acids

4 Conclusion and outlook

Fig.1 Methods applied to cause highly accelerated microdroplet reactions for mass spectrometry, schematic of(a) reactive ESI with a transfer tube,(b) reactive EESI,(c) reactive DESI and (d) reactive paper spray
Table 1 Methods and applications of chemical derivatization-based mass spectrometry analysis of metabolites
Reaction mode Analytical method Derivatization reagent Sample ref
Online rDESI-MSI Dication(DC9) Phosphoethanolamines in rat brain and zebra fish tissues 25
Online rDESI、EESI MS Benzeneboronate anions cis/trans-diol isomers 27
Online nanoESI-MS、rDESI-MS Girard T Ketosteroid 34
Online MALDI-MSI O3 Lipid isomers in rat brain 35
Online ESSI-MS M2+、amino acids Reaction chiral enantiomer products 36
Online nanoESI-MSn 2-Acetylpyridine Lipid isomers in human breast cancer cells and lung cancer tissues 37
Online LC-OzID-IMS-MS O3 Lipid isomers in human plasma 38
Online APIMS-TOF MS Ag+, Pb2+, Hg2+,et al. High-mannose 39
Online ESI-DMS-MS BBS Chiral amino acids 40
Online rELDI-MS Dithiothreitol Oxidized glutathione and insulin 41
Online ESI-MS/MS L-amino acids and divalent metal cations Fructose, galactose, and glucose isomers 42
Online IMS-MS Metal ions(Na+, K+, Mg2+, Ca2+) and transition metal ions(Mn2+, Co2+, Fe2+, Ni2+) Heparin octasaccharides 43
Online TWIM-MS Chira slelector(Y) and transition metal ion(CuCl2) Chiral amino acids 44
Online rDESI-MS/MS Hydroxylamine Anabolic steroids in raw urine 24
Online rDESI-MS 3-nitrophenylboronic acid 、N-methyl-4-pyridineboronic acid iodide Saccharides in urine and serum samples 26
Online Micro-thin film-nESI-MS Butylamine、DMEA、DEEA、EDPA、DBPA 29 reducing sugars in single onion epidermis cell 28
Online noncontact nCFI-MS d0-/d5-pyridine Fatty alcohols and sterols in single cell 45
Offline nano LC-MS 12C-/13C DnsCl Amine, phenol, carboxylic, hydroxyl submetabolomes in human breast cancer cells 8
Offline CIL-LC-MS DMED, d4-DMED、HIQB, d7-HIQB、DMAP, d4-DMAP、BQB, d7-BQB Carboxyl, carbonyl, amine, and thiol submetabolomes in mice feces 9
Offline MALDI-MSI Benzaldehyde Lipid db-positional isomers in mouse brain 46
Offline MALDI-MSI DMPI Free fatty acids(FFAs) in thyroid cancer tissues 11
Offline MALDI-TOF-MS DHB/3HBA and DHB/Q3CH N-glycans in blood samples 47
Offline Full scan MS Stereodynamic chiral benzylicaldehyde probes Chiral amino acids residues in peptides 48
Offline HILIC-MALDI-MSI Stable-isotope labeled hydrazide reagents N-glycans in human serum 49
Offline RPLC-MS/MS 12CH3I、13CH3I Neutral glycolipids in mammalian cells 50
Offline nano-HILIC-Orbitrap-MS DMT-MM N-glycans in haptoglobin and human plasma 51
Offline MALDI-TOF-MS DMT-MM α-(2, 3)/ α-(2, 6) Sialic acid in blood serum glycoproteins 52
Offline ESI-MS Butanol Amino acids in serum 19
