中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (1): 103-110 DOI: 10.7536/PC150744 Previous Articles   Next Articles

• Review and comments •

Catalytic Conversion of Lignocellulose into Energy Platform Chemicals

Yuan Zhengqiu1,2, Long Jinxing1, Zhang Xinghua1, Xia Ying1,2, Wang Tiejun1*, Ma Longlong1   

  1. 1. Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National High Technology Research and Development Program of China (No. 2012AA101806), the National Natural Science Foundation of China (No. 51306191), and the National Key Technology R&D Program (No. 2014BAD02B01).
PDF ( 2183 ) Cited
Export

EndNote

Ris

BibTeX

With the shortage of fossil fuels and the concerns related to their environmental impact and greenhouse gas effect, extensive research and development programs have been initiated worldwide to convert biomass into valuable products for future biofuels and chemicals. The conversion of lignocellulose into platform chemicals has attracted more attention in recent years. During this process, cellulose and hemicellulose can be high selectively converted into soluble sugars in the presence of catalysts, and the soluble sugars are subsequently converted into widely used platform molecules, such as furan-based chemicals, polyols, organic acid and its ester derivatives. These platform molecules can be further refined into high value-added liquid hydrocarbon fuels through elementary reactions, which are important alternatives to fossil fuel. The catalysts used for the transformation of lignocellulose into various platform chemicals mainly include liquid acid, solid acid, ion liquid and multifunctional materials, which play an important role in the catalytic process. Based on the present research situation, this review provides new insights into the accomplishments in recent years in the chemocatalytic technologies to generate energy platform chemicals from lignocellulosic biomass, with an emphasis on various kinds of catalytic routes and their existing problems and possible solutions. Finally, the future research and development trend in the field is prospected.

Contents
1 Introduction
2 Conversion of lignocellulose into furan-based chemicals
2.1 5-Hydroxymethylfurfural (HMF)
2.2 Furfural
3 Conversion of lignocellulose into polyols
3.1 Hexitol
3.2 Xylitol
4 Conversion of lignocellulose into organic acid and its ester derivatives
4.1 Levulinic acid
4.2 Levulinate ester
5 Conclusion and outlook

CLC Number: 

