中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (2/3): 230-238 DOI: 10.7536/PC190620 Previous Articles   Next Articles

Preparation of Functional Fibrous Silica Nanoparticles and Their Applications in Adsorption and Separation

Qianwen Huang1,2, Xiaowen Zhang2, Mi Li2, Xiaoyan Wu2, Liyong Yuan1,**()   

  1. 1. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
    2. School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China
  • Received: Online: Published:
  • Contact: Liyong Yuan
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21777161); National Natural Science Foundation of China(21471153); Science Challenge Project(TZ2016004); Double First Class Construct Program of University of South China(2019SYL05); Youth Innovation Promotion Association, CAS(2017020)
Richhtml ( 17 ) PDF ( 1310 ) Cited
Export

EndNote

Ris

BibTeX

The use of solid adsorbents to separate and remove pollutants from the environment is an effective and common method for environmental pollution control, in which functional adsorbents based on inorganic materials are more widely used. Silica nanoparticles feature good stability, easy modification, low cost and environmental friendliness, thus leading to widespread potential in the treatment of environmental pollutants. Compared with traditional silica nanoparticles, fibrous silica spheres have the advantages of large specific surface area and open pores, which can provide more effective adsorption sites and ensure that pore channels are not easily blocked during practical applications, and thus show more potential in adsorption applications. In this paper, the synthesis and preparation of fibrous silica spheres, in particular, the regulation of structural parameters, are summarized and analyzed based on the reported researches and the works of our group. The application of functional fibrous silica spheres in the adsorption and separation of environmental pollutants in recent years is then reviewed and summarized following the analysis of recent progress in the treatment of heavy metals, organics, radionuclides and other environmental pollutants. Finally, the application of functional fibrous silicon sphere in the field of adsorption and separation is prospected from the points of view of limitations of fiber-like silicon sphere synthesis and application potentials.

Fig.1 The classical synthesis path of DFNS[3]
Fig.2 SEM(left) and TEM(right) imgaes of dendritic fibrous nanosilica[3]
Fig.3 SEM image of microemulsion with DFNS
Table 1 Analysis of influencing factors of DFNS structure parameters
Factors Influence ref
Template
(CPB etc)
Template with different alkyl chain lengths can adjust the particle size of DFNS; Increasing the amount of template can hinder the nucleation reaction at the initial stage and thus reduce the particle size; The molar ratio of the template and silicon can affect the particle size and the shape of the pore wall, but there is no specific research conclusion on the influence trend. 31, 33~36
Silicon hydrolyzer
(urea etc)
Urea is used to hydrolyze silicon reagent, which can be hydrolyzed at room temperature. Before heating reaction, the more urea content, the longer stirring time, the more nucleated particles and the smaller DFNS particle size. 34
Auxiliary organic solvent
(pentanol etc)
Increasing the alkyl chain length of the auxiliary organic solvent can increase the fold spacing.Reducing its dosage can increase homogeneity, reduce particle size and fold interval.The use of alcohols of different polarity, such as n-propanol and n-octanol, can regulate particle size. 34, 37, 38
Organic solvent
(cyclohexane etc)
As the amount of organic solvent increases, the particle size decreases, the homogeneity of particles and the pore size increase, and the channel form finally becomes folded. As the polarity of solvent increases, the particle size first increases and then decreases. 33, 34, 37, 39
Silicon original reagent
(TEOS etc)
As the amount of silicon reagent increases, the fiber density increases, the specific surface area and the particle size decreases. 36, 39, 40
Stir speed during
growing period
With the increase of stirring speed, the particle size becomes smaller and the pore size becomes larger. 41
Growth reaction
temperature
With the increase of reaction temperature,the homogeneity of particles and the particle size increase, the fiber density, the specific surface area, the pore capacity and the pore diameter decrease. 34, 41
Growth reaction time With the increase of reaction time, the homogeneity of particles, the particle size, the fiber density and the pore size all decreased. 34, 37~39
Fig.4 Synthesis of DFNS by seed growth method[42]
Fig.5 TEM images of special DFNS structure nanoparticles,(a,b) asymmetric shuttlecock core-shell structure[26];(c,d) yolk-shell three-layer core-shell structure[47]
Table 2 Comparison of adsorption ability among silicon-based adsorption materials of various morphologies
[1]
Kresge C, Leonowicz M, Roth W J, Vartuli J, Beck J . Nature, 1992,359:710.
[2]
Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D . Science, 1998,279:548. https://www.ncbi.nlm.nih.gov/pubmed/9438845

