中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (12): 2034-2048 DOI: 10.7536/PC200424 Previous Articles   Next Articles

• Review •

Lignocellulose Pretreatment by Deep Eutectic Solvents for Biobutanol production

Bingqian Huang1, Liyan Wang1,**(), Xuan Wei2, Weichao Xu1,2, Zhen Sun1, Tinggang Li2,3,**()   

  1. 1 School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
    2 Innovation Academy for Green Manufacture, CAS Key Laboratory of Green Process and Engineering, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    3 University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Contact: Liyan Wang, Tinggang Li
  • Supported by:
    the National Natural Science Foundation of China(No. 50978246); the Research Fund of Major Science and Technology Program for Water Pollution Control and Treatment(No. 2017ZX07402001); and Rare Earth Industry Fund(No. IAGM2020DB06)
Richhtml ( 35 ) PDF ( 985 ) Cited
Export

EndNote

Ris

BibTeX

Biobutanol is acknowledged as a direct alternative of gasoline, which can meet the demand of sustainable economic development for renewable liquid fuel. Lignocellulosic biomass is an ideal raw material for the biobutanol production due to its merits of being renewable, cheap and easily accessible. However, the complex structure of lignocellulose hinders its direct hydrolysis, and efficient pretreatment is essential for its commercial application. As a novel and environmentally friendly solvent, deep eutectic solvents(DESs) have high potential for biomass pretreatment due to its advantages of low cost, low toxicity, strong solubility, excellent selectivity and biocompatibility. This article mainly focuses on the application of DES in lignocellulose pretreatment for biobutanol production. Firstly, the types and properties of DESs are introduced. Secondly, the dissolution efficiency of components in lignocellulose in DESs is summarized, and the effects of DESs pretreatment on enzymatic hydrolysis and butanol fermentation process are discussed. Thirdly, the application potential of consolidated bioprocessing in the production of biobutanol is reviewed by combing various bioprocessing processes. Finally, the prospects of DESs pretreatment lignocellulose for producing biobutanol are proposed.