Offline MALDI-TOF-MS EDC α-(2, 3)/ α-(2, 6) Sialic acid inhuman plasma 53
Offline HPLC-MS/MS Bbromine-isotope probe D-BPBr Chiral amino acids in human biofluid 54
Offline TIMS-TOF MS FLEC Chiral amino acids 55
Offline UPLC-MS/MS,PRM
mode
d0/d6-DHPP SCFAs and OHeSCFAs in mouse fecal, serum, and liver tissue samples 33
Offline InESI-MS NCBT Cysteine in single cell 56
Offline HPLC-ESI-IM-MS d0-/d5-pyridine and thionyl chloride Fatty alcohols, fatty aldehydes and sterols in thyroid tissues 57
Fig.2 MALDI-2-MSI of lipids in mouse brain after P-B reaction with benzaldehyde as derivatization reagent[46]. A)~F) PB-MALDI-2-MS/MS images of diagnostic ion pairs representing PC 36∶1 and PS 36∶2 db-positional isomers. For both groups of phospholipids highly differential isomer-specific expression levels are found in the white and gray brain areas of the cerebellum. G) H&E stain of the tissue sections obtained after the MSI analysis and washing of matrix. H) MS/MS spectrum of the PB adducts of PC 36∶1 and PS 36∶2.©2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.3 (a) MALDI-CID/OZID spectrum and(b) full-scan FTMS image of [PC(36∶1)+Na]+ revealing the presence of four distinct sn-positional isomers(PC(18∶0/18∶1), PC(18∶1/18∶0), PC(16∶0/20∶1) and PC(20∶1/16∶0) in rat brain section. The corresponding fractional distribution images of (c) PC(18∶0/18∶1) as a fraction of PC(18∶0_18∶1); and (d) PC(16∶0/20∶1) as a fraction of PC(16∶0_20∶1)-related ions[35].©Wiley-VCH Verlag GmbH & Co. KGaA
Fig.4 (a) Chiral recognition of metal ion-bound complexes;(b) Competitive dissociation MS2 spectrum of metal ion-bound complexes [A(RorS)M2+(ref*)2-H]+
[1]
Li J S , Xu J , Zhang R P , Hao Y Z , He J M , Chen Y H , Jiao G G , Abliz Z. Anal. Chem., 2020, 92(7): 5143.
[2]
Pu Q L , Liao H , Chen Y H , Gao Y , Ding X , He J M , Zhang R P , Abliz Z. J. Chin. Mass. Spectr. Soc., 2020, 41(4): 297.
蒲倩伦, 廖晗, 陈艳华, 高杨, 丁贤, 贺玖明, 张瑞萍, 再帕尔·阿不力孜. 质谱学报, 2020, 41(4): 297.
[3]
He J M , Sun C L , Li T G , Luo Z G , Huang L J , Song X W , Li X , Abliz Z. Adv. Sci., 2018, 5(11): 1800250.
[4]
Li Y L , Zhao J B , Guo Y L. Progress in Chemistry, 2019, 31(1): 106.
李瑜玲, 赵君博, 郭寅龙. 化学进展, 2019, 31(1): 106.
[5]
Zhang J L , Huo F F , Zhou Z G , Bai Y , Liu H W. Progress in Chemistry, 2012, 24(1): 101.
张佳玲, 霍飞凤, 周志贵, 白玉, 刘虎威. 化学进展, 2012, 24(1): 101.
[6]
Sun C L , Li T G , Song X W , Huang L J , Zang Q C , Xu J , Bi N , Jiao G G , Hao Y Z , Chen Y H , Zhang R P , Luo Z G , Li X , Wang L H , Wang Z H , Song Y M , He J M , Abliz Z. PNAS, 2019, 116(1): 52.
[7]
Ma W , Xu S T , Nie H G , Hu B Y , Bai Y , Liu H W. Chem. Sci., 2019, 10(8): 2320.
[8]
Luo X , Li L. Anal. Chem., 2017, 89(21): 11664.
[9]
Yuan B F , Zhu Q F , Guo N , Zheng S J , Wang Y L , Wang J , Xu J , Liu S J , He K , Hu T , Zheng Y W , Xu F Q , Feng Y Q. Anal. Chem., 2018, 90(5): 3512.
