中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (1): 97-110 DOI: 10.7536/PC200458 Previous Articles   Next Articles

• Review •

Bioimaging By Secondary Ion Mass Spectrometry

Lesi Cai1, Meng-Chan Xia1, Zhanping Li1,2,*(), Sichun Zhang1,*(), Xinrong Zhang1   

  1. 1 Department of Chemistry, Tsinghua University,Beijing 100084, China
    2 Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University,Beijing 100084, China
  • Received: Revised: Online: Published:
  • Contact: Zhanping Li, Sichun Zhang
  • Supported by:
    21621003; the National Key R&D Program of China(2018YFA0702600)
Richhtml ( 36 ) PDF ( 952 ) Cited
Export

EndNote

Ris

BibTeX

Secondary ion mass spectrometry(SIMS), as the highest spatial resolution mass spectrometry imaging technique, holds label-free, high sensitivity, multi-component detection advantages and sub-micron high spatial resolution imaging advantage, providing new analysis method to study life science problems. SIMS has been widely used in cell biology, tissue pathological physiology, biological medicine, clinical medicine and other fields. This paper reviews the progress of SIMS imaging in biological tissue, cell, bionic biofilm and other bio-samples.

Contents

1 Introduction

2 SIMS chemical imaging at tissue level

2.1 Chemical imaging of animal tissue section

2.2 Chemical imaging of plant tissue section

2.3 Chemical imaging of bionic biofilm

3 SIMS chemical imaging at single-cell level

3.1 Endogenous substances analysis

3.2 Exogenous substance analysis

3.3 Cell classification based on SIMS fingerprint

4 SIMS chemical imaging of other bio-samples

5 Conclusion and outlook

Fig. 1 Schematic diagram of the 3D OrbiSIMS[8]
Fig. 2 Chemical imaging of animal tissue sections by SIMS: (a) TOF-SIMS chemical imaging of rat brain section[63] .(b) Chemical imaging of non-alcoholic steatosis liver by TOF-SIMS[66] .(c) TOF-SIMS imaging of lipids in skeletal muscle section[68]
Fig. 3 Chemical imaging of tissue sections by SIMS: (a) Cryo-TOF-SIMS chemical imaging of surface of a bean stem cross section[75] .(b) 3D TOF-SIMS imaging of cellulose and lignin in poplar branches tension wood section[80]
Fig. 4 TOF-SIMS chemical imaging at single-cell level: (a) TOF-SIMS chemical imaging of lipid changes during the pairing of tetrahymena[98] .(b) TOF-SIMS chemical imaging of Vitamin E enriched in subcellular regions of a neuron[99]
Fig. 5 3D chemical imaging by TOF-SIMS:(a) High-resolution chemical 3D imaging of high pressure frozen, freeze-fractured, and freeze-dried thyroid tumor cells[56] .(b) ZCorrectorGUI corrected 3D TOF -SIMS cell imaging of a NIH/3T3 cell[101]
Fig. 6 SIMS chemical imaging of exogenous substances in cells: (a) Nano-SIMS imaging of HeLa cell with 15N-labeled peptide[55] .(b) Nano-SIMS was used to image the co-location distribution of drug iodine signal and melanin signal in cells[108] .(c) TOF-SIMS 3D chemical imaging of desethylamiodarone in R8383 macrophages[111]
Fig. 7 Cell typing based on SIMS fingerprint: (a) TOF-SIMS data combined with multivariate analysis were used to identify the differentiation status of individual hematopoietic cells isolated from mouse bone marrow[127] .(b) SIMS typing of mouse fibroblast NIH 3T3 cultured rat primary esophageal epithelial cells REEC[96] .(c) PCA typing results of 8 breast cancer cell lines based on TOF-SIMS lipid fingerprint[129]
Fig. 8 Application of TOF-SIMS in forensic science: chemical imaging of fingerprint residues[22]
[1]
Thomson J J. Philos. Mag. , 1910, 20: 752.

doi: 10.1080/14786441008636962
[2]
Arnot F L. Proc. R. Soc. London , Ser. A , 1937, 158: 137.
[3]
Arnot F L, Milligan J C. Proc. R. Soc. London , Ser. A , 1936, 153: 359.
[4]
Herzog R F K, Viehbock F P. Phys. Rev. , 1949, 76: 855.

doi: 10.1103/PhysRev.76.855
[5]
Liebl H J, Herzog R F K. J. Appl. Phys. , 1963, 34: 2893.