Contents

1 Introduction

2 DESs and their physicochemical properties

2.1 Classification of DESs

2.2 Properties of DESs

3 Lignocellulose pretreatment by DESs

3.1 Reducing recalcitrance of the lignocellulose by DESs

3.2 Analysis on Solubility of Lignocellulose Components in DESs

4 Effect of DES pretreatment on the production process of biobutanol

4.1 Effect of DES pretreatment on enzymatic hydrolysis

4.2 Effect of DES pretreatment on butanol fermentation

5 Consolidated bioprocessing of biobutanol

5.1 Continuous consolidation of production processes

5.2 Continuous exploration of consolidated bioprocessing

6 Recovery of lignin and recycling of DESs

6.1 Recovery of lignin

6.2 Recycling of DESs

7 Conclusion and prospectives

Fig.1 Interaction of a HBD with the quaternary ammonium salt choline chloride[32]
Fig.2 Typical structures of hydrogen bond donors(HBDs) and bond acceptors(HBAs) for DES synthesis[34]
Table 1 Freezing points and viscosity of some common DESs
Fig.3 Pretreatment of lignocellulose by DES[52]
Table 2 Solubility of lignin and cellulose in various DESs
Biomass HBA HBD Molar ratio Pretreatment conditions Lignin removal
(%)
Cellulose reservation(%) ref
Rice straw betaine Lactic acid 1∶2 60 ℃, 12 h 52 - 51
Rice straw betaine Lactic acid 1∶5 60 ℃, 12 h 56 - 51
Rice straw ChCl Lactic acid 1∶2 60 ℃, 12 h 51 - 51
Rice straw ChCl Lactic acid 1∶5 60 ℃, 12 h 60 - 51
Wheat straw ChCl Lactic acid 1∶2 90 ℃, 12 h 49 57.8 18
Wheat straw ChCl Citric acid 1∶1 90 ℃, 12 h 40.6 59.1 18
Wheat straw ChCl Acetic acid 1∶2 90 ℃, 12 h 32.1 63.2 18
Wheat straw ChCl Ethanolamine 1∶6 90 ℃, 12 h 81 90.8 18
Wheat straw ChCl Diethanolamine 1∶8 90 ℃, 12 h 73.5 98.0 18
Wheat straw ChCl Methyldiethanolamine 1∶10 90 ℃, 12 h 44.6 98.6 18
Wheat straw ChCl Urea 1∶2 90 ℃, 12 h 27.7 95.9 18
Wheat straw ChCl Glycerol 1∶2 90 ℃, 12 h 24.7 97.8 18
Wheat straw ChCl Ethylene glycol 1∶2 90 ℃, 12 h 12.2 95.7 18
Corncob ChCl 1,4-butanediol 1∶9 180 ℃, 4 h 95.02 98.59 20
Corncob ChCl Lactic acid 1∶2 70 ℃, 24 h 18.1 - 20
Corncob ChCl Lactic acid 1∶2 80 ℃, 24 h 31.1 - 20
Corncob ChCl Lactic acid 1∶2 90 ℃, 24 h 42.7 - 20
Corncob ChCl Lactic acid 1∶2 100 ℃, 24 h 65.8 - 20
Corncob ChCl Lactic acid 1∶2 110 ℃, 24 h 95.5 - 20
Corncob ChCl Lactic acid 1∶5 90 ℃, 24 h 77.9 - 20
Corncob ChCl Lactic acid 1∶10 90 ℃, 24 h 86.1 - 20
Corncob ChCl Lactic acid 1∶15 90 ℃, 24 h 93.1 - 20
Corncob ChCl Malonic acid 1∶1 90 ℃, 24 h 56.5 - 20
Corncob ChCl Glutaric acid 1∶1 90 ℃, 24 h 34.3 - 20
Corncob ChCl Malic acid 1∶1 90 ℃, 24 h 22.4 - 20
Corncob ChCl Ethylene glycol 2∶1 90 ℃, 24 h 87.6 - 20
Corncob ChCl Glycerol 2∶1 90 ℃, 24 h 71.3 - 20
Switchgrass ChCl 4-hydroxybenzyl alcohol 1∶1 160 ℃, 33 h 0.4 - 67
Switchgrass ChCl Catechol 1∶1 160 ℃, 33 h 49.0 - 67
Switchgrass ChCl Vanillin 1∶2 160 ℃, 33 h 52.5 - 67
Switchgrass ChCl P-coumaric 1∶1 160 ℃, 33 h 60.8 - 67
Fig.4 Flow chart of biobutanol production by lignocellulose pretreatment with DESs
