中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (05): 784-795 DOI: 10.7536/PC131124 Previous Articles   Next Articles

• Review •

Deep Eutectic Solvents to Organic Synthesis

Wang Ailing1, Zheng Xueliang1,2, Zhao Zhuangzhi1,2, Li Changping1, Zheng Xuefang*1,2   

  1. 1. College of Environment and Chemical Engineering, Dalian University, Dalian 116622;
    2. Liaoning Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian 116622, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21271036) and the Outstanding Young Talent Fund from the Dalian Science and Technology Bureau (No. 2009J22DW038).

PDF ( 4370 ) Cited
Export

EndNote

Ris

BibTeX

Deep eutectic solvents(DES) is a new type of environmentally green solvents. Compared with conventional organic solvents, DES have more advantages, such as negligible vapor pressure, non-flammability, good chemical and thermal stability, non-toxicity, biodegradability, recyclability and low price among others. As a new type of solvent, DES has an extremely extensive application prospect. The latest research results of DES is reviewed in this paper. DES as a novel solvent and catalyst was applied in the traditional organic synthesis reaction, mainly including Helogenation reaction, Diels-Alder reaction, Knoevenagel reaction, Henry reaction, Perkin reaction, Paal-Knorr reaction, Biginelli reaction. At last, we hope that DES has a good application prospect in the field of organic synthesis.

Contents
1 Introduction
2 DES in the replacement reaction
2.1 Alkylation of nitrogen
2.2 Alkylation of the alcohol
2.3 Friedel-Crafts alkylation reaction
2.4 Halogenation
2.5 Esterification
3 DES in addition reactions
3.1 Diels-Alder reaction
3.2 Henry reaction
3.3 Cycloaddition
4 DES in condensation reaction
4.1 Knoevenagel condensation
4.2 Perkin reaction
5 DES in the cyclization
5.1 Fischer indole synthesis
5.2 Paal-Knorr reaction
5.3 Biginelli reaction
6 DES in the elimination reactions
7 DES in rearrangement reactions
8 DES in reducing reactions
9 Conclusions and outlook

CLC Number: 