doi: 10.1063/1.1729826
[6]
Benninghoven A. Surf. Sci. , 1973, 35: 427.

doi: 10.1016/0039-6028(73)90232-X
[7]
Benninghoven A. Surf. Sci., 1975, 53: 596.

doi: 10.1016/0039-6028(75)90158-2
[8]
Passarelli M K, Pirkl A, Moellers R, Grinfeld D, Kollmer F, Havelund R, Newman C F, Marshall P S, Arlinghaus H, Alexander M R, West A, Horning S, Niehuis E, Makarov A, Dollery C T, Gilmore I S. Nat. Meth. , 2017, 14: 1175.

doi: 10.1038/nmeth.4504
[9]
Shaffner T J. Surf. Interface Anal. , 1989, 14: 598.

doi: 10.1002/(ISSN)1096-9918
[10]
Alnot P, Huber A M, Olivier J. Surf. Interface Anal. , 1986, 9: 283.

doi: 10.1002/(ISSN)1096-9918
[11]
Mischler S, Bishop H E, Davies J J R. Surf. Interface Anal. , 1992, 18: 23.

doi: 10.1002/(ISSN)1096-9918
[12]
Fearn S, McPhail D S, Oakley V. Phys. Chem. Glasses , 2005, 46: 505.
[13]
Hua X, Yu X Y, Wang Z, Yang L, Liu B, Zhu Z, Tucker A E, Chrisler W B, Hill E A, Thevuthasan T, Lin Y, Liu S, Marshall M J. Analyst , 2014, 139: 1609.

doi: 10.1039/c3an02262e
[14]
McIntyre N S, Huctwith C M, Taylor K F, Keating E, Petersen N O, Brennenstuhl A M. Surf. Interface Anal. , 2002, 33: 447.

doi: 10.1002/sia.v33:5
[15]
Saito K, Kato T, Takamori H, Kishimoto T, Fukushima K. Biomacromolecules , 2005, 6: 2688.

doi: 10.1021/bm050147o
[16]
Hoppe P, Cohen S, Meibom A. Geostand. Geoanal. Res. , 2013, 37: 111.

doi: 10.1111/j.1751-908X.2013.00239.x
[17]
Liu B, Yu X Y, Zhu Z, Hua X, Yang L, Wang Z. Lab Chip , 2014, 14: 855.

doi: 10.1039/c3lc50971k
[18]
Hoppe P, Leitner J, Groener E, Marhas K K, Meyer B S, Amari S. Astrophys. J. , 2010, 719: 1370.

doi: 10.1088/0004-637X/719/2/1370
[19]
Zhu X K, Onions R K, Belshaw N S, Gibb A J. Chem. Geol. , 1997, 136: 205.

doi: 10.1016/S0009-2541(96)00143-X
[20]
Ingram J C, Groenewold G S, Olson J E, Gianotto A K, McCurry M O. Anal. Chem. , 1999, 71: 1712.

doi: 10.1021/ac9811571
[21]
Clements T, Dolocan A, Martin P, Purnell M A, Vinther J, Gabbott S E. Nature , 2016, 532: 500.

doi: 10.1038/nature17647
[22]
Cai L, Xia M C, Wang Z, Zhao Y B, Li Z, Zhang S, Zhang X. Anal. Chem. , 2017, 89: 8372.

doi: 10.1021/acs.analchem.7b01629
[23]
Szynkowska M I, Czerski K, Rogowski J, Paryjczak T, Parczewski A. Forensic Sci. Int. , 2009, 184: 24.
[24]
Szynkowska M I, Czerski K, Rogowski J, Paryjczak T, Parczewski A. Surf. Interface Anal. , 2010, 42: 393.

doi: 10.1002/sia.v42:5
[25]
Ding Y, Zhou Y, Yao J, Szymanski C, Fredrickson J, Shi L, Cao B, Zhu Z, Yu X Y. Anal. Chem. , 2016, 88: 11244.

doi: 10.1021/acs.analchem.6b03909
[26]
Todd P J, McMahon J M, Short R T, McCandlish C A. Anal. Chem. , 1997, 69: 529.
[27]
Chandra S. Appl. Surf. Sci. , 2004, 231: 467.
[28]
Daniel B, Christina E R, Rudolf M, Joachim W, Birgit H. Angew. Chem. Int. Ed. , 2007, 46: 5332.