Table 3 Conversion rates of cellulose and xylan and yield of glucose under different pretreatment conditions
Biomass DES Pretreatment conditions Cellulose conversion(%) Xylan conversion(%) Glucose yield
(%)
ref
Rice straw Untreated 120 ℃, 6 h 23.9 6.6 - 57
Rice straw Lac∶Ethylene glycol(1∶1) 120 ℃, 6 h 58.2 50.2 - 57
Rice straw Lac∶Glycerol(1∶1) 120 ℃, 6 h 56.4 26.0 - 57
Rice straw Lac∶Xylitol(1∶1) 120 ℃, 6 h 47.0 22.0 - 57
Rice straw Lac∶Formamide(1∶1) 120 ℃, 6 h 50.1 30.8 - 57
Rice straw Lac∶Urea(1∶1) 120 ℃, 6 h 23.4 6.5 - 57
Rice straw Lac∶Guanidine·HCl(1∶1) 120 ℃, 6 h 80.3 79.3 - 57
Rice straw ChCl∶Ethylene glycol(1∶1) 120 ℃, 6 h 33.9 10.1 - 57
Rice straw ChCl∶Glycerol(1∶1) 120 ℃, 6 h 30.2 8.7 - 57
Rice straw ChCl∶Xylitol(1∶1) 120 ℃, 6 h 27.8 6.6 - 57
Rice straw ChCl∶Formamide(1∶1) 120 ℃, 6 h 41.4 18.0 - 57
Rice straw ChCl∶Urea(1∶1) 120 ℃, 6 h 41.0 16.9 - 57
Rice straw ChCl∶Guanidine·HCl(1∶1) 120 ℃, 6 h 37.4 9.7 - 57
Rice straw ChCl∶Lac(1∶1) 80 ℃, 6 h 47.3 22.0 - 57
Rice straw ChCl∶2-Chloropropionic acid(1∶1) 80 ℃, 6 h 73.0 36.3 - 57
Rice straw ChCl∶Oxalic acid (1∶1) 80 ℃, 6 h 68.3 37.1 - 57
Wheat straw Untreated 90 ℃, 12 h 20.6 8.6 - 18
Wheat straw ChCl∶Lac(1∶2) 90 ℃, 12 h 93.9 69 - 18
Wheat straw ChCl∶Citric acid(1∶1) 90 ℃, 12 h 63.9 39.2 - 18
Wheat straw ChCl∶Acetic acid(1∶2) 90 ℃, 12 h 37.8 32.3 - 18
Wheat straw ChCl∶Ethanolamine(1∶6) 90 ℃, 12 h 92.4 75.8 - 18
Wheat straw ChCl∶Diethanolamine(1∶8) 90 ℃, 12 h ~75 ~51 - 18
Wheat straw ChCl∶Methyldiethanolamine(1∶10) 90 ℃, 12 h 51.6 38.0 - 18
Corncob Untreated 90 ℃, 24 h - - 22.1 20
Corncob ChCl∶Lac(1∶2) 90 ℃, 24 h - - 81.6 20
Corncob ChCl∶Lac(1∶5) 90 ℃, 24 h - - 83.5 20
Corncob ChCl∶Lac(1∶10) 90 ℃, 24 h - - 83.2 20
Corncob ChCl∶Lac(1∶15) 90 ℃, 24 h - - 79.1 20
Corncob ChCl∶Lac(1∶2) 70 ℃, 24 h - - 44.9 20
Corncob ChCl∶Lac(1∶2) 80 ℃,24 h - - 73.6 20
Corncob ChCl∶Lac(1∶2) 90 ℃, 24 h - - 79.7 20
Corncob ChCl∶Lac(1∶2) 100 ℃, 24 h - - 78.0 20
Corncob ChCl∶Lac(1∶2) 110 ℃, 24 h - - 77.8 20
Corncob Untreated - 32.8 15.5 - 75
Corncob ChCl∶Glycerol(1∶2) 80 ℃, 15 h 39.9 17.7 - 75
Corncob ChCl∶Glycerol(1∶2) 115 ℃, 15 h 79.1 61.3 - 75
Corncob ChCl∶Glycerol(1∶2) 150 ℃, 15 h 91.5 95.5 - 75
Corncob ChCl∶Imidazole(3∶7) 80 ℃, 15 h 92.3 59.5 - 75
Corncob ChCl∶Imidazole(3∶7) 115 ℃, 15 h 94.0 84.0 - 75
Corncob ChCl∶Imidazole(3∶7) 150 ℃, 15 h 94.6 84.8 - 75
Table 4 Butanol yield under different pretreatment conditions
Fig.5 Various bioprocessing options available for the conversion of lignocellulosic biomass to useful products[59]
[1]
Amiri H , Karimi K . Bioresource Technology 2018, 270:702.
[2]
Bajpai P. Pretreatment of Lignocellulosic Biomass for Biofuel Production. Singapore: Springer, 2016.
[3]
蒋叶涛( Jiang Y T ), 宋晓强( Song X Q ), 孙勇(Sun Y),曾宪海(Ceng X H),唐兴(Tang X),林鹿(Lin L). 化学进展(Progress in Chemistry), 2017, 29(10): 1273.
[4]
Isikgor F H , Becer C R . Polym. Chem., 2015, 6:4497.
