中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (11): 1555-1565 DOI: 10.7536/PC150511 Previous Articles   Next Articles

Special Issue: 酶化学

• Review and comments •

Effects of Non-Ionic Surfactant on the Enzymatic Hydrolysis of Lignocellulose and Corresponding Mechanism

Zhou Yan, Zhao Xuebing*, Liu Dehua   

  1. Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21106081), the National Basic Research Program of China(973 Program)(No.2011CB707406), and the National Energy Administration Project(No.NY20130402).
PDF ( 1335 ) Cited
Export

EndNote

Ris

BibTeX

During the bioconversion of lignocellulose, enzymatic hydrolysis of cellulose to produce glucose is a key step. However, it also has become a bottle-neck for effective bioconversion of lignocellulosic biomass to fuels or chemicals. A large amount of works have demonstrated that addition of non-ionic surfactant during enzymatic hydrolysis of pretreated lignocelluloses can effectively improve the cellulose conversion thus reducing the enzyme loading. In this paper, the effects of non-ionic surfactant on enzymatic hydrolysis of pure cellulose and pretreated lignocellulose are reviewed comprehensively. The relationships of the structural features of substrate, hydrolysis conditions and cellulase formulation with the action of surfactant are discussed. Corresponding mechanisms are analyzed in terms of the adsorption of cellulases and the synergism of the cellulase components. However, the current research progress has not clearly elucidated the mechanisms for the effects of non-ionic surfactant on cellulose hydrolysis. It is proposed that to deeply understand the mechanism, further researches should be focused on systematically investigating the relations of substrate structure, hydrolysis conditions with the actions of non-ionic surfactant to the enzymatic hydrolysis of cellulose. Microscopically, the interactive actions and forces between surfactant and substrate, surfactant and cellulase enzymes should be investigated from the atomic and molecular levels. The thermodynamic and kinetic behaviors of enzymatic hydrolysis of cellulose with addition of surfactant should also be illustrated.

Contents
1 Introduction
2 Effects of surfactant on enzymatic hydrolysis of pure cellulose and mechanism
2.1 Factors influencing the action of surfactant
2.2 Mechanism for the action of surfactant on pure cellulose hydrolysis
3 Effects of surfactant on enzymatic hydrolysis of pretreated lignocellulose
3.1 Effects of substrate structural features
3.2 Effects of hydrolysis conditions
4 Mechanisms for the action of surfactant on lignocellulose hydrolysis
4.1 Effects of surfactant on substrate structure
4.2 Effects of surfactant on enzyme stability
4.3 Effects of surfactant on the interaction between enzyme and substrate
5 Conclusion

CLC Number: 