doi: 10.1002/(ISSN)1521-3773
[29]
Sostarecz A G, McQuaw C M, Ewing A G, Winograd N. J. Am. Chem. Soc. , 2004, 126: 13882.

doi: 10.1021/ja0472127
[30]
Ostrowski S G, Van Bell C T, Winograd N, Ewing A G. Science , 2004, 305: 71.

doi: 10.1126/science.1099791
[31]
Vanbellingen Q P, Castellanos A, Rodriguez-Silva M, Paudel I, Chambers J W, Fernandez-Lima F A. J. Am. Soc. Mass Spectrom. , 2016, 27: 2033.

doi: 10.1007/s13361-016-1485-y
[32]
Dill A L, Eberlin L S, Ifa D R, Cooks R G. Chem. Commun. , 2011, 47: 2741.

doi: 10.1039/C0CC03518A
[33]
McDonnell L A, Heeren R M A. Mass Spectrom. Rev. , 2007, 26: 606.

doi: 10.1002/mas.v26:4
[34]
Caprioli R M, Farmer T B, Gile J. Anal. Chem. , 1997, 69: 4751.

doi: 10.1021/ac970888i
[35]
Norris J L, Caprioli R M. Chem. Rev. , 2013, 113: 2309.

doi: 10.1021/cr3004295
[36]
Cornett D S, Reyzer M L, Chaurand P, Caprioli R M. Nat. Meth. , 2007, 4: 828.

doi: 10.1038/nmeth1094
[37]
Wiseman J M, Ifa D R, Zhu Y, Kissinger C B, Manicke N E, Kissinger P T, Cooks R G. Proc. Natl. Acad. Sci. U. S. A. , 2008, 105: 18120.
[38]
Takats Z, Wiseman J M, Cooks R G. J. Mass Spectrom. , 2005, 40: 1261.

doi: 10.1002/(ISSN)1096-9888
[39]
Wu C, Dill A L, Eberlin L S, Cooks R G, Ifa D R. Mass Spectrom. Rev. , 2013, 32: 218.

doi: 10.1002/mas.21360
[40]
Becker J S, Matusch A, Wu B. Anal. Chim. Acta , 2014, 835: 1.

doi: 10.1016/j.aca.2014.04.048
[41]
Pozebon D, Scheffler G L, Dressler V L, Nunes, M A G. J. Anal. At. Spectrom. , 2014, 29: 2204.

doi: 10.1039/C4JA00250D
[42]
Stoeckli M, Chaurand P, Hallahan D E, Caprioli, R M. Nat. Med. , 2001, 7: 493.

doi: 10.1038/86573
[43]
Jackson S N, Wang H Y J, Woods A S. Anal. Chem. , 2005, 77: 4523.

doi: 10.1021/ac050276v
[44]
Banerjee S, Zare R N, Tibshirani R J, Kunder C A, Nolley R, Fan R, Brooks J D, Sonn G A. Proc. Natl. Acad. Sci. U. S. A. , 2017, 114: 3334.
[45]
Sun C, Li T, Song X, Huang L, Zang Q, Xu J, Bi N, Jiao G, Hao Y, Chen Y, Zhang R, Luo Z, Li X, Wang L, Wang Z, Song Y, He J, Abliz Z. Proc. Natl. Acad. Sci. U. S. A. , 2019, 116: 52.
[46]
Hare D J, Lee J K, Beavis A D, Gramberg A V, George J, Adlard P A, Finkelstein D I, Doble P A. Anal. Chem. , 2012, 84: 3990.

doi: 10.1021/ac300374x
[47]
Oseas da Silva M A, Zezzi Arruda M A. Metallomics , 2013, 5: 62.

doi: 10.1039/c2mt20154b
[48]
Wu B, Andersch F, Weschke W, Weber H, Becker J S. Metallomics , 2013, 5: 1276.

doi: 10.1039/c3mt00071k
[49]
Chaurand P, Schwartz S A, Caprioli R M. Curr. Opin. Chem. Biol. , 2002, 6: 676.

doi: 10.1016/S1367-5931(02)00370-8
[50]
Berry K A Z, Hankin J A, Barkley R M, Karin A, Barkley R M, Spraggins J M, Caprioli, Murphy R C. Chem. Rev. , 2011, 111: 6491.

doi: 10.1021/cr200280p
[51]
Ifa D R, Wiseman J M, Song Q Y, Cooks R G. Int. J. Mass Spectrom. , 2007, 259: 8.

