中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (01): 203-213 DOI: 10.7536/PC130602 Previous Articles   Next Articles

• Review •

Applications of Pretreatment in Biomass Thermo-Chemical Conversion Technology

Liu Huamin*1, Ma Mingguo2, Liu Yulan1   

  1. 1. College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China;
    2. Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 31070511) and the Doctor Research Fund of Henan University of Technology (No. 2013BS018)

PDF ( 2899 ) Cited
Export

EndNote

Ris

BibTeX

With the increasing consumption of fossil fuels and the growing concerns about climate change, biomass is drawing increasing attention as a renewable energy source due to its advantages of renewal and abundance. Biomass can be converted into energy using bio-chemical and thermo-chemical processes, but the thermo-chemical conversion technology finds its dominance because of high efficient conversion to gas, liquid and solid products under thermal conditions. Biomass pretreatment can alter the physical features and chemical composition/structure of lignocellulosic materials. The pretreatment step has a significant influence on the quality and yield of products obtained from thermo-chemical conversion biomass. In this review, we discuss the applications of various pretreatment methods in the biomass thermo-chemical conversion, including torrefaction and gasification, pretreatment and biomass pyrolysis, pretreatment and biomass liquefaction. Torrefaction improves the hydrophobicity and grindability characteristics of biomass materials. Water or acid washing pretreatment can remove metal ions from biomass and the change in products distribution during the biomass pyrolysis is more obvious. Biomass pretreatment and liquefaction can increase the bio-oil yield and decrease the optimum reaction temperature compared to the untreated biomass liquefaction experiments.

Contents
1 Introduction
2 Main methods of biomass pretreatment
3 Pretreatment and thermo-chemical conversion biomass
3.1 Torrefaction and biomass gasification
3.2 Pretreatment and biomass pyrolysis
3.3 Pretreatment and biomass liquefaction
4 Conclusion and outlook

CLC Number: 