[5]
Ibrahim M F , Ramli N , Kamal Bahrin E ,, Abd-Aziz S . Renewable and Sustainable Energy Reviews, 2017, 79:1241.
[6]
Huzir N M , Aziz M M A , Ismail S B , Abdullah B , Mahmood N A N , Umor N A , Syed Muhammad S A F A. Renewable and Sustainable Energy Reviews, 2018, 94:476.
[7]
Balat M , Balat H . Applied Energy 2009, 86(11): 2273.
[8]
Jin C , Yao M , Liu H , Lee C F , Ji J . Renewable and Sustainable Energy Reviews, 2011, 15(8):4080.
[9]
Mahapatra M K , Kumar A . Journal of Clean Energy Technologies, 2017, 5(1): 27.
[10]
Visioli LJ , Enzweiler H , Kuhn RC , Schwaab M , Ma M . , Sustainable Chemical Processes 2014, 2:1.
[11]
吕阳( Lu Y ), 蒋羽佳( Jiang Y J ), 陆家声(Lu J S),章文明(Zhang W M),周杰(Zhou J),董维亮(Dong W L),信丰学(Xin F X),姜岷(Jiang M). 生物工程学报(Chinese Journal of Biotechnology), 2020, 36(12): 2755.
[12]
Lee S Y , Park J H , Jang S H , Nielsen L K , Kim J , Jung K S . , Biotechnology and bioengineering 2008, 101(2): 209.
[13]
肖敏( Xiao M ), 吴又多( Wu Y D ), 薛闯(Xue C). 生物加工过程(Chinese Journal of Bioprocess Engineering), 2019, 17(01): 60.
[14]
Kumar M , Gayen K . Applied Energy 2011, 88(6):1999.
[15]
Jang Y , Malaviya A , Cho C , Lee J , Lee S Y . Bioresource Technology 2012, 123:653.
[16]
Potts T , Du J , Paul M , May P , Beitle R , Hestekin J . Environ. Prog. Sustain. Energy, 2012, 31:29.
[17]
Agrawal R , Satlewal A , Gaur R , Mathur A , Kumar R , Gupta R P , Tuli D K . , Biochemical Engineering Journal 2015, 102:54.
[18]
赵峥( Zhao Z ). 北京化工大学博士论文(Doctoral Dissertation of Beijing University of Chemical Technology), 2018.
[19]
Satlewal A , Agrawal R , Bhagia S , Sangoro J , Ragauskas A J . Biotechnology Advances 2018, 36(8):2032.
[20]
张成武( Zhang C W ). 天津大学硕士论文(Master Dissertation of Tianjin University), 2016.
[21]
Datta S , Holmes B , Park J I , Chen Z , Dibble D C , Hadi M , Blanch H W , Simmons B A , Sapra R . Green Chemistry 2010, 12(2): 338.
[22]
Leonardo Da Costa Sousa , Shishir PS Chundawat , Balan V , Dale B E. Curr. Opin. Biotechnol., 2009, 20(3):339.
[23]
Akinosho H , Rydzak T , Borole A , Ragauskas A , Close D . Ecotoxicology, 2015, 24(10): 2156.
[24]
Xu G , Ding J , Han R , Dong J , Ni Y . Bioresource Technology, 2016, 203:364.
[25]
Kudłak B , Owczarek K , Namie?nik J . Environmental Science and Pollution Research, 2015, 22(16):11975.
[26]
Abbott A P , Boothby D , Capper G , Davies D L , Rasheed R K . Journal of the American Chemical Society, 2004, 126(29):9142.
[27]
Loow Y L , Wu T Y , Yang G H , Ang L Y , New E K , Siow L F , Md Jahim J . Bioresource Technology, 2018, 249:818.
[28]
Xu P , Zheng G W , Zong M H , Li N , Lou W Y . Bioresources and Bioprocessing, 2017, 4(1): 34.
[29]
Sarmad S , Xie Y , Mikkola J P , Ji X . New J. Chem., 2017, 41(1): 290.
[30]
Yiin C L , Yusup S , Quitain T A , Uemura Y . , Chemical Engineering Transactions 2015, 45:1525.
[31]
Chen Y , Zhang X , You T , Xu F . Cellulose, 2019, 26(1): 205.
[32]