doi: 10.1016/j.ijms.2006.08.003
[52]
Nemes P, Vertes A. Anal Chem. , 2007, 79: 8098.

doi: 10.1021/ac071181r
[53]
Campbell D I, Ferreira C R, Eberlin L S, Cooks R G. Anal. Bioanal. Chem. , 2012, 404: 389.

doi: 10.1007/s00216-012-6173-6
[54]
Kompauer M, Heiles S, Spengler B. Nat. Meth. , 2017, 14: 90.

doi: 10.1038/nmeth.4071
[55]
Guerquin-Kern J L, Wu T D, Quintana C, Croisy A. Biochim. Biophys. Acta-Gen. Subj. , 2005, 1724: 228.

doi: 10.1016/j.bbagen.2005.05.013
[56]
Nygren H, Hagenhoff B, Malmberg P, Nilsson M, Richter K. Microsc. Res. Tech. , 2007, 70: 969.

doi: 10.1002/(ISSN)1097-0029
[57]
Sheng L, Cai L, Wang J, Li Z, Mo Y, Zhang S, Xu J J, Zhang X, Chen H Y. Int. J. Mass Spectrom. , 2017, 421: 238.

doi: 10.1016/j.ijms.2017.07.008
[58]
Bich C, Touboul D, Brunelle A. Mass Spectrom. Rev. , 2014, 33: 442.

doi: 10.1002/mas.21399
[59]
Brown D A, London E. Annu. Rev. Cell Dev. Biol. , 1998, 14: 111.

doi: 10.1146/annurev.cellbio.14.1.111
[60]
Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo A M, Czaja M J. Nature , 2009, 458: 1131.

doi: 10.1038/nature07976
[61]
Fernandez J A, Ochoa B, Fresnedo O, Giralt M T, Rodriguez-Puertas R. Anal. Bioanal. Chem. , 2011, 401: 29.

doi: 10.1007/s00216-011-4696-x
[62]
Sjovall P, Lausmaa J, Johansson B. Anal. Chem. , 2004, 76: 4271.

doi: 10.1021/ac049389p
[63]
Benabdellah F, Seyer A, Quinton L, Touboul D, Brunelle A, Laprevote O. Anal. Bioanal. Chem. , 2010, 396: 151.

doi: 10.1007/s00216-009-3031-2
[64]
Bich C, Vianello S, Guerineau V, Touboul D, De La Porte S, Brunelle A. Surf. Interface Anal. , 2013, 45: 260.

doi: 10.1002/sia.4846
[65]
Gode D, Volmer D A. Analyst , 2013, 138: 1289.

doi: 10.1039/c2an36337b
[66]
Debois D, Bralet M P, Le Naour F, Brunelle A, Laprevote O. Anal. Chem. , 2009, 81: 2823.

doi: 10.1021/ac900045m
[67]
Richter K, Nygren H, Malmberg P, Hagenhoff B. Microsc. Res. Tech. , 2007, 70: 640.

doi: 10.1002/(ISSN)1097-0029
[68]
Magnusson Y, Friberg P, Sjovall P, Dangardt F, Malmberg P, Chen Y. Clin. Physiol. Funct. Imaging , 2008, 28: 202.

doi: 10.1111/j.1475-097X.2008.00796.x
[69]
Magnusson Y K, Friberg P, Sjovall P, Malm J, Chen Y. Obesity , 2008, 16: 2745.

doi: 10.1038/oby.2008.424
[70]
Veith L, Vennemann A, Breitenstein D, Engelhard C, Wiemann M, Hagenhoff B. Analyst , 2017, 142: 2631.

doi: 10.1039/C7AN00399D
[71]
Desbenoit N, Schmitz-Afonso I, Baudouin C, Laprevote O, Touboul D, Brignole-Baudouin F, Brunelle A. Anal. Bioanal. Chem. , 2013, 405: 4039.

doi: 10.1007/s00216-013-6811-7
[72]
Angelo M, Bendall S C, Finck R, Hale M B, Hitzman C, Borowsky A D, Levenson R M, Lowe J B, Liu S D, Zhao S, Natkunam Y, Nolan G P. Nat. Med. , 2014, 20: 436.

doi: 10.1038/nm.3488
[73]
Keren L, Bosse M, Marquez D, Angoshtari R, Jain S, Varma S, Yang S R, Kurian A, Van Valen D, West R, Bendall S C, Angelo M. Cell , 2018, 174: 1373.