[1] Li J, Wu L, Yang Z. J. Anal. Appl. Pyrol., 2008, 81: 199.
[2] Blanca A L, Juan L T G. Biofuel. Bioprod. Bior., 2008, 2: 455.
[3] Zhang X, Xu M, Sun R, Sun L. J. Eng. Gas Turbines Power, 2006, 128: 493.
[4] Pu Y, Zhang D, Singh P M, Ragauskas A J. Biofuel. Bioprod. Bior., 2: 58.
[5] Hsu T A, Ladisch M R, Tsao G T. Chemical Technology, 1980, 10: 315.
[6] Wu L, Arakane M, Ike M, Wada M, Takai T, Gau M, Tokuyasu K. Bioresour. Technol., 2011, 102: 4793.
[7] Mazaheri H, Lee K T, Bhatia S, Mohamed A R. Bioresour. Technol., 2010, 101: 745.
[8] Harun R, Danquah M K. Process Biochem., 2011, 46: 304.
[9] Akin D E, Rigsby L L, Sethuraman A, Morrison W H, Gamble G R, Eriksson K E. Appl. Environ. Microbiol., 1995, 61: 1591.
[10] Rabelo S C, Filho R M, Costa A C. Appl. Biochem. Biotechnol., 2009, 153: 139.
[11] Fan H, Ragauskas A. Bioenerg. Res., 2012, 5: 1043.
[12] Wyman C E, Balan V, Dale B E, Elander R T, Falls M, Hames B, Holtzapple M T, Ladisch M R, Lee Y Y, Mosier N, Pallapolu V R, Shi J, Thomas S R, Warner R E. Bioresour. Technol., 2011, 102: 11052.
[13] Zhang J, Ma X, Yu J, Zhang X, Tan T. Bioresour. Technol., 2011, 102: 4585.
[14] Liu C G, Wyman C E. Ind. Eng. Chem. Res., 2004, 43: 2781.
[15] Foston M, Ragauskas A J. Biomass Bioenerg., 2010, 34: 1885.
[16] Russell J B. J. Appl. Bacteriol., 1992, 73: 363.
[17] Liu Z L, Slininger P J, Gorsich S W. Appl. Biochem. Biotechnol., 2005, 121/124: 451.
[18] Van Walsum G P, Allen S G, Spencer M J, Laser M S, Antal M J, Lynd L R. Appl. Biochem. Biotechnol., 1996, 57/58: 157.
[19] Jacobsen S E, Wyman C E. Ind. Eng. Chem. Res., 2002, 41: 1454.
[20] Yu Y, Wu H W. Ind. Eng. Chem. Res., 2010, 49: 3902.
[21] Taherzadeh M J, Karimi K. Bioresources, 2007, 2: 707.
[22] Carvalheiro F, Duarte L C, Girio F M. J. Sci. Ind. Res., 2008, 67: 849.
[23] Sun Y, Cheng J. Bioresour. Technol., 2002, 83: 1.
[24] Zheng Y, Pan Z, Zhang R. J. Agric. Biol. Eng., 2009, 2: 51.
[25] Lu W, Wang W, Yang Z. Bioresour. Technol., 2009, 100: 6451.
[26] Liu Z, Zhang F S. Energ. Convers. Manage., 2009, 49: 3498.
[27] Demirbas A. Energy Convers. Manage., 2001, 42: 1357.
[28] Jena U, Vaidyanathan N, Chinnasamy S, Das K C. Bioresour. Technol., 2011, 102: 3380.
[29] Ptasinski K J. Biofuels, Bioprod. Biorefin., 2008, 2: 239.
[30] Bridgewater A V. Fuel, 1995, 74: 631.
[31] Pimchuai A, Dutta A, Basu P. Energ. Fuel, 2010, 24: 4638.
[32] Prins M J, Ptasinski K J. Energy, 2005, 30: 982.
[33] Prins M J, Ptasinski K J, Janssen F G. Energy, 2006, 31: 3458.
[34] van der Stelt M J C, Gerhauser H, Kiel J H A, Ptasinski K J. Biomass Bioenerg., 2011, 35: 3748.
[35] Devi L, Ptansinski K J, Janssen F G. Biomass Bioenerg., 2003, 24: 125.
[36] Chen Q, Zhou J S, Liu B J, Mei Q F, Luo Z Y. 2011, 56: 1450.
[37] Deng J, Wang G J, Kuang J H, Zhang Y L, Luo Y H. J. Anal. Appl. Pyrol., 2009, 86: 331.
[38] Arias B, Pevida C, Fermoso J, Plaza M G, Rubiera F, Pis J J. Fuel Process. Technol., 2008, 89: 169.
[39] Svoboda K, Pohorel M, Hartman M, Martinec J. Fuel Process. Technol., 2009, 90: 629.
[40] Gomez L D, Steele-King C, McQueen-Mason S J. New Phytol., 2008, 178: 473.
[41] Chen W H, Kuo P C. Energy, 2010, 35: 2580.
[42] Chen W H, Wu J S. Energy, 2009, 34: 1458.
[43] Chen W H, Tu Y J, Sheen H K. Int. J. Energ. Res., 2010, 34: 265.
[44] Antal M J. Advances in Solar Energy, 1983, 11: 61.