Francisco M , van den Bruinhorst A , Kroon M C . Angewandte Chemie International Edition, 2013, 52(11): 3074.
[33]
Mbous Y P , Hayyan M , Hayyan A , Wong W F , Hashim M A , Looi C Y . Biotechnology Advances, 2017, 35(2): 105.
[34]
Espino M , de Losángeles Fernández M, Gomez F J V , Silva M F . Trends in Analytical Chemistry, 2016, 76:126.
[35]
Paiva A , Craveiro R , Aroso I , Martins M , Reis R L , Duarte A R C . ACS Sustainable Chemistry & Engineering, 2014, 2(5):1063.
[36]
Loow Y , New E K , Yang G H , Ang L Y , Foo L Y W , Wu T Y . Cellulose, 2017, 24(9):3591.
[37]
García G , Atilhan M , Aparicio S . Chemical Physics Letters, 2015, 634:151.
[38]
García G , Aparicio S , Ullah R , Atilhan M . Energy & Fuels, 2015, 29(4):2616.
[39]
Smith E L , Abbott A P , Ryder K S . Chemical Reviews, 2014, 114(21): 11060.
[40]
张盈盈( Zhang Y Y ), 陆小华( Lu X H ), 冯新(Feng X),史以俊(Shi Y J),吉晓燕(Ji X Y). 化学进展(Progress in Chemistry), 2013, 25(06):881.
[41]
Hou X , Feng G , Ye M , Huang C , Zhang Y . Bioresource Technology, 2017, 238:139.
[42]
TomÉ L I N , Baião V , Da Silva W , Brett C M A . Applied Materials Today, 2018, 10:30.
[43]
Zhang Q H , Vigier K D , Royer S , Jerome F . Chemical Society Reviews, 2012, 41:7018.
[44]
Chen Y , Mu T . Green Energy & Environment, 2019, 4(2): 95.
[45]
Xia S , Baker G A , Li H , Ravula S , Zhao H . RSC Advances, 2014, 4(21): 10586.
[46]
Zhang Y H P , Ding S Y , Mielenz J R , Cui J B , Elander R T , Laser M , Himmel M E , McMillan J R , Lynd L R . Biotechnology and Bioengineering, 2007, 97(2): 214.
[47]
Brandt A , Grasvik J , Halletta J P , Welton T . Green Chemistry, 2013, 15:550.
[48]
陈龙( Chen L ). 华东理工大学博士论文(Doctoral Dissertation of East China University of Science and Technology), 2014.
[49]
Melro E , Alves L , Antunes F E , Medronho B . Journal of Molecular Liquids, 2018, 265:578.
[50]
Liu Y , Chen W , Xia Q , Guo B , Wang Q , Liu S , Liu Y , Li J , Yu H . ChemSusChem, 2017, 10(8):1692.
[51]
Kumar A K , Parikh B S , Pravakar M . Environmental Science and Pollution Research, 2016, 23(10): 9265.
[52]
Liu Y , Nie Y , Lu X , Zhang X , He H , Pan F , Zhou L , Liu X , Ji X , Zhang S . Green Chemistry, 2019, 21(13):3499.
[53]
Dumitrache A , Tolbert A , Natzke J , Brown S D , Davison B H , Ragauskas A J . Green Chemistry, 2017, 19(9):2275.
[54]
Bhagia S , Li H J , Gao X D , Kumar R , Wyman C E . Biotechnology for Biofuels, 2016, 9(1): 245.
[55]
路瑶( Lu Y ), 魏贤勇( Wei X Y ), 宗志敏(Zong Z M),陆永超(Lu Y C),赵炜(Zhao W),曹景沛(Cao J P). 化学进展(Progress in Chemistry), 2013, 25(05):838.
[56]
Soares B , Tavares D J P , Amaral J L , Silvestre A J D , Freire C S R , Coutinho J A P . ACS Sustainable Chemistry & Engineering, 2017, 5(5):4056.
[57]
Hou X D , Li A L , Lin K P , Wang Y Y , Kuang Z Y , Cao S L . Bioresource Technology, 2018, 249:261.
[58]
陈鑫东( Chen X D ), 熊莲( Xiong L ), 黎海龙(Li H L),陈新德(Chen X D). 新能源进展(Advances in New and Renewable Energy), 2019,(05):1.
[59]