[1] Reinhardt D, Ilgen F, Kralisch D, König B, Kreisel G. Green Chem., 2008, 10: 1170.
[2] Jessop P G. Green Chem., 2011, 13: 1391.
[3] Moity L, Durand M, Benazzouz A, Pierlot C, Molinier V, Aubry J M. Green Chem., 2012, 14: 1132.
[4] (a) 应安国(Ying A G), 叶伟东(Ye W D), 刘泺(Liu Y), 吴国锋(Wu G F), 陈新志(Chen X Z), 钱胜(Qian S), 张秋萍(Zhang Q P). 有机化学(Org. Chem.), 2008, 28(12):2081.(b) Ranu B C, Banerjee S, Jana R. Tetrahedron, 2007, 63: 776.(c) Kumar A, Pawar S S. J. Org. Chem., 2007, 72: 8111.(d) Zhu A L, Jiang T, Wang D, Han B X, Liu L, Huang J, Zhang J C, Sun D H. Green Chem., 2005, 7: 514.(e) Xin X, Guo X, Duan H F, Lin Y J, Sun H. Catalysis Communications, 2007, 8: 115.(f) Kim Y J, Varma R S. J. Org. Chem., 2005, 70: 7882.(g) Law M C, Cheung T W, Wong K Y, Chan T K. J. Org. Chem., 2007, 72: 923.(h) Katsoura M H, Polydera A C, Katapodis P, Kolisis F N, Stamatis H. Process Biochemistry, 2007, 42: 1326.(i) Lou W Y, Zong M H, Smith T J. Green Chem., 2006, 8: 147.
[5] Olivier-Bourbigou H, Magna L, Morvan D. Applied Catalysis A: General, 2010, 373: 1.
[6] Walsh D A, Lovelock K R J, Licence P. Chem. Soc.Rev., 2010, 39: 4185.
[7] Dupont J, Scholten J D. Chem. Soc. Rev., 2010, 39: 1780.
[8] Wang H, Gurau G, Rogers R D. Chem. Soc. Rev., 2012, 41: 1519.
[9] Deetlefs M, Seddon K R. Green Chem., 2010, 12: 17.
[10] Francisco M, Bruinhorst A, Kroon M C. Angew. Chem. Int. Ed., 2013, 52: 3074.
[11] Abbott A P, Capper G, Davies D L, Rasheed R K, Tambyrajah V. Chem. Commun., 2003, 70.
[12] Abbott A P, Barron J C, Ryder K S, Wilson D. Chem. Eur. J., 2007, 13: 6495.
[13] (a) Abbott A P, Boothby D, Capper G, Davies D L, Rasheed R K. J. Am. Chen. Soc., 2004, 126: 9142.(b) Tang S, Gary A, Baker, Zhao H. Chem. Soc. Rev., 2012, 41: 4030.
[14] Zhang Q H, Vigier K D O, Royer S, Jerome F. Chem. Soc.Rev., 2012, 41: 7108.
[15] (a) Abbott A P, Harris R C, Ryder K S, Agostino C D, Gladden L F, Mantle M D. Green Chem., 2011, 13: 82.(b) Maugeri Z, Maria P D. RSC Adv., 2012, 2: 421.
[16] Yu Y H, Lu X M, Zhou Q, Dong K, Yao H W, Zhang S J. Chem. Eur. J., 2008, 14: 11174.
[17] Katherine D W, Kim H J, Sun J Z, Mac Farlane D R, Elliott G D. Green Chem., 2010, 12: 507.
[18] Ilgen F, Ott D, Kralisch D, Reil C, Palmberger A, König B. Green Chem., 2009, 11: 1948.
[19] Daia Y, Spronsenb J, Witkamp G, Verpoortea R, Choia Y H. Analytica Chimica Acta, 2013, 766: 61.
[20] Ruß C, König B. Green Chem., 2012, 14: 2969.
[21] (a) Zhang Z H, Zhang X N, Mo L P, Li Y X, Ma F P. Green Chem., 2012, 14: 1502.(b) Phadtare S B, Shankarling G S. Environ. Chem. Lett., 2012, 10: 363.(c) Azizi N, Gholibeglo E. RSC Adv., 2012, 2: 7413.
[22] (a) Ramesh S, Shanti R, Morris E. Carbohydr. Polym., 2012, 87: 701.(b) Abbott A P, Capper G, Davies D L, Rasheed R K. Chem. Eur. J., 2004, 10: 3769.(c) Abbott A P, Ttaib K E, Frisch G, McKenzie K J, Ryder K S. Phys. Chem. Chem. Phys., 2009, 11: 4269.
[23] (a) Gutierrez M C, Rubio F, Monte F D. Chem. Mater., 2010, 22: 2711.(b) Mota-Morales J D, Gutierrez M C, Ferrer M L, Jimenez R, Santiago P, Sanchez I C, Terrones M, Monte F D, Luna Barcenas G. J. Mater. Chem. A, 2013, 1: 3970.
[24] Vigier K D O, Benguerba A, Barrault J, Jerome F. Green Chem., 2012, 14: 285.
[25] Coulembier O, Lemaur V, Josse T, Minoia A, Cornilb J, Dubois P. Chem. Sci., 2012, 3: 723.
[26] Disale S T, Kale S R, Kahandal S S, Srinivasan T J, Jayaram R V. Tetrahedron Letters, 2012, 53: 2277.
[27] (a)Gorke J T, Srienc F, Kazlauskas R J. Chem. Commun., 2008, 1235.(b)Zhao H, Baker G A, Holmes S. Org. Biomol. Chem., 2011, 9: 1908.
[28] Abbott A P, Capper G, Davies D L, Kenzie K J, Obi S U. J. Chem. Eng. Data, 2006, 51: 1280.
[29] (a) Pang K, Hou Y C, Wu W Z, Guo W J, Peng W, Marsh K N. Green Chem., 2012, 14: 2398.(b) Maugeri Z, Leitner Walter, María P D, Tetrahedron Letters, 2012, 53: 6968.(c) Yang D Z, Hou M Q, Ning H, Zhang J L, Ma J, Yang G Y, Han B X. Green Chem., 2013, 15: 2261.(d) Li C P, Li D, Zou S S, Li Z, Yin J M, Wang A L, Cui Y N, Yao Z L, Zhao Q.Green Chem., 2013, 15: 2793.
[30] Bradsha J S, Krakowisk K E, Izatt R H. Tetrahedron, 1992, 48: 4475.
[31] Salvatore R N, Nagle A S, Jung K W. J. Org. Chem., 2002, 67: 674.
[32] Singh B, Lobo H, Shankarling G S. Catal. Lett., 2011, 141: 178.
[33] Burkhardt E R, Coleridge B M. Tetrahedron Letters, 2008, 49: 5152.