[1] 2014 Key World Energy Statistics. International Energy Agency, 2014.
[2] Zeng Y, Zhao S, Yang S, Ding S Y. Curr. Opin. Biotechnol., 2014, 27: 38.
[3] Alonso D M, Bond J Q, Dumesic J A. Green Chem., 2010, 12(9): 1493.
[4] Gallezot P. ChemSusChem, 2008, 1(8/9): 734.
[5] Serrano-Ruiz J C, Dumesic J A. Energy Environ. Sci., 2011, 4(1): 83.
[6] Sanders J, Scott E, Weusthuis R A, Mooibroek H. Macromol. Biosci., 2007, 7(2): 105.
[7] Huber G W, Iborra S, Corma A. Chem. Rev., 2006, 106(9): 4044.
[8] Corma A, Iborra S, Velty A. Chem. Rev., 2007, 107(6): 2411.
[9] Saha B, Abu-Omar M M. Green Chem., 2014, 16(1): 24.
[10] Dutta S, De S, Saha B. Biomass Bioenerg., 2013, 55: 355.
[11] Bozell J J, Moens L, Elliott D, Wang Y, Neuenscwander G G, Fitzpatrick S W, Bilski R J, Jarnefeld J L. Resour. Conserv. Recy., 2000, 28(3): 227.
[12] Sheldon R. Chem. Commun., 2001, (23): 2399.
[13] Tong X, Li Y. ChemSusChem, 2010, 3(3): 350.
[14] Swatloski R P, Spear S K, Holbrey J D, Rogers R D. J. Am. Chem. Soc., 2002, 124(18): 4974.
[15] Fort D A, Remsing R C, Swatloski R P, Moyna P, Moyna G, Rogers R D. Green Chem., 2007, 9(1): 63.
[16] Rinaldi R, Palkovits R, Schüth F. Angew. Chem. Int. Ed., 2008, 47(42): 8047.
[17] Qi X, Watanabe M, Aida T M, Smith J R. Cellulose, 2011, 18(5): 1327.
[18] Su Y, Brown H M, Huang X, Zhou X D, Amonette J E, Zhang Z C. Appl. Catal. A, 2009, 361(1): 117.
[19] Li C, Zhang Z, Zhao Z K. Tetrahedron Lett., 2009, 50(38): 5403.
[20] Binder J B, Raines R T. J. Am. Chem. Soc., 2009, 131(5): 1979.
[21] Tucker M H, Crisci A J, Wigington B N, Phadke N, Alamillo R, Zhang J. ACS Catal., 2012, 2(9): 1865.
[22] Yang Y, Hu C W, Abu-Omar M M. ChemSusChem, 2012, 5(2): 405.
[23] Yang Y, Hu C W, Abu-Omar M M. Green Chem., 2012, 14(2): 509.
[24] Azadi P, Carrasquillo-Flores R, Pagán-Torres Y J, Gürbüz E I, Farnood R, Dumesic J A. Green Chem., 2012, 14(6): 1573.
[25] Gürbüz E I, Wettstein S G, Dumesic J A. ChemSusChem, 2012, 5(2): 383.
[26] Shi N, Liu Q, Zhang Q, Wang T, Ma L. Green Chem., 2013, 15(7): 1967.
[27] PagN-Torres Y J, Wang T, Gallo J M R, Shanks B H, Dumesic J A. ACS Catal., 2012, 2(6): 930
[28] Shi N, Liu Q, Ma L, Wang T, Zhang Q, Zhang Q, Liao Y. RSC Adv., 2014, 4(10): 4978.
[29] Lange J P, Heide E V D, Buijtenen J V, Price R. ChemSusChem, 2012, 5: 150.
[30] 朱晨杰(Zhu C J),张会岩(Zhang H Y),肖睿(Xiao R),陈勇(Chen Y),柳东(Liu D),杜风光(Du F G),应汉杰(Ying H J),欧阳平凯(Ouyang P K).中国科学:化学(Scientia Sinica Chimica), 2015: 45(5): 454.
[31] Panicker P K N. Chemical Age of India, 1975, 26: 457.
[32] Haque R, Chakrabarti R K, Borgohain J N. Chem. Eng. World, 1976, 11: 71.
[33] Harris J F. Tappi J., 1978, 61: 41.
[34] Telleria I A, Larreategui A, Requies J, Gllemez M B, Arias P L. Bioresour. Technol., 2011, 102: 7478.
[35] Rushin M. S. Masteral Dissertation of University of Natal, Durban. 1992.
[36] Dias A S, Pillinger M, Valente A A. J. Catal., 2005, 229: 414.
[37] Dias A S, Lima S, Brandao P. Catal. Lett., 2006, 108: 179.
[38] Lima S, Pillinger M, Valente A A. Catal. Commun., 2008, 9: 2144.
[39] 孙啸寅(Sun X Y). 石河子大学硕士论文(Master Dissertation of Shihezi University), 2013.
[40] Agirrezabal-Telleria I, Larreategui A, Requies J, Güemez M B, Arias P L. Bioresour. Technol., 2011, 102: 7478.
[41] Zhao H B, Holladay J E, Brown H, Zhang Z C. Science, 2007, 316: 1597.
[42] 吕秀阳(Lv X Y), 迫田章义(Sakoda Akiyoshi), 铃木基之(Suzuki Motoyuki). 化工学报(Joutnal of Chemical Industry and Engineering), 2001, 52(6): 556.
