中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (10): 1372-1383 DOI: 10.7536/PC190310 Previous Articles   Next Articles

Structures, Properties, and Applications of Metalloregulatory Proteins

Yanan Zheng, Dan Wang**()   

  1. College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
  • Received: Online: Published:
  • Contact: Dan Wang
  • About author:
  • Supported by:
    National Natural Science Foundation of China(31800631); Natural Science Foundation of Guangxi Province(2018JJB120049); Middle-aged and Young Teachers’ Basic Ability Promotion Project of Guangxi(2018KY0361)
Richhtml ( 15 ) PDF ( 535 ) Cited
Export

EndNote

Ris

BibTeX

The metalloregulatory protein is the metal-specific binding protein in microorganisms that tightly regulates the intake, efflux, and storage of the metal ions through the regulatory mechanism of transcriptional repression or activation, which is particularly important for the maintaining of suitable metal concentration and homeostasis. In this review, the regulatory mechanism and topological structure are summarized within the current seven major families of metalloregulatory proteins, and the structural feature and metal-ligand coordination geometry of metal-binding domain are also introduced in detail. Based on the metal-ligand coordination geometry, the mechanisms are discussed for the metal selectivity of metalloregulatory proteins. In addition, the applications of metalloregulatory proteins in metal-ion detection and adsorption are also introduced, which not only broadens the research and application areas of metalloregulatory proteins, but also exploits new direction for the bioinorganic chemistry research.