[45] Mansaray K G, Ghaly A E. Bioresour. Technol., 1998, 65: 13.
[46] Acharya B, Sule I, Dutta A. Biomass Conv. Bioref., 2012, 2: 349.
[47] Bridgeman T G, Jones J M, Shield I, Williams P T. Fuel, 2008, 87: 844.
[48] Uslu A, Faaij A P C, Bergman P C A. Energy, 2008, 33: 1206.
[49] Rousset P, Davrieux F, Macedo L, Perré P. Biomass Bioenerg., 2011, 35: 1219.
[50] Ciolkosz K, Wallace R. Biofuels, Bioprod. Biorefin., 2011, 5: 317.
[51] Chen W H, Hsu H C, Lu K M, Lee W J, Lin T C. Energy, 2011, 36: 3012.
[52] Chen W H, Hsu H C, Lu K M, Huang Y P A. Appl. Energ., 2011, 88: 3636.
[53] Prins M J, Ptasinski K J, Janssen F G. 2006, J. Anal. Appl. Pyrol., 77: 28.
[54] Prins M J, Ptasinski K J, Janssen F G. J. Anal. Appl. Pyrol., 2006, 77: 35.
[55] Couhert C, Salvador S, Commandré J M. Fuel, 2009, 88: 2286.
[56] Svoboda K, Poho D?elý M, Hartman M, Martinec J. Fuel Process. Technol., 2009, 90: 629.
[57] Zwart R W J, Boerrigter H, Drift A V D. Energ. Fuel., 2006, 20: 2192.
[58] Uslu A, Faaij A, Bergman P C A. Energy, 2008, 33: 1206.
[59] Carlson T R, Cheng Y T, Jae J, Huber G W. Energ. Environ. Sci., 2011, 4: 145.
[60] Carlson T R, Jae J, Lin Y C, Tompsett G A, Huber G W. J. Catal., 2010, 270: 110.
[61] Li X Y, Su L, Wang Y J, Yu Y Q, Wang C W, Li X L, Wang Z H. Environ. Sci. Eng., 2012, 6: 1079.
[62] Mihalcik D J, Mullen C A, Boateng A A. J. Anal. Appl. Pyrol., 2011, 92: 224.
[63] Mullen C A, Boateng A A. Fuel Process. Technol., 2010, 91: 1446.
[64] Alonso D M, Bond J Q, Dumesic J A. Green Chem., 2010, 12: 1493.
[65] Zakzeski J, Bruijnincx P C A, Jongerius A L, Weckhuysen B M. Chem. Rev., 2010, 110: 3552.
[66] Yang X, Zeng Y, Ma F, Zhang X, Yu H. Bioresour. Technol., 2010, 101: 5475.
[67] Tan H, Wang S R. J. Fuel Chem. Technol., 2009, 37: 668.
[68] Das P, Ganesh A, Wangikar P. Biomass Bioenerg., 2004, 27: 445.
[69] Aguado J, Serrano D P, Miguel G S, Castro M C, Madrid S. J. Anal. Appl. Pyrol., 2006, 79: 415.
[70] Boateng A A, Hicks K B, Flores R A, Gutsol A. J. Anal. Appl. Pyrol., 2006, 78: 95.
[71] Misson M, Haron R, Kamaroddin F M A, Amin N A S. Bioresour. Technol., 2009, 100: 2867.
[72] Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M. Bioresour. Technol., 2005, 96: 673.
[73] Johnson R L, Liaw S S, Garcia-Perez M, Ha S, Sean S Y L, Armando G M, Chen S. Energ. Fuel., 2009, 23: 6242.
[74] Zeng Y, Yang X, Yu H, Zhang X, Ma F. J. Agr. Food Chem., 59: 9965.
[75] Yu Y, Zeng Y, Zuo J, Ma F, Yang X, Zhang X, Wang Y. Bioresour. Technol., 2013, 134: 198.
[76] Hammerschmidt A, Boukis N, Hauer E, Galla U, Dinjus E, Hitzmann B, Larsen T, Nygaard S D. Fuel, 2011, 90: 555.
[77] Liu H M, Xie X A, Li M F, Sun R C. J. Ana. App. Pyrol., 2012, 94: 177.
[78] Makabe M, Ouchi K. Fuel, 1981, 60: 443.
[79] Demirbas A. Energ. Convers. Manage., 2000, 41: 633.
[80] Wan C, Li Y. Enzyme Microb. Tech., 2010, 47: 31.
[81] Sun R C, Fang J M, Tomkinson J. Ind. Crop. Prod., 2000, 12: 71.
[82] Liu H M, Feng B, Sun R C. Ind. Eng. Chem. Res., 2011, 50: 10928.
[83] Liu H M, Feng B, Sun R C. J. Agr. Food Chem., 2011, 59: 10524.
[84] Liu H M, Li M F, Cao X F, Sun R C. Energy Technology, 2013, 1: 70.
[85] Shi W, Li S, Jia J, Zhao Y. Ind. Eng. Chem. Res., 2013, 52: 586.
[86] Shi W, Jia J, Guo Y, Zhao Y. Bioresour. Technol., 2013, 146: 355.
[87] Grierer J. Wood Sci. Technol., 1986, 19: 289.