[43] 庞斐(Pang F), 吕惠生(Lv H S), 张敏华(Zhang M H). 化学反应工程与工艺(Chemical Reaction Engineering and Technology), 2007, 23(1): 55.
[44] Mansilla H D, Baeza J, Urzua S, Maturana G, Villasenor J, Duran N. Bioresour. Technol., 1998, 66: 189.
[45] Kim Y C, Lee H S. J. Ind. Eng. Chem., 2001, 7: 424.
[46] Dias A S, Lima S, Pillinger M, Valente A A. Catalysis Lett., 2007. 114:151.
[47] Nguyen Q A, Tucker M P. US 6423145.2002.
[48] Liu L, Sun J S, Cai C Y, Wang S H, Pei H S, Zhang J S. Bioresour. Technol., 2009, 100: 5865.
[49] Gravitis J, Vedernikov N, Zandersons J, Kokorevics A. Furfural and Levoglucosan Production from Deciduous Wood and Agricultural Waste. ACS Symposium Series 784. Washington DC:American Chemical Society, 2001. 110.
[50] Geboers J, Vyver S V D, Carpentier K, Jacobs P, Sels B. Chem. Commun., 2011, 47(19): 5590.
[51] Palkovits R, Tajvidi K, Ruppert A M, Procelewska J. Chem. Commun., 2011, 47(1): 576.
[52] Geboers J, Vyver S V D, Carpentier K, Jacobs P, Sels B. Chem. Commun., 2010, 46(20): 3577.
[53] Liao Y H, Liu Q Y, Wang T J, Long J X, Ma L L, Zhang Q. Green Chem., 2014, 16, 3305.
[54] Liao Y H, Liu Q Y, Wang T J, Long J X, Ma L L, Zhang Q. Energy Fuels, 2014, 28 (9): 5778.
[55] Geboers J, Van De Vyver S, Carpentier K, Jacobs P, Sels B. Green Chem., 2011, 13(8): 2167.
[56] Fukuoka A, Dhepe P L. Angew. Chem. Int. Ed., 2006, 45(31): 5161.
[57] Kobayashi H, Ito Y, Komanoya T, Hosaka Y, Dhepe P L, Kasai K, Hara K, Fukuoka A. Green Chem., 2011, 13(2): 326.
[58] Deng T, Liu H. Green Chem., 2013, 15(1): 116.
[59] Wang D, Niu W, Tan M, Wu M B, Zheng X J, Li Y P, Tsubaki N. ChemSusChem, 2014, 7(5):1398.
[60] Liang G, He L, Arai M, Zhao F. ChemSusChem, 2014, 7(5):1415.
[61] Zhu W, Yang H, Chen J, Chen C, Li G, Gan H. Green Chem., 2014, 16: 1534.
[62] Xi J, Zhang Y, Xia Q, Liu X, Ren J. Appl. Catal. A, 2013: 459: 52.
[63] Xie X, Han J, Wang H, Zhu X, Liu X, Niu Y. Catal. Today, 2014, 233: 70.
[64] Liang G, Cheng H, Li W, He L, Yu Y, Zhao F. Green Chem., 2012, 14(8): 2146.
[65] Negoi A, Triantafyllidis K, Parvulescu V I, Coman S M. Catal. Today, 2014, 223: 122.
[66] Negoi A, Trotus I T, Mamula Steiner O, Tudorache M, Kuncser V, Macovei D, Paevulescu V I, Coman S M. ChemSusChem, 2013, 6(11): 2090.
[67] Misra S, Gupta P, Raghuwanshi S, Dutt K, Saxena R K. Sep. Purif. Technol., 2011, 78(3): 266.
[68] Huber G W,Iborra S,Corma A. Chem. Rev., 2006, 106(9): 4044.
[69] Dahiya J S. Can. J. Micorbiol., 1991, 37: 14.
[70] Winkelhausen E, Kuzmanova S. J. Ferment. Bioeng., 1998, 86(1): 1.
[71] Silva D S S, Afschar A S. Bioprocess. Eng., 1994, 11: 129.
[72] Bozell J J. Science, 2010, 329: 522.
[73] Mascal M, Dutta S, Gandarias I. Angew. Chem. Int. Ed., 2014, 53: 1854.
[74] Xin J, Zhang S, Yan D, Ayodele O, Lu X, Wang J. Green Chem., 2014, 16: 3589.
[75] Horvat J, Klai D? B, Metelko B, Šunji D? V. Tetrahedron lett., 1985, 26(17): 2111.
[76] Wang P, Zhan S H, Yu H B. Adv. Mater. Res., 2010, 96: 183.
[77] Lai D M, Deng L, Guo Q X, Fu Y. Energy Environ. Sci., 2011, 4(9): 3552.
[78] Van De Vyver S, Thomas J, Geboers J, Keyzer S, Smet M, Dehaen W. Energy Environ. Sci., 2011, 4(9): 3601.
[79] Weingarten R, Conner W C, Huber G W. Energy Environ. Sci., 2012, 5(6): 7559.
[80] Zuo Y, Zhang Y, Fu Y. ChemCatChem, 2014, 6(3): 753.
[81] Hegner J, Pereira K C, Deboef B, Lucht B L. Tetrahedron Lett., 2010, 51(17): 2356.
[82] Lourvanij K, Rorrer G L. J. Chem. Technol. Biotechnol., 1997, 69(1): 35.