doi: 10.1016/j.cell.2018.08.039
[74]
Tokareva E N, Fardim P, Pranovich A V, Fagerholm H P, Daniel G, Holmbom B. Appl. Surf. Sci. , 2007, 253: 7569.

doi: 10.1016/j.apsusc.2007.03.059
[75]
Metzner R, Schneider H U, Breuer U, Schroeder W H. Plant Physiol. , 2008, 147: 1774.

doi: 10.1104/pp.107.109215
[76]
Kuroda K, Fujiwara T, Imai T, Takama R, Saito K, Matsushita Y, Fukushima K. Surf. Interface Anal. , 2013, 45: 215.

doi: 10.1002/sia.4979
[77]
Zhou C, Li Q, Chiang V L, Lucia L A, Griffis D P. Anal. Chem. , 2011, 83: 7020.

doi: 10.1021/ac200903y
[78]
Fu T, Elie N, Brunelle A. Phytochemistry , 2018, 150: 31.

doi: 10.1016/j.phytochem.2018.02.017
[79]
Trindade G F, Banuls-Ciscar J, Ezeh C K, Abel M L, Watts J F. Surf. Interface Anal. , 2016, 48: 584.

doi: 10.1002/sia.5915
[80]
Jung S, Foston M, Kalluri U C, Tuskan G A, Ragauskas A J. Angew. Chem.-Int. Edit. , 2012, 51: 12005.

doi: 10.1002/anie.201205243
[81]
Bourdos N, Kollmer F, Benninghoven A, Ross M, Sieber M, Galla H J. Biophys. J. , 2000, 79: 357.

doi: 10.1016/S0006-3495(00)76297-7
[82]
Zheng L, McQuaw C M, Baker M J, Lockyer N P, Vickerman J C, Ewing A G, Winograd N. Appl. Surf. Sci. , 2008, 255: 1190.

doi: 10.1016/j.apsusc.2008.05.255
[83]
McQuaw C M, Sostarecz A G, Zheng L, Ewing A G, Winograd N. Appl. Surf. Sci. , 2006, 252: 6716.

doi: 10.1016/j.apsusc.2006.02.210
[84]
Zheng L, McQuaw C M, Ewing A G, Winograd N. J. Am. Chem. Soc. , 2007, 129: 15730.

doi: 10.1021/ja0741675
[85]
Davies S K, Fearn S, Allsopp L P, Harrison F, Ware E, Diggle S P, Filloux A, McPhail D S, Bundy J G. Msphere , 2017, 2: 211.
[86]
Colliver T L, Brummel C L, Pacholski M L, Swanek F D, Ewing A G, Winograd N. Anal. Chem. , 1997, 69: 2225.

doi: 10.1021/ac9701748
[87]
Lockyer N P, Vickerman J C. Appl. Surf. Sci. , 2004, 231: 377.
[88]
Fletcher J S, Lockyer N P, Vaidyanathan S, Vickerman J C. Anal. Chem. , 2007, 79: 2199.

doi: 10.1021/ac061370u
[89]
Luxembourg S L, McDonnell L A, Duursma M C, Guo X H, Heeren R M A. Anal. Chem. , 2003, 75: 2333.

doi: 10.1021/ac026434p
[90]
Cai L, Sheng L, Xia M, Li Z, Zhang S, Zhang X, Chen H. J. Am. Soc. Mass Spectrom. , 2017, 28: 399.

doi: 10.1007/s13361-016-1557-z
[91]
Mas S, Perez R, Martinez-Pinna R, Egido J, Vivanco F. Proteomics , 2008, 8: 3735.

doi: 10.1002/pmic.200800115
[92]
Piwowar A M, Keskin S, Delgado M O, Shen K, Hue J J, Lanekoff I, Ewing A G, Winograd N. Surf. Interface Anal. , 2013, 45: 302.

doi: 10.1002/sia.4882
[93]
Malm J, Giannaras D, Riehle M O, Gadegaard N, Sjovall P. Anal. Chem. , 2009, 81: 7197.

doi: 10.1021/ac900636v
[94]
Brison J, Benoit D S W, Muramoto S, Robinson M, Stayton P S, Castner D G. Surf. Interface Anal. , 2011, 43: 354.

doi: 10.1002/sia.3415
[95]
Fletcher J S, Rabbani S, Henderson A, Lockyer N P, Vickerman J C. Rapid Commun. Mass Spectrom. , 2011, 25: 925.