[10]
Bag S , Hendricks P I , Reynolds J C , Cooks R G. Anal. Chimica Acta, 2015, 860: 37.
[11]
Wang S S , Wang Y J , Zhang J , Sun T Q , Guo Y L. Anal. Chem., 2019, 91(6): 4070.
[12]
Guo S , Tang W W , Hu Y , Chen Y W , Gordon A , Li B , Li P. Anal. Chem., 2020, 92(1): 1431.
[13]
Li Y F , Yan X , Cooks R G. Angew. Chem. Int. Ed., 2016, 55(10): 3433.
[14]
Yan X , Bain R M , Cooks R G. Angew. Chem. Int. Ed., 2016, 55(42): 12960.
[15]
Thomas M C , Mitchell T W , Harman D G , Deeley J M , Nealon J R , Blanksby S J. Anal. Chem., 2008, 80(1): 303.
[16]
Sun J , Jiang Y M , Liu H H , Huang X , Xiong C Q , Nie Z X. Anal. Chem., 2020, 92(9): 6564.
[17]
Li G T , Li X , Ouyang Z , Cooks R G. Angew. Chem. Int. Ed., 2013, 52(3): 1040.
[18]
Li X , Yan X , Cooks R G. Int. J. Mass Spectrom., 2017, 418: 79.
[19]
Huang T J , Armbruster M R , Coulton J B , Edwards J L. Anal. Chem., 2019, 91(1): 109.
[20]
de Haan D O , Tolbert M A , Jimenez J L. Geophys. Res. Lett., 2009, 36(11): L11819.
[21]
Girod M , Moyano E , Campbell D I , Cooks R G. Chem. Sci., 2011, 2(3): 501.
[22]
Bain R M , Pulliam C J , Cooks R G. Chem. Sci., 2015, 6(1): 397.
[23]
Espy R D , Wleklinski M , Yan X , Cooks R G. Trac Trends Anal. Chem., 2014, 57: 135.
[24]
Huang G M , Chen H , Zhang X R , Cooks R G , Ouyang Z. Anal. Chem., 2007, 79(21): 8327.
[25]
Lostun D , Perez C J , Licence P , Barrett D A , Ifa D R. Anal. Chem., 2015, 87(6): 3286.
[26]
Zhang Y , Chen H. Int. J. Mass Spectrom., 2010, 289(2/3): 98.
[27]
Chen H , Cotte-Rodríguez I , Cooks R G. Chem. Commun., 2006(6): 597.
[28]
Wei Z W , Zhang X C , Wang J Y , Zhang S C , Zhang X R , Cooks R G. Chem. Sci., 2018, 9(40): 7779.
[29]
Stroberg W , Schnell S. Biophys. J., 2018, 115(1): 3.
[30]
Wei Z W , Li Y J , Cooks R G , Yan X. Annu. Rev. Phys. Chem., 2020, 71(1): 31.
[31]
Cooks R G , Yan X. Annual Rev. Anal. Chem., 2018, 11(1): 1.
[32]
Han W , Li L. Clinical Metabolomics. NY: Humana Press, 2018: 213.
[33]
Wei J T , Xiang L , Li X N , Song Y Y , Yang C X , Ji F F , Chung A C K , Li K , Lin Z A , Cai Z W. Anal. Chimica Acta, 2020, 1100: 66.
[34]
Badu-Tawiah A K , Campbell D I , Cooks R G. J. Am. Soc. Mass Spectrom., 2012, 23(6): 1077.
[35]
Paine M R L , Poad B L J , Eijkel G B , Marshall D L , Blanksby S J , Heeren R M A , Ellis S R. Angew. Chem. Int. Ed., 2018, 57(33): 10530.
[36]
Bain R M , Yan X , Raab S A , Ayrton S T , Flick T G , Cooks R G. Anal., 2016, 141(8): 2441.