Fig. 1 Ribbon diagrams of crystallographic structures of B. subtilis PerR. The oxidized form of PerR, designated PerR-Zn-ox, is shown in the top. The Mn(Ⅱ)-activated PerR, designated PerR-Zn-Mn, is shown in the bottom
Fig. 2 Ribbon diagrams of crystallographic structures and metal-binding sites of B. subtilis MntR. The N-terminal DNA-binding domain of apo-MntR(PDB: 2HYF) is shown as green, and the N-terminal DNA-binding domain of metal-bound MntR(PDB: 2F5F) is shown as blue
Fig. 3 Ribbon diagrams of crystallographic structures of E. coli DNA-Ni(Ⅱ)-NikR complex
Fig. 4 Ribbon diagrams of crystallographic structures of E. coli CueR. The metal-free CueR is shown on the left, and the metal-bound CueR is shown on the right
Fig. 5 Summary of the known metal binding sites of ArsR/SmtB family repressors on the structure of S. aureus pI258 CadC homodimer. The Zn(Ⅱ)-binding site α5 and Cd(Ⅱ)-binding site in pI258 CadC homodimer α3 N are shown in the right, which correspond to the red and yellow part in the left. Other metal-binding sites in the ArsR/SmtB family repressors are shown in the left
Fig. 6 Summary of the known metal binding sites and feature sequence domain of CosR/RcnR family repressors on the structure of M. tuberculosis CosR. The M. tuberculosis CosR coordinate Cu(Ⅰ) through the residues Cys36, His61’ and Cys65’. The E. coli RcnR coordinate Ni(Ⅱ) through the residues in the feature sequence domain W-X-Y-Z
Fig. 7 (a) The designed fluorescence probe based on the allosteric transcriptional regulation mechanism of MerR family members MerR, CueR, and PbrR.(b) The protein engineering based on the metalloregulatory protein NikR [77~79, 83]
[1]
Chandrangsu P, Rensing C, Helmann J D . Nat. Rev. Microbiol, 2017,15:338.
[2]
Waldron K J, Robinson N J . Nat. Rev. Microbiol, 2009,7:25.
[3]
Guerra A J, Giedroc D P . Arch. Biochem. Biophys., 2012,519:210.
[4]
Waldron K J, Rutherford J C, Ford D, Robinson N J . Nature, 2009,460:823.
[5]
Reyes-Caballero H, Campanello G C, Giedroc D P . Biophys. Chem., 2011,156:103.
[6]
Tottey S, Harvie D R, Robinson N J . Acc. Chem. Res., 2005,38:775.
[7]
Sala D, Musiani F, Rosato A . Eur. J. Inorg. Chem., 2018,2018:4661.
[8]
Ma Z, Jacobsen F E, Giedroc D P . Chem. Rev., 2009,109:4644.
[9]
Giedroc D P, Arunkumar A I . Dalton. Tran., 2007,3107.
[10]
Andrews S C, Robinson A K, Rodríguez-Quiñones F . FEMS. Microbiol. Rev., 2003,27:215.
[11]
Azul P B, D. H J . Antioxid. Redox. Sign, 2018,29:1858.
[12]
Lucarelli D, Russo S, Garman E, Milano A, Meyer-Klaucke W, Pohl E . J. Biol. Chem., 2007,282:9914.
[13]
Maciᶏg A, Dainese E, Rodriguez G M, Milano A, Provvedi R, Pasca M R, Smith I, Palù G, Riccardi G, Manganelli R . J. Bacteriol., 2007,189:730.
[14]
Diaz-Mireles E, Wexler M, Sawers G, Bellini D, Todd J, Johnston A . Microbiology, 2004,150:1447.
[15]
Ahn B E, Cha J, Lee E J, Han A R, Thompson C J, Roe J H . Mol. Microbiol., 2006,59:1848.
[16]
Carpenter B M, Gancz H, Benoit S L, Evans S, Olsen C H, Michel S L, Maier R J, Merrell D S . J. Bacteriol., 2010,192:5037.
[17]
Pohl E, Haller J C, Mijovilovich A, Meyer Klaucke W, Garman E, Vasil M L . Mol. Microbiol., 2003,47:903.
[18]
An Y J, Ahn B E, Han A R, Kim H M, Chung K M, Shin J H, Cho Y B, Roe J H, Cha S S . Nucleic. Acids. Res, 2009,37:3442.
[19]
Jacquamet L, Traore D A, Ferrer J L, Proux O, Testemale D, Hazemann J L, Nazarenko E, El Ghazouani A, Caux-Thang C, Duarte V . Mol. Microbiol., 2009,73:20.
[20]
Pecqueur L, D’Autréaux B, Dupuy J, Nicolet Y, Jacquamet L, Brutscher B, Michaud-Soret I, Bersch B . J. Biol. Chem., 2006,281:21286.
[21]
Outten C E, Tobin D A, Penner-Hahn J E, O’Halloran T V . Biochemistry, 2001,40:10417.
[22]
Gilston B A, Wang S, Marcus M D, Canalizo-Hernández M A, Swindell E P, Xue Y, Mondragón A, O’Halloran T V . PLoS Biol., 2014,12:e1001987.
[23]
Kandari D, Gopalani M, Gupta M, Joshi H, Bhatnagar S, Bhatnagar R . Front. Microbiol., 2019,9:3314.
[24]
Giedroc D P . Mol. Microbiol, 2009,73:1.
[25]
Lee J W, Helmann J D . Nature, 2006,440:363.
[26]
Pennella M A, Arunkumar A I, Giedroc D P . J. Mol. Biol., 2006,356:1124.
[27]
Traoré D A, El Ghazouani A, Jacquamet L, Borel F, Ferrer J L, Lascoux D, Ravanat J L, Jaquinod M, Blondin G, Caux-Thang C . Nat. Chem. Biol., 2009,5:53.
[28]
Cheng Y, Yang R, Lyu M, Wang S, Liu X, Wen Y, Song Y, Li J, Chen Z . Appl. Environ. Microb., 2018,84:e01503.