doi: 10.1126/science.279.5350.548 pmid: 9438845
[3]
Polshettiwar V, Cha D, Zhang X, Basset J M . Angewandte Chemie International Edition, 2010,49:9652. https://www.ncbi.nlm.nih.gov/pubmed/20680958

doi: 10.1002/anie.201003451 pmid: 20680958
[4]
Polshettiwar V, Thivolle-Cazat J, Taoufik M, Stoffelbach F, Norsic S, Basset J M . Angewandte Chemie International Edition, 2011,50:2747. https://www.ncbi.nlm.nih.gov/pubmed/21387480

doi: 10.1002/anie.201007254 pmid: 21387480
[5]
Fihri A, Cha D, Bouhrara M, Almana N, Polshettiwar V . ChemSusChem, 2012,5:85. https://www.ncbi.nlm.nih.gov/pubmed/22086867

doi: 10.1002/cssc.201100379 pmid: 22086867
[6]
Bouhrara M, Ranga C, Fihri A, Shaikh R R, Sarawade P, Emwas A H, Hedhili M N, Polshettiwar V . ACS Sustainable Chemistry & Engineering, 2013,1:1192.
[7]
Lilly Thankamony A S, Lion C, Pourpoint F, Singh B, Perez Linde A J, Carnevale D, Bodenhausen G, Vezin H, Lafon O, Polshettiwar V . Angewandte Chemie International Edition, 2015,54:2190. https://www.ncbi.nlm.nih.gov/pubmed/25469825

doi: 10.1002/anie.201406463 pmid: 25469825
[8]
Gautam P, Dhiman M, Polshettiwar V, Bhanage B M . Green Chemistry, 2016,18:5890.
[9]
Singh R, Bapat R, Qin L, Feng H, Polshettiwar V . ACS Catalysis, 2016,6:2770.
[10]
Dhiman M, Chalke B, Polshettiwar V . Journal of Materials Chemistry A, 2017,5:1935.
[11]
Singh R, Belgamwar R, Dhiman M, Polshettiwar V . Journal of Materials Chemistry B, 2018,6:1600. https://www.ncbi.nlm.nih.gov/pubmed/32254276

doi: 10.1039/c8tb00310f pmid: 32254276
[12]
Singh R, Bayal N, Maity A, Pradeep D J, Trébosc J, Madhu P K, Lafon O, Polshettiwar V . ChemNanoMat, 2018,4:1231. http://doi.wiley.com/10.1002/cnma.v4.12

doi: 10.1002/cnma.v4.12
[13]
Kundu P K, Dhiman M, Modak A, Chowdhury A, Polshettiwar V, Maiti D . ChemPlusChem, 2016,81:1142. https://www.ncbi.nlm.nih.gov/pubmed/31964102

doi: 10.1002/cplu.201600245 pmid: 31964102
[14]
Dhiman M, Polshettiwar V . Journal of Materials Chemistry A, 2016,4:12416.
[15]
Dhiman M, Chalke B, Polshettiwar V . ACS Sustainable Chemistry & Engineering, 2015,3:3224.
[16]
Fihri A, Bouhrara M, Patil U, Cha D, Saih Y, Polshettiwar V . ACS Catalysis, 2012,2:1425.
[17]
Maity A, Mujumdar S, Polshettiwar V . ACS Applied Materials & Interfaces, 2018,10:23392. https://www.ncbi.nlm.nih.gov/pubmed/29923705

doi: 10.1021/acsami.8b04732 pmid: 29923705
[18]
Fan H, Li B, Shi Z, Zhao L, Wang K, Qiu D . Ceramics International, 2018,44:2345.
[19]
Xu C, Yu M, Noonan O, Zhang J, Song H, Zhang H, Lei C, Niu Y, Huang X, Yang Y . Small, 2015,11:5949. https://www.ncbi.nlm.nih.gov/pubmed/26426420

doi: 10.1002/smll.201501449 pmid: 26426420
[20]
Wang Y, Wang Y, Li X, Li J, Su L, Zhang X, Du X . ACS Sustainable Chemistry & Engineering, 2018,6:14071.
[21]
Liang T, Li H, Su X, Lai X, Wu H, Wang C, Wang Y, Zhuang M, Zeng X . Progress in Organic Coatings, 2016,101:423.
[22]
Wang H, Xu Q, Wang J, Du W, Liu F, Hu X . Biosensors and Bioelectronics, 2018,100:105. https://www.ncbi.nlm.nih.gov/pubmed/28881228