[37]
Cao W B , Cheng S M , Yang J , Feng J X , Zhang W P , Li Z S , Chen Q H , Xia Y , Ouyang Z , Ma X X. Nat. Commun., 2020, 11: 375.
[38]
Poad B L J , Zheng X Y , Mitchell T W , Smith R D , Baker E S , Blanksby S J. Anal. Chem., 2018, 90(2): 1292.
[39]
Struwe W B , Benesch J L , Harvey D J , Pagel K. Anal., 2015, 140(20): 6799.
[40]
Zhang J D , Kabir K M M , Donald W A. Anal. Chimica Acta, 2018, 1036: 172.
[41]
Peng I X , Ogorzalek Loo R R , Shiea J , Loo J A. Anal. Chem., 2008, 80(18): 6995.
[42]
Fouquet T , Charles L. J. Am. Soc. Mass Spectrom., 2010, 21(1): 60.
[43]
Seo Y , Schenauer M R , Leary J A. Int. J. Mass Spectrom., 2011, 303(2/3): 191.
[44]
Yu X , Yao Z P. Anal. Chim. Acta., 2017, 981: 62.
[45]
Cao Y Q , Zhang L , Zhang J , Guo Y L. Anal. Chem., 2020, 92(12): 8378.
[46]
Bednařík Antonín , Stefan Bölsker , Jens Soltwisch , Klaus Dreisewerd Angew. Chem., 2018, 130(37): 12268.
[47]
Zhao X Y , Huang Y , Ma G , Liu Y Q , Guo C , He Q , Wang H W , Liao J C , Pan Y J. Anal. Chem., 2020, 92(1): 991.
[48]
Wang L , Jin Z , Wang X Y , Zeng S , Sun C R , Pan Y J. Anal. Chem., 2017, 89(22): 11902.
[49]
Chen Z W , Zhong X F , Tie C , Chen B M , Zhang X X , Li L J. Anal. Bioanal. Chem., 2017, 409(18): 4437.
[50]
Barrientos R C , Zhang Q B. Anal. Chem., 2019, 91(15): 9673.
[51]
Tousi F , Bones J , Hancock W S , Hincapie M. Anal. Chem., 2013, 85(17): 8421.
[52]
Alley W R Jr , Novotny M V. J. Proteome Res., 2010, 9(6): 3062.
[53]
Reiding K R , Blank D , Kuijper D M , Deelder A M , Wuhrer M. Anal. Chem., 2014, 86(12): 5784.
[54]
Shen K X , Wang L , He Q , Jin Z , Chen W Y , Sun C R , Pan Y J. Anal. Chem., 2020, 92(2): 1763.
[55]
PÉrez-Míguez R , Bruyneel B , Castro-Puyana M , Marina M L , Somsen G W , Domínguez-Vega E. Anal. Chem., 2019, 91(5): 3277.
[56]
Zhuang M H , Hou Z H , Chen P Y , Liang G L , Huang G M. Chem. Sci., 2020, 11(28): 7308.
[57]
Qi W S , Wang Y J , Cao Y Q , Cao Y J , Guan Q , Sun T Q , Zhang L , Guo Y L. Anal. Chem., 2020, 92(13): 8644.
[58]
Harrison K A , Murphy R C. Anal. Chem., 1996, 68(18): 3224.
[59]
Thomas M C , Mitchell T W , Harman D G , Deeley J M , Murphy R C , Blanksby S J. Anal. Chem., 2007, 79(13): 5013.
[60]
Marshall D L , Criscuolo A , Young R S E , Poad B L J , Zeller M , Reid G E , Mitchell T W , Blanksby S J. J. Am. Soc. Mass Spectrom., 2019, 30(9): 1621.
[61]
Hsu F F , Turk J. J. Am. Soc. Mass Spectrom., 2008, 19(11): 1681.
[62]
Zhang J I , Tao W A , Cooks R G. Anal. Chem., 2011, 83(12): 4738.