[83] Jow J, Rorrer G L, Hawley M C, Lamport D T A. Biomass, 1987, 14(3): 185.
[84] Lin H, Strull J, Liu Y, Karmiol Z, Plank K, Miller G. Energy Environ. Sci., 2012, 5(12): 9773.
[85] Hu X, Li C Z. Green Chem., 2011, 13(7): 1676.
[86] Garves K. J. Wood Chem. Technol., 1988, 8(1): 121.
[87] Bianchi D, Romano A M. EP 2300410, 2011.
[88] Tominaga K I, Mori A, Fukushima Y, Shimada S, Sato K. Green Chem., 2011, 13(4): 810.
[89] Saravanamurugan S, Riisager A. Catal. Commun., 2012, 17: 71.
[90] Rataboul F, Essayem N. Ind. Eng. Chem. Res., 2010, 50(2): 799.
[91] Saravanamurugan S, Van Buu O N, Riisager A. ChemSusChem, 2011, 4(6): 723.
[92] 彭林才(Peng L C), 林鹿(Lin L), 李辉(Li H). 化学进展(Progress in Chemistry), 2012, 24(5): 801.
[1] Bingqian Huang, Liyan Wang, Xuan Wei, Weichao Xu, Zhen Sun, Tinggang Li. Lignocellulose Pretreatment by Deep Eutectic Solvents for Biobutanol production [J]. Progress in Chemistry, 2020, 32(12): 2034-2048.
[2] Jiawei Xie, Xiangwen Zhang, Junjian Xie, Genkuo Nie, Lun Pan, Jijun Zou*. Synthesis of High-Density Jet Fuels from Biomass [J]. Progress in Chemistry, 2018, 30(9): 1424-1433.
[3] Yong Sun, Xiaoqiang Song, Yong Sun*, Xianhai Zeng, Xing Tang, Lu Lin*. Strategies of Prior-Fractionation for the Graded Utilization of Lignocellulose [J]. Progress in Chemistry, 2017, 29(10): 1273-1284.
[4] Liu Huanjun, Gao Tengfei, Shi Da, Liu Jian, Ji Shengfu. Bifunctional Catalysts of Methanol Catalytic Conversion to Dimethoxymethane and Methyl Formate [J]. Progress in Chemistry, 2016, 28(6): 942-953.
[5] Zhou Yan, Zhao Xuebing, Liu Dehua. Effects of Non-Ionic Surfactant on the Enzymatic Hydrolysis of Lignocellulose and Corresponding Mechanism [J]. Progress in Chemistry, 2015, 27(11): 1555-1565.
[6] Pan Lun, Deng Qiang, E Xiutianfeng, Nie Genkuo, Zhang Xiangwen, Zou Jijun. Synthesis Chemistry of High-Density Fuels for Aviation and Aerospace Propulsion [J]. Progress in Chemistry, 2015, 27(11): 1531-1541.
[7] Tang Xing, Hu Lei, Sun Yong, Zeng Xianhai, Lin Lu. Conversion of Biomass to Novel Platform Chemical γ-Valerolactone by Selective Reduction of Levulinic Acid [J]. Progress in Chemistry, 2013, 25(11): 1906-1914.
[8] Guo Xiao, Yan Yani, Zhang Yahong, Tang Yi. Heterogeneously Catalytic Transformation of Biomass-Derived Sugars [J]. Progress in Chemistry, 2013, 25(11): 1915-1927.
[9] Zhang Jiaren, Deng Tianyin, Liu Haichao*. Catalytic Production of Liquid Biofuels from Triglyceride Feedstocks and Lignocellulose [J]. Progress in Chemistry, 2013, 25(0203): 192-208.
[10] . Chemocatalytic Transformation of Sugars to Transportation Fuels [J]. Progress in Chemistry, 2010, 22(09): 1844-1851.
[11] . Dilute Acid Hydrolysis Reaction of Biomass Hemicellulose [J]. Progress in Chemistry, 2010, 22(04): 654-662.
[12] . A New Vision in the Research of Biomass Resources: Complete-Lignocellulose-Dissolution System [J]. Progress in Chemistry, 2010, 22(0203): 472-481.
[13] Zheng Yong Xuan Xiaopeng Xu Airong Guo Meng Wang Jianji. Dissolution and Separation of Lignocellulose with Room-Temperature Ionic Liquids [J]. Progress in Chemistry, 2009, 21(09): 1807-1812.
[14] Zhang Mingjia Su Rongxin Qi Wei He Zhimin. Enzymatic Conversion of Lignocellulose into Sugars [J]. Progress in Chemistry, 2009, 21(05): 1070-1074.
[15] Hu Zhanbo1,2* Chai Xinsheng3 Wang Jingquan2 Kong Hainan1. A New Approach of Bio-Refinery Based on Pulp and Paper Platform [J]. Progress in Chemistry, 2008, 20(09): 1439-1446.