doi: 10.1002/rcm.4944
[96]
Barnes C A, Brison J, Robinson M, Graham D J, Castner D G, Ratner B D. Anal. Chem. , 2012, 84: 893.

doi: 10.1021/ac201179t
[97]
Frisz J F, Lou K, Klitzing H A, Hanafin W P, Lizunov V, Wilson R L, Carpenter K J, Kim R, Hutcheon I D, Zimmerberg J, Weber P K, Kraft M L. Proc. Natl. Acad. Sci. U. S. A. , 2013, 110: 613.
[98]
Kurczy M E, Piehowski P D, Van Bell C T, Heien M L, Winograd N, Ewing A G. Proc. Natl. Acad. Sci. U. S. A. , 2010, 107: 2751.
[99]
Monroe E B, Jurchen J C, Lee J, Rubakhin S S, Sweedler J V. J. Am. Chem. Soc. , 2005, 127: 12152.

doi: 10.1021/ja051223y
[100]
Zenobi R. Science , 2013, 342: 1201.

doi: 10.1126/science.1243259
[101]
Robinson M A, Graham D J, Castner D G. Anal. Chem. , 2012, 84: 4880.

doi: 10.1021/ac300480g
[102]
Chandra S, Ahmad T, Barth R F, Kabalka G W. J. Microsc. , 2014, 254: 146.

doi: 10.1111/jmi.12126
[103]
Gay I, Lorey D R, Schinazi R F, Morrison G H, Chandra S. Anticancer Res. , 2001, 21: 2369.
[104]
Wedlock L E, Berners-Price S J. Aust. J. Chem. , 2011, 64: 692.

doi: 10.1071/CH11132
[105]
Steinhauser M L, Bailey A P, Senyo S E, Guillermier C, Perlstein T S, Gould A P, Lee R T, Lechene C P. Nature , 2012, 481: 516.

doi: 10.1038/nature10734
[106]
Peteranderl R, Lechene C. J. Am. Soc. Mass Spectrom. , 2004, 15: 478.

doi: 10.1016/j.jasms.2003.11.019
[107]
Legin A A, Schintlmeister A, Jakupec M A, Galanski M, Lichtscheidl I, Wagner M, Keppler B K. Chem. Sci. , 2014, 5: 3135.

doi: 10.1039/c3sc53426j
[108]
Guerquin-Kern J L, Hillion F, Madelmont J C, Labarre P, Papon J, Croisy A. Biomed. Eng. Online , 2004, 3: 10.

doi: 10.1186/1475-925X-3-10
[109]
Galle P, Escaig F, Dantin F, Zhang L L. Cell. Mol. Biol. , 1996, 42: 325.
[110]
Chandra S, Pumphrey G, Abraham J M, Madsen E L. Appl. Surf. Sci. , 2008, 255: 847.

doi: 10.1016/j.apsusc.2008.05.129
[111]
Passarelli M K, Newman C F, Marshall P S, West A, Gilmore I S, Bunch J, Alexander M R, Dollery C T. Anal. Chem. , 2015, 87: 6696.

doi: 10.1021/acs.analchem.5b00842
[112]
Newman C F, Havelund R, Passarelli M K, Marshall P S, Francis I, West A, Alexander M R, Gilmore I S, Dollery C T. Anal. Chem. , 2017, 89: 11944.

doi: 10.1021/acs.analchem.7b01436
[113]
Mohammadi A S, Li X, Ewing A G. Anal. Chem. , 2018, 90: 8509.

doi: 10.1021/acs.analchem.8b01395
[114]
Wu K, Jia F F, Zheng W, Luo Q, Zhao Y, Wang F Y. J. J. Biol. Inorg. Chem. , 2017, 22: 653.
[115]
Hua X, Li H W, Long Y T. Anal. Chem. , 2017, 90: 1072.

doi: 10.1021/acs.analchem.7b04591
[116]
Pareek V, Tian H, Winograd N, Benkovic S J. Science , 2020, 3680: 283.
[117]
Vento-Tormo R, Efremova M, Botting R A, Turco M Y, Vento-Termo M, Meyer K B, Park J E, Stephenson E, Polanski K, Goncalves A, Gardner L, Holmqvist S, Henriksson J, Zou A, Sharkey A M, Millar B, Innes B, Wood L, Wilbrey-Clark A, Payne R P, Ivarsson M A, Lisgo S, Filby A, Rowitch D H, Bulmer J N, Wright G J, Stubbington M J T, Haniffa M, Moffett A, Teichmann S A. Nature , 2018, 563: 347.