[1] Sanderson K. Nature, 2011, 474(7352):S12.
[2] Jørgensen H, Kristensen J B, Felby C. Biofuels, Bioproducts and Biorefining, 2007, 1(2):119.
[3] Sun Y, Cheng J. Bioresource technology, 2002, 83(1):1.
[4] Zhao X, Zhang L, Liu D. Biofuels, Bioproducts and Biorefining, 2012, 6(4):465.
[5] Chundawat S P S, Donohoe B S, da Costa Sousa L, Elder T, Agarwal U P, Lu F, Ralph J, Himmel M E, Balan V, Dale B E. Energy & Environmental Science, 2011, 4(3):973.
[6] Zhang M, Ouyang J, Liu B, Yu H, Jiang T, Cai C, Li X. Bioenergy Research, 2013, 6(4):1252.
[7] Eriksson T, Börjesson J, Tjerneld F. Enzyme and Microbial Technology, 2002, 31(3):353.
[8] Park J W, Takahata Y, Kajiuchi T, Akehata T. Biotechnology and Bioengineering, 1992, 39(1):117.
[9] Bardant T B, Sudiyarmanto S, Abimanyu H, Hanum A K. Indonesian Journal of Chemistry, 2013, 13(1):53.
[10] Kim H J, Kim S B, Kim C J. Biotechnology and Bioprocess Engineering, 2007, 12(2):147.
[11] Helle S S, Duff S J B, Cooper D G. Biotechnology and Bioengineering, 1993, 42(5):611.
[12] Ouyang J, Dong Z, Song X, Lee X, Chen M, Yong Q. Bioresource technology, 2010, 101(17):6685.
[13] Mizutani C, Sethumadhavan K, Howley P, Bertoniere N. Cellulose, 2002, 9(1):83.
[14] Zhou Y, Chen H, Qi F, Zhao X, Liu D. Bioresource Technology, 2015, 182:136.
[15] Börjesson J, Engqvist M, Sipos B, Tjerneld F. Enzyme and Microbial Technology, 2007, 41(1):186.
[16] Yang M, Zhang A, Liu B, Li W, Xing J. Biochemical Engineering Journal, 2011, 56(3):125.
[17] Okino S, Ikeo M, Ueno Y, Taneda D. Bioresource Technology, 2013, 142:535.
[18] Lou H, Zhou H, Li X, Wang M, Zhu J Y. Cellulose, 2014, 21(3):1351.
[19] Wang Z J, Lan T Q, Zhu J Y. Biotechnology Forbiofuels, 2013, 6(1):1.
[20] Ooshima H, Sakata M, Harano Y. Biotechnology and Bioengineering, 1986, 28(11):1727.
[21] Gupta R, Lee Y Y. Biotechnology and Bioengineering, 2009, 102(6):1570.
[22] Zhang Y H P, Lynd L R. Biotechnology and Bioengineering, 2004, 88(7):797.
[23] Liu J, Shi J, Li J, Yuan X. Enzyme and Microbial Technology, 2011, 49(4):360.
[24] Quiroz-Castañeda R E, Folch-Mallol J L. Sustainable Degradation of Lignocellulosic Biomass-Techniques, Applications and Commercialization, Chandel A K, da Silva S S, Eds. 2013. 275.
[25] Din N, Damude H G, Gilkes N R, Miller R C, War ren R A, Kilburn D G. Proc. Natl. Acad. Sci. U. S. A. 1994, 91:11383
[26] Boraston A B, Bolam D, Gilbert H, Davis G. Biochem. J, 2004, 382:769.
[27] Gilbert H J. Plant Physiology, 2010, 153(2):444.
[28] Shoseyov O, Shani Z, Levy I. Microbiology and Molecular Biology Reviews, 2006, 70(2):283.
[29] Kotiranta P, Karlsson J, Siika-Aho M, Medve J, Viikari L, Tjerneld F, Tenkanen M. Applied Biochemistry and Biotechnology, 1999, 81(2):81.
[30] Várnai A, Siika-aho M, Viikari L. Enzyme and Microbial Technology, 2010, 46(3):185.
[31] Brash J L, Horbett T A. ACS Symp. Ser., 1995, 602:1.
[32] Nidetzky B, Steiner W, Hayn M, Claeyssens M. Biochem. J, 1994, 298:705.
[33] Jeoh T, Wilson D B, Walker L P. Biotechnology Progress, 2006, 22(1):270.
[34] Andersen N, Johansen K S, Michelsen M, Stenby E, Krogh K, Olsson L. Enzyme and Microbial Technology, 2008, 42(4):362.
[35] Du R, Huang R, Su R, Zhang M, Wang M, Yang J, Qi W, He Z. RSC Advances, 2013, 3(6):1871.
[36] Goyal A, Ghosh B, Eveleigh D. Bioresource Technology, 1991, 36(1):37.