[34] Nova A, Balcells D, Schley N D, Dobereiner G E, Crabtree R H, Eisenstein O. Organometallics, 2010, 29: 6548.
[35] Qin H B, Yamagiwa N, Matsunaga S, Shibasaki M. Angew. Chem., 2007, 119: 413.
[36] (a) Cozzi P G, Zoli L. Angew. Chem., 2008, 120: 4230.(b) Motokura K, Nakagiri N, Mizugaki T, Ebitani K, Kaneda K. J. Org.Chem., 2007, 72: 6006.
[37] Zhu A L, Li L J, Zhuo K L, Wang J J. Green Chem., 2011, 13: 1244.
[38] Azizi N, Manocheri Z. Res. Chem. Intermed., 2012, 38: 1495.
[39] Chen Z Z, Zhou B, Cai H H, Zhu W, Zou X Z. Green Chem., 2009, 11: 275.
[40] Phadtare S B, Shankarling G S. Green Chem., 2010, 12: 458.
[41] Santi V D, Cardellini F, Brinchi L, Germani R. Tetrahedron Letters, 2012, 53: 5151.
[42] Griffiths G J, Previdoli F E. J. Org. Chem., 1993, 58: 6129.
[43] Abbott A P, Capper G, Davies D L, Rasheed R K, Tambyrajah V. Green Chem., 2002, 4: 24.
[44] Imperato G, Eibler E, Niedermaier G, König B. Chem. Commun., 2005, 1170.
[45] Ilgen F, König B. Green Chem., 2009, 11: 848.
[46] Noboru O. The Nitro Group in Organic Synthesis. Chapter 3, Wiley VCH, 2001. 30
[47] Luzzio F A. Tetrahedron, 2001, 57: 915.
[48] Yi X B, Wang X, Cai C. Catalysis Communications, 2007, 8: 1995.
[49] Jiang T, Gao H X, Han B X, Zhao G Y, Chang Y H, Wu W Z, Gao L, Yang G Y. Tetrahedron Letters, 2004, 45: 2699.
[50] Singh B S, Lobo H R, Shankarling G S. Catalysis Comm-unications, 2012, 24: 70.
[51] Zhu A L, Jiang T, Han B X, Zhang J C, Xie Y, Ma X M. Green Chem., 2007, 9: 169.
[52] Azizi N, Batebi E. Catal. Sci. Technol., 2012, 2: 2445.
[53] Tietze L F. Chem. Rev., 1996, 96: 115.
[54] Sonawane Y A, Phadtare S B, Borse B N, Jagtap A R, Shankarling G S. Org. Lett., 2010, 12: 1456.
[55] Phadtare S B, Jarag K J, Shankarling G S. Dyes and Pigments, 2013, 97: 105.
[56] Dippy J F J, Evans R M. J. Org. Chem., 1950, 15: 451.
[57] Johnson J R. Org. React., 1942, 1: 210.
[58] Pawar P M, Jarag K J, Shankarling G S. Green Chem., 2011, 13: 2130.
[59] Hawkins I, Handy S T. Tetrahedron, 2013, 69: 9200.
[60] Wagaw S, Yang B H, Buchwald S L. J. Am. Chem. Soc., 1998, 120: 6621.
[61] Morales R C, Tambyrajah V, Jenkins P R, Davies D L, Abbott A P. Chem. Commun., 2004, 158.
[62] Gore S, Baskaran S, König B. Org. Lett., 2012, 14: 4568.
[63] Darabi H R, Aghapoor K, Farahani A D, Mohsenzadeh F. Environ. Chem. Lett., 2012, 10: 369.
[64] Méndez J M, Jiménez C C, León F, Vazquez A. Synthesis, 2012, 44: 3321.
[65] Abbas T, Najafi C A. Chin. J. Chem., 2012, 30: 372.
[66] Rahmatpour A. Monatsh Chem., 2012, 143: 491.
[67] Wilson M A, Filzen G, Welmaker G S. Tetrahedron Letters, 2009, 50: 4807.
[68] Handy S, Lavender K. Tetrahedron Letters, 2013, 54: 4377.
[69] Gore S, Baskaran S, Koenig B. Green Chem., 2011, 13: 1009.
[70] Borse B N, Borude V S, Shukla S R. Current Chemistry Letters, 2012, 1: 59.
[71] Gore S, Baskaran S, Koenig B. Adv. Synth. Catal., 2012, 354:2368.
[72] Hu S Q, Zhang Z F, Zhou Y X, Song J L, Fan H L, Han B X. Green Chem., 2009, 11: 873.
[73] Cristian V, Francisco J S, Joaquín G Á. Catalysis Communications, 2014, 44: 76.
[74] Azizi N, Batebi E, Bagherpour S, Ghafuri H. RSC Adv., 2012, 2: 2289.

[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[3] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[4] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[5] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[6] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[7] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[8] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[9] Li Jintao, Zhang Mingzu, He Jinlin, Ni Peihong. Application of Deep Eutectic Solvents in Polymer Synthesis [J]. Progress in Chemistry, 2022, 34(10): 2159-2172.
[10] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[11] Yuzhou Yang, Zheng Li, Yanfeng Huang, Jixian Gong, Changsheng Qiao, Jianfei Zhang. Preparation and Application of MOF-Based Hydrogel Materials [J]. Progress in Chemistry, 2021, 33(5): 726-739.
[12] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[13] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[14] Pingping Zhao, Junxing Yang, Jianhui Shi, Jingyi Zhu. Construction and Application of Dendrimer-Based SPECT Imaging Agent [J]. Progress in Chemistry, 2021, 33(3): 394-405.
[15] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.