doi: 10.1016/j.bios.2017.08.063 pmid: 28881228
[23]
Ding L, Chen S, Zhang W, Zhang Y, Wang X D . Anal. Chem, 2018,90:7544. https://www.ncbi.nlm.nih.gov/pubmed/29741361

doi: 10.1021/acs.analchem.8b01159 pmid: 29741361
[24]
Chen P, Qiao X, Liu J, Xia F, Tian D, Zhou C . Sensors and Actuators B: Chemical, 2018,267:525.
[25]
Radhakrishnan K, Panneerselvam P, Ravikumar A . RSC Advances, 2017,7:45824.
[26]
Moon D S, Lee J K . Langmuir, 2014,30:15574. https://www.ncbi.nlm.nih.gov/pubmed/25454837

doi: 10.1021/la504207k pmid: 25454837
[27]
Qian T, Li J, Min X, Deng Y, Guan W, Ning L . Energy, 2016,112:1074. https://www.ncbi.nlm.nih.gov/pubmed/3755977

doi: 10.1001/archotol.1986.03780100062009 pmid: 3755977
[28]
Maity A, Das A, Sen D, Mazumder S, Polshettiwar V . Langmuir, 2017,33:13774. https://www.ncbi.nlm.nih.gov/pubmed/29111749

doi: 10.1021/acs.langmuir.7b02996 pmid: 29111749
[29]
Xie Y, Wang J, Wang M, Ge X . Journal of Hazardous Materials, 2015,297:66. https://www.ncbi.nlm.nih.gov/pubmed/25942696

doi: 10.1016/j.jhazmat.2015.04.069 pmid: 25942696
[30]
Yokoi T, Karouji T, Ohta S, Kondo J N, Tatsumi T . Chemistry of Materials, 2010,22:3900.
[31]
Yu Y J, Xing J L, Pang J L, Jiang S H, Lam K F, Yang T Q, Xue Q S, Zhang K, Wu P . ACS Applied Materials & Interfaces, 2014,6:22655. https://www.ncbi.nlm.nih.gov/pubmed/25454255

doi: 10.1021/am506653n pmid: 25454255
[32]
Qu Q, Si Y, Xuan H, Zhang K, Chen X, Ding Y, Feng S, Yu H Q . Materials Letters, 2018,211:40.
[33]
Yang H, Liao S, Huang C, Du L, Chen P, Huang P, Fu Z, Li Y . Applied Surface Science, 2014,314:7.
[34]
Bayal N, Singh B, Singh R, Polshettiwar V . Sci. Rep., 2016,6:24888. https://www.ncbi.nlm.nih.gov/pubmed/27118152

doi: 10.1038/srep24888 pmid: 27118152
[35]
Li D, Yi R, Tian J, Li J, Yu B, Qi J . Chemical Communications, 2017,53:8902. https://www.ncbi.nlm.nih.gov/pubmed/28740987

doi: 10.1039/c7cc04070a pmid: 28740987
[36]
Maity A, Polshettiwar V . ACS Applied Nano Materials, 2018,1:3636.
[37]
Moon D S, Lee J K . Langmuir, 2012,28:12341. https://www.ncbi.nlm.nih.gov/pubmed/22861383

doi: 10.1021/la302145j pmid: 22861383
[38]
Kang J S, Lim J, Rho W Y, Kim J, Moon D S, Jeong J, Jung D, Choi J W, Lee J K, Sung Y E . Sci. Rep., 2016,6:30829. https://www.ncbi.nlm.nih.gov/pubmed/27488465

doi: 10.1038/srep30829 pmid: 27488465
[39]
Gai S, Yang P, Wang L, Li C, Zhang M, Jun L . Dalton Transactions, 2012,41:4511. https://www.ncbi.nlm.nih.gov/pubmed/22373780

doi: 10.1039/c2dt11552b pmid: 22373780
[40]
Zhang K, Xu L L, Jiang J G, Calin N, Lam K F, Zhang S J, Wu H H, Wu G D, Albela B, Bonneviot L, Wu P . Journal of the American Chemical Society, 2013,135:2427. https://www.ncbi.nlm.nih.gov/pubmed/23363241

doi: 10.1021/ja3116873 pmid: 23363241
[41]
Du X, Li X, Huang H, He J, Zhang X . Nanoscale, 2015,7:6173. https://www.ncbi.nlm.nih.gov/pubmed/25772672