[37] McClellan S J, Franses E I. Colloids and Surfaces B:Biointerfaces, 2003, 28(1):63.
[38] Kelley D, McClements D J. Food Hydrocolloids, 2003, 17(1):73.
[39] Santos S F, Zanette D, Fischer H, Itri R. Journal of Colloid and Interface Science, 2003, 262(2):400.
[40] Kumar R, Wyman C E. Biotechnology and Bioengineering, 2009, 102(6):1544.
[41] Li J, Li S, Fan C, Yan Z. Colloids and Surfaces B:Biointerfaces, 2012, 89:203.
[42] 陈洪章(Chen H Z), 邱卫华(Qiu W H). 化学进展(Progress in Chemistry), 2007, 19(7):1116.
[43] Yang B, Wyman C E. Biotechnology and Bioengineering, 2004, 86(1):88.
[44] Studer M H, DeMartini J D, Davis M F, Sykes R W, Davison B, Keller M, Tuskan G A, Wyman C E. Proc. Nat. Acad. Sc. U. S. A., 2011, 108(15):6300.
[45] Yu Z, Jameel H, Chang H, Park S. Bioresource Technology, 2011, 102(19):9083.
[46] Simmons B A, Loqué D, Ralph J. Current Opinion in Plant Biology, 2010, 13(3):312.
[47] Zhu J Y, Wang G S, Pan X J, Gleisenr R. Chemical Engineering Science, 2009, 64(3):474.
[48] Vidal B C, Dien B S, Ting K C, Singh V. Applied Biochemistry and Biotechnology, 2011, 164(8):1405.
[49] Del Rio L F, Chandra R P, Saddler J N. Bioresource Technology, 2012, 107:235.
[50] Jeoh T, Ishizawa C I, Davis M F, Himmel M E, Adney W S, Johnson D K. Biotechnology and Bioengineering, 2007, 98(1):112.
[51] Huang R, Su R, Qi W, He Z. Biotechnology Progress, 2010, 26(2):384.
[52] Rollin J A, Zhu Z, Sathitsuksanoh N, Zhang Y H P. Biotechnology and Bioengineering, 2011, 108(1):22.
[53] Meng X, Ragauskas A J. Current Opinion in Biotechnology, 2014, 27:150.
[54] Wang Q Q, He Z, Zhu Z, Zhang Y H P, Ni Y, Luo X L, Zhu J Y. Biotechnology and Bioengineering, 2012, 109(2):381.
[55] Arantes V, Saddler J N. Biotechnol Biofuels, 2010, 3(4):1.
[56] Leu S Y, Zhu J Y. Bioenergy Research, 2013, 6(2):405.
[57] Börjesson J, Peterson R, Tjerneld F. Enzyme and Microbial Technology, 2007, 40(4):754.
[58] Sipos B, Dienes D, Schleicher Á, Perazzini R, Crestini C, Siika-Aho M, Réczey K. Enzyme and Microbial Technology, 2010, 47(3):84.
[59] Zheng Y, Pan Z, Zhang R, Wang D, Jenkins B. Biotechnology for Fuels and Chemicals. Humana Press, 2008:351.
[60] Zhang Y, Xu X, Zhang Y, Li J. Biotechnology and Bioprocess Engineering, 2011, 16(5):930.
[61] Cui L, Liu Z, Hui L F, Si C L. BioResources, 2011, 6(4):3850.
[62] Kristensen J B, Börjesson J, Bruun M H, Tjerneld F, Jorgensen H. Enzyme and Microbial Technology, 2007, 40(4):888.
[63] Wu J, Ju L K. Biotechnology Progress, 1998, 14(4):649.
[64] Xingzhong Y, Yunshan L, Guangming Z, Weiwei W. Hydrolysis of pretreated rice straw with surfactants at low cellulase dosage, Sciencepaper online.(2010-01-26). http://www.paper.edu.cn/html/releasepaper/2010/01/1052/
[65] Seo D J, Fujita H, Sakoda A. Adsorption, 2011, 17(5):813.
[66] Sipos B, Szilágyi M, Sebestyén Z, Perazzini R, Dienes D, Jakab E, Crestini C, Réczey K. Comptes Rendus Biologies, 2011, 334(11):812.
[67] Shevchenko S M, Chang K, Dick D G, Gregg D J, Saddler J N. Cellulose Chemistry and Technology, 2001, 35(5/6):487.
[68] Li J, Henriksson G, Gellerstedt G. Bioresource Technology, 2007, 98(16):3061.
[69] Nakagame S, Chandra R P, Kadla J F, Saddler J N. Biotechnology and Bioengineering, 2011, 108(3):538.
[70] Nakagame S, Chandra R P, Kadla J F, Saddler J N. Bioresource Technology, 2011, 102(6):4507.