Parisutham V , Kim T H , Lee S K . Bioresource Technology, 2014, 161:431.
[60]
Trygg J , Fardim P . Cellulose, 2011, 18(4):987.
[61]
Lu B L , Xu A R , Jj W . Green Chemistry, 2014, 16:1326.
[62]
王冬梅( Wang D M ), 刘云( Liu Y ). 北京化工大学学报(自然科学版)(Journal of Beijing University of Chemical Technology(Natural Science)), 2018, 45(06):40.
[63]
邢山川( Xing S C ). 河北科技大学硕士论文(Master Dissertation of Hebei University of Science and Technology), 2018.
[64]
白有灿( Bai Y C ). 华南理工大学硕士论文(Master Dissertation of South China University of Technology), 2018.
[65]
Chen W , Tu Y , Sheen H . Applied Energy, 2011, 88(8):2726.
[66]
Fang C , Thomsen M H , Frankær C G , Brudecki G P , Schmidt J E , Alnashef I M . Industrial & Engineering Chemistry Research, 2017, 56(12): 3167.
[67]
Kim K H , Dutta T , Sun J , Simmons B , Singh S . Green Chemistry, 2018, 20:809.
[68]
Martinez A , Rodriguez M E , Wells M L , York S W , Preston J F , Ingram L O . Biotechnology Progress, 2001, 17(2): 287.
[69]
邢婉茹( Xing W R ). 江南大学硕士论文(Master Dissertation of Jiangnan University), 2018.
[70]
Ibrahim M F , Abd-Aziz S , Razak M N A , Phang L Y , Hassan M A . Applied Biochemistry and Biotechnology, 2012, 166(7): 1615.
[71]
Gorke J T , Srienc F , Kazlauskas R J . Chemical Communications, 2008,(10): 1235.
[72]
Gunny A A N , Arbain D , Nashef E M , Jamal P . Bioresource Technology, 2015, 181:297.
[73]
Lehmann C , Bocola M , Streit W R , Martinez R , Schwaneberg U . Applied Microbiology and Biotechnology, 2014, 98(12): 5775.
[74]
Wahlström R , Hiltunen J , Pitaluga De Souza Nascente Sirkka M, Vuoti S, Kruus K. RSC Advances, 2016, 6(72): 68100.
[75]
Procentese A , Johnson E , Orr V , Garruto Campanile A, Wood J A , Marzocchella A , Rehmann L . Bioresource Technology, 2015, 192:31.
[76]
丁纪财( Ding J C ). 江南大学硕士论文(Master Dissertation of Jiangnan University), 2016.
[77]
Ishola M M , Jahandideh A , Haidarian B , Brandberg T , Taherzadeh M J . Bioresource Technology, 2013, 133:68.
[78]
Salehi Jouzani G, Taherzadeh M J. Biofuel Research Journal, 2015, 2(1): 152.
[79]
Bhalla A , Bansal N , Kumar S , Bischoff K M , Sani R K . Bioresource Technology, 2013, 128:751.
[80]
张瑶( Zhang Y ). 华东理工大学硕士论文(Master Dissertation of East China University of Science and Technology), 2013.
[81]
Olson D G , McBride J E , Shaw J A , Lynd L R . Current Opinion in Biotechnology, 2012, 23:396.
[82]
Salimi F , Mahadevan R . BMC biotechnology, 2013, 13(1): 95.
[83]
Rajagopalan G , He J , Yang K L . Bioresource Technology, 2014, 154:38.
[84]
Li T G , Zhang C , Yang K , He J . Science Advances, 2018, 4(3):e1701475.
[85]
Liszka M J , Kang A , Konda N V S N, Tran K , Gladden J M , Singh S , Keasling J D , Scown C D , Lee T S , Simmons B A , Sale K L . Green Chemistry, 2016, 18(14):4012.
[86]
Xu F , Sun J , Konda N V S N, Shi J , Dutta T , Scown C D , Simmons B A , Singh S . Energy & Environmental Science, 2016, 9(3):1042.
[87]