doi: 10.1039/c5nr00640f pmid: 25772672
[42]
Wang J, Sugawara-Narutaki A, Shimojima A, Osada M, Ma R, Okubo T . Langmuir, 2015,31:1610. https://www.ncbi.nlm.nih.gov/pubmed/25607537

doi: 10.1021/la504955b pmid: 25607537
[43]
Zuo X, Xia Y, Ji Q, Gao X, Yin S, Wang M, Wang X, Qiu B, Wei A, Sun Z . ACS Nano, 2016,11:889. https://www.ncbi.nlm.nih.gov/pubmed/28010061

doi: 10.1021/acsnano.6b07450 pmid: 28010061
[44]
Sun Z, Li H, Guo D, Sun J, Cui G, Liu Y, Tian Y, Yan S . Journal of Materials Chemistry C, 2015,3:4713.
[45]
Qu Q, Si Y, Xuan H, Zhang K, Chen X, Ding Y, Feng S, Yu H Q, Abdullah M A, Alamry K A . Journal of Chromatography A, 2018,1540:31. https://www.ncbi.nlm.nih.gov/pubmed/29426717

doi: 10.1016/j.chroma.2018.02.002 pmid: 29426717
[46]
Wang D, Li X, Liu Z, Shi X, Zhou G . Solid State Sciences, 2017,63:62.
[47]
Yue Q, Li J, Luo W, Zhang Y, Elzatahry A A, Wang X, Wang C, Li W, Cheng X, Alghamdi A, Abdullah A M, Deng Y, Zhao D . Journal of the American Chemical Society, 2015,137:13282. https://www.ncbi.nlm.nih.gov/pubmed/26186087

doi: 10.1021/jacs.5b05619 pmid: 26186087
[48]
Yu K, Zhang X, Tong H, Yan X, Liu S . Materials Letters, 2013,106:151.
[49]
Gai S, Yang P, Ma P a, Wang D, Li C, Li X, Niu N, Lin J . Journal of Materials Chemistry, 2011,21:16420.
[50]
Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, Hayat T, Wang X . Chem. Soc. Rev., 2018,47:2322. https://www.ncbi.nlm.nih.gov/pubmed/29498381

doi: 10.1039/c7cs00543a pmid: 29498381
[51]
Wu Y, Pang H, Liu Y, Wang X, Yu S, Fu D, Chen J, Wang X . Environmental Pollution, 2019,246:608. https://www.ncbi.nlm.nih.gov/pubmed/30605816

doi: 10.1016/j.envpol.2018.12.076 pmid: 30605816
[52]
Zhao G, Huang X, Tang Z, Huang Q, Niu F, Wang X . Polymer Chemistry, 2018,9:3562. https://www.ncbi.nlm.nih.gov/pubmed/18358000

doi: 10.1021/jo800179m pmid: 18358000
[53]
Rizzo L, Malato S, Antakyali D, Beretsou V G, Dolic M B, Gernjak W, Heath E, Ivancev-Tumbas I, Karaolia P, Lado Ribeiro A R, Mascolo G, McArdell C S, Schaar H, Silva A M T, Fatta-Kassinos D . Science of the Total Environment, 2019,655:986. https://www.ncbi.nlm.nih.gov/pubmed/30577146

doi: 10.1016/j.scitotenv.2018.11.265 pmid: 30577146
[54]
Xiao J, Jing Y, Wang X, Yao Y, Jia Y . ChemistrySelect, 2018,3:12346.
[55]
Xiao J, Jing Y, Yao Y, Wang X, Jia Y . Journal of Molecular Liquids, 2019,277:843.
[56]
Budnyak T M, Gladysz-Plaska A, Strizhak A V, Sternik D, Komarov I V, Majdan M, Tertykh V A . ACS Applied Materials & Interfaces, 2018,10:6681. https://www.ncbi.nlm.nih.gov/pubmed/29370513

doi: 10.1021/acsami.7b17594 pmid: 29370513
[57]
Ji G, Zhu G, Wang X, Wei Y, Yuan J, Gao C . Separation and Purification Technology, 2017,174:455.
[58]
Dan H, Chen L, Xian Q, Yi F, Ding Y . Separation and Purification Technology, 2019,210:491.
[59]
Yang Z, Chen G, Weng H, Shen W, Huang Z, Lin M . Journal of Materials Science, 2017,53:3398.
[60]
Patil U, Fihri A, Emwas A H, Polshettiwar V . Chemical Science, 2012,3:2224. https://www.ncbi.nlm.nih.gov/pubmed/21688844