doi: 10.1038/s41586-018-0698-6
[118]
Wagner D E, Weinreb C, Collins Z M, Briggs J A, Megason S G, Klein A M. Science , 2018, 360: 981.

doi: 10.1126/science.aar4362
[119]
Young M D, Mitchell T J, Braga F A V, Tran M G B, Stewart B J, Ferdinand J R, Collord G, Botting R A, Popescu D M, Loudon K W, Vento-Tormo R, Stephenson E, Cagan A, Farndon S J, Velasco-Herrera M D C, Guzzo C, Richoz N, Mamanova L, Aho T, Armitage J N, Riddick A C P, Mushtaq I, Farrell S, Rampling D, Nicholson J, Filby A, Burge J, Lisgo S, Maxwell P H, Lindsay S, Warren A Y, Stewart G D, Sebire N, Coleman N, Haniffa M, Teichmann S A, Clatworthy M, Behjati S. Science , 2018, 361: 594.

doi: 10.1126/science.aat1699
[120]
Guo X, Zhang Y, Zheng L, Zheng C, Song J, Zhang Q, Kang B, Liu Z, Jin L, Xing R, Gao R, Zhang L, Dong M, Hu X, Ren X, Kirchhoff D, Roider H G, Yan T, Zhang Z. Nat. Med. , 2018, 24: 1628.
[121]
Yin Y, Mitson-Salazar A, Prussin C. Curr. Protoc. Immunol. , 2015, 110: 6.24.1.
[122]
Bendall S C, Simonds E F, Qiu P, Amir E D, Krutzik P O, Finck R, Bruggner R V, Melamed R, Trejo A, Ornatsky O I, Balderas R S, Plevritis S K, Sachs K, Pe’er D, Tanner S D, Nolan G P. Science , 2011, 332: 687.

doi: 10.1126/science.1198704
[123]
Bendall S C, Nolan G P. Nat. Biotechnol. , 2012, 30: 639.

doi: 10.1038/nbt.2283
[124]
Yao H, Zhao H, Zhao X, Pan X, Feng J, Xu F, Zhang S, Zhang X. Anal. Chem. , 2019, 91: 9777.

doi: 10.1021/acs.analchem.9b01419
[125]
Wang R, Zhao H, Zhang X, Zhao X, Song Z, Ouyang J. Anal. Chem. , 2019, 91: 3667.

doi: 10.1021/acs.analchem.8b05739
[126]
Kulp K S, Berman E S F, Knize M G, Shattuck D L, Nelson E J, Wu L, Montgomery J L, Felton J S, Wu K J. Anal. Chem. , 2006, 78: 3651.

doi: 10.1021/ac060054c
[127]
Frisz J F, Choi J S, Wilson R L, Harley B A C, Kraft M L. Anal. Chem. , 2012, 84: 4307.

doi: 10.1021/ac203329j
[128]
Gostek J, Awsiuk K, Pabijan J, Rysz J, Budkowski A, Lekka M. Anal. Chem. , 2015, 87: 3195.

doi: 10.1021/ac504684n
[129]
Robinson M A, Graham D J, Morrish F, Hockenbery D, Gamble L J. Biointerphases , 2016, 11: 303.
[130]
Muramoto S, Forbes T P, van Asten A C, Gillen G. Anal. Chem. , 2015, 87: 5444.

doi: 10.1021/acs.analchem.5b01060
[131]
Szynkowska M I, Czerski K, Grams J, Paryjczak T, Parczewski A. Imaging Sci. J. , 2007, 55: 180.

doi: 10.1179/174313107X177657
[132]
Szynkowska M I, Parczewski A, Szajdak K, Rogowski J. Surf. Interface Anal. , 2013, 45: 596.

doi: 10.1002/sia.5142
[133]
Hinder S J, Watts J F. Surf. Interface Anal. , 2010, 42: 826.

doi: 10.1002/sia.3497
[134]
Bright N J, Webb R P, Bleay S, Hinder S, Ward N I, Watts J F, Kirkby K J, Bailey M J. Anal. Chem. , 2012, 84: 4083.

doi: 10.1021/ac300185j
[135]
Muramoto S, Sisco E. Anal. Chem. , 2015, 87: 8035.

doi: 10.1021/acs.analchem.5b02018
[136]
Israelachvili J N, Mitchell D J, Ninham B W. Biochim. Biophys. Acta , 1997, 470: 185.
[137]
Guo X, Szoka F C. Acc. Chem. Res. , 2003, 36, 335.