[71] Moxley G, Gaspar A R, Higgins D, Xu H. Journal of Industrial Microbiology & Biotechnology, 2012, 39(9):1289.
[72] Nakagame S, Chandra R P, Saddler J N. Sustainable Production of Fuels, Chemicals, and Fibers from Forest Biomass, 2011. 145.
[73] Pan X. Journal of Biobased Materials and Bioenergy, 2008, 2(1):25.
[74] Van Dyk J S, Pletschke B I. Biotechnology Advances, 2012, 30(6):1458.
[75] Felby C, Thygesen L G, Kristensen J B, Jørgensen, H, Elder T. Cellulose, 2008, 15(5):703.
[76] Kristensen J B, Felby C, Jørgensen H. Biotechnology for Biofuels, 2009, 2(1):11.
[77] Pimenova N V, Hanley T R. Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4-7, 2003, in Breckenridge, CO. Humana Press, 2004. 347.
[78] Modenbach A A, Nokes S E. Biomass and Bioenergy, 2013, 56:526.
[79] Jørgensen H, Vibe-Pedersen J, Larsen J, Felby C. Biotechnology and Bioengineering, 2007, 96(5):862.
[80] Fan Z, South C, Lyford K,Munsie J, Walsum P, Lynd L R. Bioprocess and Biosystems Engineering, 2003, 26(2):93.
[81] 张名佳(Zhang M J), 苏荣欣(Su R X), 齐崴(Qi W), 何志敏(He Z M). 化学进展(Progress in Chemistry), 2009, 21(5).
[82] Cara C, Moya M, Ballesteros I, Negro M J, González A, Ruiz E. Process Biochemistry, 2007, 42(6):1003.
[83] Hodge D B, Karim M N, Schell D J, McMillan J D. Bioresource Technology, 2008, 99(18):8940.
[84] Du J, Li Y, Zhang H, Zheng H, Huang H. Cellulose, 2014, 21(4):2409.
[85] Rosgaard L, Andric P, Dam-Johansen K, Pedersen S, Meyer A S. Applied Biochemistry and Biotechnology, 2007, 143(1):27.
[86] Kumar R, Wyman C E. Enzyme and Microbial Technology, 2008, 42(5):426.
[87] Knutsen J S, Liberatore M W. Energy & Fuels, 2010, 24(5):3267.
[88] Ma X, Yue G, Yu J, Zhang X, Tan T. Journal of Biobased Materials and Bioenergy, 2011, 5(2):275.
[89] Wang W, Kang L, Wei H, Arora R, Lee Y Y. Applied Biochemistry and Biotechnology, 2011, 164(7):1139.
[90] Champagne P, Li C. Bioresource Technology, 2009, 100(23):5700.
[91] Reese E T. J. Appl. Biochem., 1980, 2(1):36e9.
[92] Lou H, Zhu J Y, Lan T Q, Lai H, Qiu X. ChemSusChem, 2013, 6(5):919.
[93] Lan T Q, Lou H, Zhu J Y. BioEnergy Research, 2013, 6(2):476.
[94] Eriksson T, Karlsson J, Tjerneld F. Applied Biochemistry and Biotechnology, 2002, 101(1):41.
[95] Eckard A D, Muthukumarappan K, Gibbons W. BioEnergy Research, 2014, 7(1):389.
[96] Qing Q, Yang B, Wyman C E. Bioresource Technology, 2010, 101(15):5941.
[97] Kurakake M, Ooshima H, Kato J, Harano Y. Bioresource Technology, 1994, 49(3):247.
[98] Kaar W E, Holtzapple M T. Biotechnology and Bioengineering, 1998, 59(4):419.
[99] Hemmatinejad N, Vahabzadeh F, Kordestani S S. Iranian Polymer Journal, 2002, 11:333.
[100] Kim W, Gamo Y, Sani Y M, Wusiman Y, Ogawa1 S, Karita S, Goto M. Asian Australasian Journal of Animal Sciences, 2006, 19(5):684.
[101] Seo D J, Fujita H, Sakoda A. Bioresource Technology, 2011, 102(20):9605.
[102] Yoon S H, Robyt J F. Enzyme and Microbial Technology, 2005, 37(5):556.
[103] Chen N, Fan J B, Xiang J, Chen J, Liang Y. Biochimica et Biophysica Acta(BBA)-Proteins and Proteomics, 2006, 1764(6):1029.
[104] Chylenski P, Felby C, Haven M , Gama M, Selig M J. Bio-technology Letters, 2012, 34(8):1475.
[105] Kim M H, Lee S B, Ryu D D Y, Reese E T. Enzyme and Mi-crobial Technology, 1982, 4(2):99.
[106] Chia-wen C H, Cannella D, Jørgensen H, Felby C, Thygesen L G. Biotechnology for Biofuels, 2015, 8(1):52.