doi: 10.1021/am200662d pmid: 21688844
[61]
Singh B, Polshettiwar V . Journal of Materials Chemistry A, 2016,4:7005.
[62]
Singh B, Maity A, Polshettiwar V . ChemistrySelect, 2018,3:10684.
[63]
Tian Y, Liu Y, Sun Z, Li H, Cui G, Yan S . RSC Advances, 2015,5:106068.
[64]
Huang X, Tao Z, Praskavich J C, Goswami A, Al-Sharab J F, Minko T, Polshettiwar V, Asefa T . Langmuir, 2014,30:10886. https://www.ncbi.nlm.nih.gov/pubmed/25188675

doi: 10.1021/la501435a pmid: 25188675
[65]
Sun Z, Guo D, Zhang L, Li H, Yang B, Yan S . Journal of Materials Chemistry B, 2015,3:3201. https://www.ncbi.nlm.nih.gov/pubmed/32262314

doi: 10.1039/c5tb00038f pmid: 32262314
[66]
Hasan R, Bukhari S N, Jusoh R, Mutamin N S A, Setiabudi H D . Materials Today: Proceedings, 2018,5:21574.
[67]
Shahat A, Hassan H M A, Azzazy H M E, El-Sharkawy E A, Abdou H M, Awual M R . Chemical Engineering Journal, 2018,332:377.
[68]
Tripathi A, Melo J S . Journal of Applied Polymer Science, 2019,136:46937.
[69]
Hu Y, Giret S, Meinusch R, Han J, Fontaine F G, Kleitz F, Larivière D . Journal of Materials Chemistry A, 2019,7:289.
[70]
Chen L, Yin X, Yu Q, Siming L, Meng F, Ning S, Wang X, Wei Y . Microporous and Mesoporous Materials, 2019,274:155.
[71]
Wang R, Wei Y, Jiang H, Gong H . Journal of Radioanalytical and Nuclear Chemistry, 2018,318:2023.
[72]
Le Nedelec T, Charlot A, Calard F, Cuer F, Leydier A, Grandjean A . New Journal of Chemistry, 2018,42:14300.
[73]
Khayambashi A, Shu Q, Wei Y, Tang F, He L . Journal of Radioanalytical and Nuclear Chemistry, 2018,316:221.
[74]
El-Magied M O A, Dhmees A S, Abd El-Hamid A A M, Eldesouky E M . Journal of Nuclear Materials, 2018,509:295.
[75]
Xiao P, Han D, Zhai M, Xu L, Li H . Journal of Hazardous Materials, 2017,324:711. https://www.ncbi.nlm.nih.gov/pubmed/27889178

doi: 10.1016/j.jhazmat.2016.11.045 pmid: 27889178
[76]
Zhao Y, Li J, Zhao L, Zhang S, Huang Y, Wu X, Wang X . Chemical Engineering Journal, 2014,235:275. https://linkinghub.elsevier.com/retrieve/pii/S1385894713012059

doi: 10.1016/j.cej.2013.09.034
[77]
Yuan L Y, Liu Y L, Shi W Q, Lv Y L, Lan J H, Zhao Y L, Chai Z F . Dalton Transactions, 2011,40:7446. https://www.ncbi.nlm.nih.gov/pubmed/21681327

doi: 10.1039/c1dt10085h pmid: 21681327
[78]
赵驰(Zhao C), 翁汉钦(Weng H Q), 汪谟贞(Wang M Z), 葛学武(Ge X W), 林铭章(Lin M Z) . 辐射研究与辐射工艺学报 (Journal of Radiation on Research and Radiation Processing), 2017,35:50301.
[79]
Ravi S, Zhang S, Lee Y R, Kang K K, Kim J M, Ahn J W, Ahn W S . Journal of Industrial and Engineering Chemistry, 2018,67:210.
[80]
Yang P, Liu Q, Liu J, Chen R, Li R, Bai X, Wang J . Journal of Hazardous Materials, 2019,363:248. https://www.ncbi.nlm.nih.gov/pubmed/30308364

doi: 10.1016/j.jhazmat.2018.09.062 pmid: 30308364
[81]
Yang P, Chen R, Liu Q, Zhang H, Liu J, Yu J, Liu P, Bai X, Wang J . Inorganic Chemistry Frontiers, 2019,6:746.
[1] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[2] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[3] Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai. A Review on MXene and Its Applications in Environmental Remediation [J]. Progress in Chemistry, 2022, 34(5): 1229-1244.
[4] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[5] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[6] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[7] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[8] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[9] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[10] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[11] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[12] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[13] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[14] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[15] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.