[63]
Hansson G C , Bouhours J F , Karlsson H , Carlstedt I. Carbohydr. Res., 1991, 221(1): 179.
[64]
Yang S , Jankowska E , Kosikova M , Xie H , Cipollo J. Anal. Chem., 2017, 89(17): 9508.
[65]
Liu Y S , Clemmer D E. Anal. Chem., 1997, 69(13): 2504.
[66]
Gabryelski W , Froese K L. J. Am. Soc. Mass Spectrom., 2003, 14(3): 265.
[67]
Huang Y T , Dodds E D. Anal., 2015, 140(20): 6912.
[68]
Tao W A , Cooks R G. Anal. Chem., 2003, 75(1): 25 A.
[69]
Wang L , Chai Y F , Zhu W Q , Pan Y J , Sun C R , Zeng S. Anal., 2017, 142(5): 745.
[70]
Wang L , Chai Y F , Ni Z Q , Wang L , Hu R L , Pan Y J , Sun C R. Anal. Chimica Acta, 2014, 809: 104.
[1] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.
[2] Yiqiang Liu, Yimei Qiu, Xing Tang, Yong Sun, Xianhai Zeng, Lu Lin. Glucose Isomerization into Fructose by Chemocatalytic Route [J]. Progress in Chemistry, 2021, 33(11): 2128-2137.
[3] Zhiyong Li, Ying Feng, Huiyong Wang, Xiaoqing Yuan, Yuling Zhao, Jianji Wang. Structure and Performance Modulation of Photo-Responsive Ionic Liquids [J]. Progress in Chemistry, 2019, 31(11): 1550-1559.
[4] Du Kejie, Wang Yi, Liang Jiewen, Ji Liangnian, Chao Hui*. DNA Topoisomerase Inhibitors [J]. Progress in Chemistry, 2013, 25(04): 545-554.
[5] Li Wenling, Zang Peng, Li Hongfu, Yang Shixia. Biomimetic Synthesis of Oligostilbenes [J]. Progress in Chemistry, 2012, 24(04): 545-555.
[6] Chen Mao Weng Yue Lei Aiwen. Asymmetric Cycloisomerization of 1,n-Enynes Catalyzed by Transition Metals [J]. Progress in Chemistry, 2010, 22(07): 1341-1352.
[7] Lu Yuhua Song Feijie Jia Xueshun Liu Yuanhong. Transition Metal-Catalyzed Synthesis of Furan Derivatives [J]. Progress in Chemistry, 2010, 22(01): 58-70.
[8] Liang Jun|Wang Fuping*. Hydroisomerization of n-Alkane [J]. Progress in Chemistry, 2008, 20(04): 457-463.
[9]

Chen Suting|You Qidong*

. Anticancer Activity of Indolocarbazoles [J]. Progress in Chemistry, 2008, 20(0203): 368-374.
[10] Zhou Zhijun, Cai Rongxi, Liu Nengjun, Zhang Lin**, Chen Huanlin. Preparation and Application of Membrane with Cyclodextrins [J]. Progress in Chemistry, 2007, 19(9): 1436-1442.
[11] Chao Hui**  Gao Feng  Ji Liangnian**. DNA Interactions with Ruthenium(II) Polypyridyl Complexes [J]. Progress in Chemistry, 2007, 19(012): 1844-1851.
[12] Linhui Tong Runhua Lu Yoshihisa Inoue Inoue . Asymmetric Photochemistry with Native and Modified Cyclodextrins [J]. Progress in Chemistry, 2006, 18(05): 533-541.
[13] Zhuang Yunlong,Yuan Yiguang,Zhang Rongliang. The Progress of Photoisomerizable Intellectual Biological Switches [J]. Progress in Chemistry, 2001, 13(04): 276-.
[14]

Wu Shikang

. Advances in the Research of Molecular Fluorescent Signal and Photocontrol Molecular Switching Devices [J]. Progress in Chemistry, 1994, 6(04): 301-.