[1] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[2] Yongdong Xu, Zhidan Liu. Formation Mechanism and Resource Recovery Perspectives of Aqueous Phase from Hydrothermal Liquefaction of Biomass [J]. Progress in Chemistry, 2021, 33(11): 2150-2162.
[3] Yujian Liu, Zhimin Liu, Zhigang Xu, Gongke Li. Stir Bar Sorptive Extraction Technology [J]. Progress in Chemistry, 2020, 32(9): 1334-1343.
[4] Deying Mu, Zhu Liu, Shan Jin, Yuanlong Liu, Shuang Tian, Changsong Dai. The Recovery and Recycling of Cathode Materials and Electrolyte from Spent Lithium Ion Batteries in Full Process [J]. Progress in Chemistry, 2020, 32(7): 950-965.
[5] Zhihua Song, Shenghong Li, Gangqiang Yang, Na Zhou, Lingxin Chen. Sample Pretreatment, Analysis and Detection of Ginsenosides [J]. Progress in Chemistry, 2020, 32(2/3): 239-248.
[6] Bingqian Huang, Liyan Wang, Xuan Wei, Weichao Xu, Zhen Sun, Tinggang Li. Lignocellulose Pretreatment by Deep Eutectic Solvents for Biobutanol production [J]. Progress in Chemistry, 2020, 32(12): 2034-2048.
[7] Lei Bai, Yanfeng Wang, Shuhui Huo, Xiaoquan Lu. Application of Food and Water Samples Pretreatment Using Functional Metal-Organic Frameworks Materials [J]. Progress in Chemistry, 2019, 31(1): 191-200.
[8] Jiwei Lv, Xianquan Ao*, Qianlin Chen, Yan Xie, Yang Cao, Jifang Zhang. Disposable Catalysts for Coal Gasification [J]. Progress in Chemistry, 2018, 30(9): 1455-1462.
[9] Yong Sun, Xiaoqiang Song, Yong Sun*, Xianhai Zeng, Xing Tang, Lu Lin*. Strategies of Prior-Fractionation for the Graded Utilization of Lignocellulose [J]. Progress in Chemistry, 2017, 29(10): 1273-1284.
[10] Zhan Hao, Zhang Xiaohong, Yin Xiuli, Wu Chuangzhi. Formation of Nitrogenous Pollutants during Biomass Thermo-Chemical Conversion [J]. Progress in Chemistry, 2016, 28(12): 1880-1890.
[11] Wang Ruiying, Zhang Chaoyan, Wang Shuping, Zhou Youya. Synthesis and Application of Magnetic Metal-Organic Frameworks [J]. Progress in Chemistry, 2015, 27(7): 945-952.
[12] Zhou Sukun, Mao Jianzhen, Xu Feng. Preparation and Applications of Microfibrillated Cellulose [J]. Progress in Chemistry, 2014, 26(10): 1752-1762.
[13] Bi Pengyu, Chang Lin, Mu Yinglin, Liu Jianyou, Wu Yu, Wei Yun. Recent Progress of Solvent Sublation Technique [J]. Progress in Chemistry, 2013, 25(08): 1362-1374.
[14] Xu Zhigang, Liu Zhimin, Yang Baomin, Zi Futing. Development of Dummy Template Molecularly Imprinted Techniques in Sample Pretreatment [J]. Progress in Chemistry, 2012, 24(08): 1592-1598.
[15] . Advances in Liquid-Phase Microextraction [J]. Progress in Chemistry, 2009, 21(04): 696-704.