[107] Zhang Y, Zhang Y, Tang L. Journal of Chemical Technology and Biotechnology, 2011, 86(1):115.
[108] Palonen H, Tjerneld F, Zacchi G,Tenkanen M. Journal of Biotechnology, 2004, 107(1):65.
[109] Berlin A, Gilkes N, Kurabi A, Bura R, Tu M, Kilburn D, Saddler J. Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals. Humana Press, 2005. 163.
[110] Norde W, Favier J P. Colloids and Surfaces, 1992, 64(1):87.
[111] Rahikainen J, Mikander S, Marjamaa K, Tamminen T, Lappas A, Viikari L, Kruus K. Biotechnology and Bioengineering, 2011, 108(12):2823.
[112] Chernoglazov V M, Ermolova O V, Klyosov A A. Enzyme and Microbial Technology, 1988, 10(8):503.
[113] Haynes C A, Norde W. Journal of Colloid and Interface Science, 1995, 169(2):313.
[114] Converse A O, Matsuno R, Tanaka M, Taniguchi M. Biotechnology and Bioengineering, 1988, 32(1):38.
[1] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[2] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[3] Lili Cheng, Yun Zhang, Yekun Zhu, Ying Wu. Selective Oxidation of HMF [J]. Progress in Chemistry, 2021, 33(2): 318-330.
[4] Lina Shi, Xin Hu, Ning Zhu, Kai Guo. Cellulose-Based Dielectric Composite [J]. Progress in Chemistry, 2020, 32(12): 2022-2033.
[5] Bingqian Huang, Liyan Wang, Xuan Wei, Weichao Xu, Zhen Sun, Tinggang Li. Lignocellulose Pretreatment by Deep Eutectic Solvents for Biobutanol production [J]. Progress in Chemistry, 2020, 32(12): 2034-2048.
[6] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Application of Agroforestry Waste Biomass Adsorption Materials in Water Pollution Treatment [J]. Progress in Chemistry, 2019, 31(5): 760-772.
[7] Ying Qiao, Na Teng, Chengkai Zhai, Haining Na, Jin Zhu. High Efficient Hydrolysis of Cellulose into Sugar by Chemical Catalytic Method [J]. Progress in Chemistry, 2018, 30(9): 1415-1423.
[8] Haishun Du, Chao Liu, Miaomiao Zhang, Qingshan Kong, Bin Li*, Mo Xian. Preparation and Industrialization Status of Nanocellulose [J]. Progress in Chemistry, 2018, 30(4): 448-462.
[9] Yong Sun, Xiaoqiang Song, Yong Sun*, Xianhai Zeng, Xing Tang, Lu Lin*. Strategies of Prior-Fractionation for the Graded Utilization of Lignocellulose [J]. Progress in Chemistry, 2017, 29(10): 1273-1284.
[10] Jing Ru, Biyao Geng, Congcong Tong, Haiying Wang, Shengchun Wu, Hongzhi Liu. Nanocellulose-Based Adsorption Materials [J]. Progress in Chemistry, 2017, 29(10): 1228-1251.
[11] Gao Yurong, Huang Pei, Sun Peipei, Wu Min, Huang Yong. Preparation and Application of Graphene/Cellulose Composites [J]. Progress in Chemistry, 2016, 28(5): 647-656.
[12] Yang Yue, Liu Qiying, Cai Chiliu, Tan Jin, Wang Tiejun, Ma Longlong. Advances in DMF and C5/C6 Alkanes Production from Lignocellulose [J]. Progress in Chemistry, 2016, 28(2/3): 363-374.
[13] Xia Wen, Li Zheng, Xu Yinli, Zhuang Xupin, Jia Shiru, Zhang Jianfei. Bacterial Cellulose Based Electrode Material for Supercapacitors [J]. Progress in Chemistry, 2016, 28(11): 1682-1688.
[14] Yuan Zhengqiu, Long Jinxing, Zhang Xinghua, Xia Ying, Wang Tiejun, Ma Longlong. Catalytic Conversion of Lignocellulose into Energy Platform Chemicals [J]. Progress in Chemistry, 2016, 28(1): 103-110.
[15] Dai Linlin, Li Wei, Cao Jun, Li Jian, Liu Shouxin. Formation, Tuning and Application of Chiral Nematic Liquid Crystal Phase Based on Nanocrystalline Cellulose [J]. Progress in Chemistry, 2015, 27(7): 861-869.