Hayyan M , Hashim M A , Hayyan A , Al-Saadi M A , Alnashef I M , Mirghani M E S , Saheed O K . Chemosphere, 2013, 90(7): 2193.
[88]
Zhu S. Journal of Chemical Technology & Biotechnology, 2008, 83(6):777.
[89]
Tang X , Zuo M , Li Z , Liu H , Xiong C , Zeng X , Sun Y , Hu L , Liu S , Lei T , Lin L . ChemSusChem, 2017, 10(13):2696.
[1] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[2] Li Jintao, Zhang Mingzu, He Jinlin, Ni Peihong. Application of Deep Eutectic Solvents in Polymer Synthesis [J]. Progress in Chemistry, 2022, 34(10): 2159-2172.
[3] Yujian Liu, Zhimin Liu, Zhigang Xu, Gongke Li. Stir Bar Sorptive Extraction Technology [J]. Progress in Chemistry, 2020, 32(9): 1334-1343.
[4] Deying Mu, Zhu Liu, Shan Jin, Yuanlong Liu, Shuang Tian, Changsong Dai. The Recovery and Recycling of Cathode Materials and Electrolyte from Spent Lithium Ion Batteries in Full Process [J]. Progress in Chemistry, 2020, 32(7): 950-965.
[5] Zhihua Song, Shenghong Li, Gangqiang Yang, Na Zhou, Lingxin Chen. Sample Pretreatment, Analysis and Detection of Ginsenosides [J]. Progress in Chemistry, 2020, 32(2/3): 239-248.
[6] Lei Bai, Yanfeng Wang, Shuhui Huo, Xiaoquan Lu. Application of Food and Water Samples Pretreatment Using Functional Metal-Organic Frameworks Materials [J]. Progress in Chemistry, 2019, 31(1): 191-200.
[7] Yong Sun, Xiaoqiang Song, Yong Sun*, Xianhai Zeng, Xing Tang, Lu Lin*. Strategies of Prior-Fractionation for the Graded Utilization of Lignocellulose [J]. Progress in Chemistry, 2017, 29(10): 1273-1284.
[8] Yuan Zhengqiu, Long Jinxing, Zhang Xinghua, Xia Ying, Wang Tiejun, Ma Longlong. Catalytic Conversion of Lignocellulose into Energy Platform Chemicals [J]. Progress in Chemistry, 2016, 28(1): 103-110.
[9] Wang Ruiying, Zhang Chaoyan, Wang Shuping, Zhou Youya. Synthesis and Application of Magnetic Metal-Organic Frameworks [J]. Progress in Chemistry, 2015, 27(7): 945-952.
[10] Zhou Yan, Zhao Xuebing, Liu Dehua. Effects of Non-Ionic Surfactant on the Enzymatic Hydrolysis of Lignocellulose and Corresponding Mechanism [J]. Progress in Chemistry, 2015, 27(11): 1555-1565.
[11] Zhou Sukun, Mao Jianzhen, Xu Feng. Preparation and Applications of Microfibrillated Cellulose [J]. Progress in Chemistry, 2014, 26(10): 1752-1762.
[12] Wang Ailing, Zheng Xueliang, Zhao Zhuangzhi, Li Changping, Zheng Xuefang. Deep Eutectic Solvents to Organic Synthesis [J]. Progress in Chemistry, 2014, 26(05): 784-795.
[13] Liu Huamin, Ma Mingguo, Liu Yulan. Applications of Pretreatment in Biomass Thermo-Chemical Conversion Technology [J]. Progress in Chemistry, 2014, 26(01): 203-213.
[14] Bi Pengyu, Chang Lin, Mu Yinglin, Liu Jianyou, Wu Yu, Wei Yun. Recent Progress of Solvent Sublation Technique [J]. Progress in Chemistry, 2013, 25(08): 1362-1374.
[15] Zhang Jiaren, Deng Tianyin, Liu Haichao*. Catalytic Production of Liquid Biofuels from Triglyceride Feedstocks and Lignocellulose [J]. Progress in Chemistry, 2013, 25(0203): 192-208.