doi: 10.1021/ar9703241
[138]
Walde P, Ichikawa S. Biomol. Eng. , 2001, 18: 143.

doi: 10.1016/S1389-0344(01)00088-0
[139]
Cevc G. Adv. Drug Deliv. Rev. , 2004, 56: 675.

doi: 10.1016/j.addr.2003.10.028
[140]
Richter R, Mukhopadhyay A, Brisson A. Biophys. J. , 2003, 85: 3035.

doi: 10.1016/S0006-3495(03)74722-5
[141]
Gunnarsson A, Kollmer F, Sohn S, Höök F, Sjövall P. Anal. Chem. , 2010, 82: 2426.

doi: 10.1021/ac902744u
[142]
Sjövall P, Agnarsson B, Carlred L, Gunnarsson A, Höök F. Surf. Interface Anal. , 2014, 46: 707.

doi: 10.1002/sia.v46.10-11
[143]
Jain K K. Science , 2001, 294: 621.

doi: 10.1126/science.294.5542.621
[144]
Jonkheijm P, Weinrich D, Schröder H, Niemeyer C M, Waldmann H. Angew. Chem. Int. Ed. , 2008, 47: 9618.

doi: 10.1002/anie.v47:50
[145]
Attavar S, Diwekar M, Linford M R, Davis M A, Blair S. Appl. Surf. Sci. , 2010, 256: 7146.

doi: 10.1016/j.apsusc.2010.05.041
[146]
Saini G, Gates R, Asplund M C, Blair S, Attavar S, Linford M R. Lab Chip , 2009, 9: 1789.

doi: 10.1039/b900748m
[147]
Yang Z, Belu A M, Liebmann-Vinson A, Sugg H, Chilkoti A. Langmuir , 2000, 16: 7482.

doi: 10.1021/la0000623
[148]
Hashimoto H, Nakamura K, Takase H, Okamoto T, Yamamoto N. Appl. Surf. Sci. , 2004, 231: 385.
[149]
Lee C Y, Harbers G M, Grainger D W, Gamble L J, Castner D G. J. Am. Chem. Soc. , 2007, 129: 9429.

doi: 10.1021/ja071879m
[150]
Graf N, Gross T, Wirth T, Weigel W, Unger W E S. Anal. Bioanal. Chem. , 2009, 393: 1907.

doi: 10.1007/s00216-009-2599-x
[151]
Belu A M, Yang Z, Aslami R, Chilkoti A. Analy. Chem. , 2001, 73: 143.

doi: 10.1021/ac000771l
[152]
Castner D G. Microsc. Microanal. , 2010, 16: 366.
[153]
Lee T G, Shon H K, Lee K B, Kim J, Choi I S, Moon D W. J. Vac. Sci. Technol. A , 2006, 24: 1203.

doi: 10.1116/1.2206191
[154]
Huang L, Chen Y, Weng L T, Leung M, Xing X, Fan Z, Wu H. Anal. Chem. , 2016, 88: 12196.

doi: 10.1021/acs.analchem.6b03170
[1] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[2] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[3] Chao Zhao, Zongwei Cai. Mass Spectrometry Imaging and Omics for Environmental Toxicology Research [J]. Progress in Chemistry, 2021, 33(4): 503-511.
[4] Yuling Li, Junbo Zhao, Yinlong Guo. The Principles and Applications of Electrospray-Based Ambient Ionization [J]. Progress in Chemistry, 2019, 31(1): 94-109.
[5] Hao Li, Xu Chunxiu, Cheng Heyong, Liu Jinhua, Yin Xuefeng. Recent Advances in the Determination of Intracellular Contents in Individual Cells Using Microfluidic Devices [J]. Progress in Chemistry, 2012, 24(08): 1544-1553.
[6] . Recent Advances in Single-Cell Analysis Using Capillary Electrophoresis [J]. Progress in Chemistry, 2010, 22(11): 2215-2223.
[7] Shen Yuqin Yao Bo Fang Qun. Application of Magnetic Control Technique in Microfluidic Chips [J]. Progress in Chemistry, 2010, 22(01): 133-139.
[8] Xiao Yuxiu**,Feng Yuqi,Da Shilu,Yeung Edward S.. Progress in Single-Cell Analysis by Capillary Electrophoresis [J]. Progress in Chemistry, 2004, 16(04): 543-.