[29]
Spiering M M, Ringe D, Murphy J R, Marletta M A . Proc. Natl. Acad. Sci. U. S. A., 2003,100:3808.
[30]
Wylie G P, Rangachari V, Bienkiewicz E A, Marin V, Bhattacharya N, Love J F, Murphy J R, Logan T M . Biochemistry, 2005,44:40.
[31]
D’Aquino J A, Lattimer J R, Denninger A, D’Aquino K E, Ringe D . Biochemistry, 2007,46:11761.
[32]
D’Aquino J A, Tetenbaum-Novatt J, White A, Berkovitch F, Ringe D . Proc. Natl. Acad. Sci. U. S. A., 2005,102:18408.
[33]
Schmitt M P . J. Bacteriol., 2002,184:6882.
[34]
Kliegman J I, Griner S L, Helmann J D, Brennan R G, Glasfeld A . Biochemistry, 2006,45:3493.
[35]
Glasfeld A, Guedon E, Helmann J D, Brennan R G . Nat. Struct. Mol. Biol., 2003,10:652.
[36]
Sen K I, Sienkiewicz A, Love J F, vanderSpek J C, Fajer P G, Logan T M . Biochemistry, 2006,45:4295.
[37]
DeWitt M A, Kliegman J I, Helmann J D, Brennan R G, Farrens D L, Glasfeld A . J. Mol. Biol., 2007,365:1257.
[38]
Musiani F, Zambelli B, Bazzani M, Mazzei L, Ciurli S . Metallomics, 2015,7:1305.
[39]
Van Vliet A H M, Poppelaars S W, Davies B J, Stoof J, Bereswill S, Kist M, Penn C W, Kuipers E J, Kusters J G . Infect. Immun., 2002,70:2846.
[40]
Chivers P T, Tahirov T H . J. Mol. Biol., 2005,348:597.
[41]
Budnick J A, Prado-Sanchez E, Caswell C C . Microbiology, 2018,164:1320.
[42]
Schreiter E R, Sintchak M D, Guo Y, Chivers P T, Sauer R T, Drennan C L . Nat. Struct. Mol. Biol., 2003,10:794.
[43]
Chivers P T, Sauer R T . Chem. Biol., 2002,9:1141.
[44]
Leitch S, Bradley M J, Rowe J L, Chivers P T, Maroney M J . J. Am. Chem. Soc., 2007,129:5085.
[45]
Schreiter E R, Wang S C, Zamble D B, Drennan C L . Proc. Natl. Acad. Sci. U. S. A., 2006,103:13676.
[46]
Brown N L, Ford S J, Pridmore R D, Fritzinger D C . Biochemistry, 1983,22:4089.
[47]
Brown N L, Misra T K, Winnie J N, Schmidt A, Seiff M, Silver S . Mol. Gen. Genet., 1986,202:143.
[48]
Changela A, Chen K, Xue Y, Holschen J, Outten C E, O’Halloran T V, Mondragón A . Science, 2003,301:1383.
[49]
Philips S J, Canalizo-Hernandez M, Yildirim I, Schatz G C, Mondragón A, O’Halloran T V . Science, 2015,349:877.
[50]
Lee S W, Glickmann E, Cooksey D A . Appl. Environ. Microb., 2001,67:1437.
[51]
Borremans B, Hobman J, Provoost A, Brown N, van Der Lelie D . J. Bacteriol., 2001,183:5651.
[52]
Jian X, Wasinger E C, Lockard J V, Chen L X, He C . J. Am. Chem. Soc., 2009,131:10869.
[53]
Brown N L, Stoyanov J V, Kidd S P, Hobman J L . FEMS. Microbiol. Rev., 2003,27:145.
[54]
Wang D, Huang S, Liu P, Liu X, He Y, Chen W, Hu Q, Wei T, Gan J, Ma J, Chen H . Sci. Rep., 2016,6:33391.
[55]
Huang S, Liu X, Wang D, Chen W, Hu Q, Wei T, Zhou W, Gan J, Chen H . Inorg. Chem., 2016,55:12516.
[56]
Checa S K, Espariz M, Audero M E P, Botta P E, Spinelli S V, Soncini F C . Mol. Microbioly, 2007,63:1307.
[57]
Osman D, Cavet J S . Nat. Prod. Rep., 2010,27:668.
[58]
Busenlehner L S, Pennella M A, Giedroc D P . FEMS. Microbiol. Rev., 2003,27:131.
[59]
Campbell D R, Chapman K E, Waldron K J, Tottey S, Kendall S, Cavallaro G, Andreini C, Hinds J, Stoker N G, Robinson N J . J. Biol. Chem., 2007,282:32298.
[60]
Pennella M A, Giedroc D P . Biometals, 2005,18:413.
[61]
Eicken C, Pennella M A, Chen X, Koshlap K M, van Zile M L, Sacchettini J C, Giedroc D P . J. Mol. Biol, 2003,333:683.
[62]
Liu T, Chen X, Ma Z, Shokes J, Hemmingsen L, Scott R A, Giedroc D P . Biochemistry, 2008,47:10564.
[63]
Liu T, Nakashima S, Hirose K, Shibasaka M, Katsuhara M, Ezaki B, Giedroc D P, Kasamo K . J. Biol. Chem., 2004,279:17810.
[64]
Hirose K, Ezaki B, Liu T, Nakashima S . Toxicol. Lett., 2006,163:250.
[65]
Pennella M A, Shokes J E, Cosper N J, Scott R A, Giedroc D P . Proc. Natl. Acad. Sci. U. S. A., 2003,100:3713.
[66]
Liu T, Ramesh A, Ma Z, Ward S K, Zhang L, George G N, Talaat A M, Sacchettini J C, Giedroc D . Proc. Nat. Chem. Biol, 2007,3:60.
[67]
Iwig J S, Leitch S, Herbst R W, Maroney M J, Chivers P T . J. Am. Chem. Soc., 2008,130:7592.
[68]
Iwig J S, Rowe J L, Chivers P T . Mol. Biol., 2006,62:252.
[69]
Carr C E, Musiani F, Huang H T, Chivers P T, Ciurli S, Maroney M J . Inorg. Chem., 2017,56:6459.
[70]
Huang H T, Bobst C E, Iwig J S, Chivers P T, Kaltashov I A, Maroney M J . J. Biol. Chem., 2018,293:324.
[71]
Ma Z, Cowart D M, Scott R A, Giedroc D P . Biochemistry, 2009,48:3325.
[72]
Portmann R, Poulsen K R, Wimmer R, Solioz M . Biometals, 2006,19:61.
[73]
Strausak D, Solioz M . J. Biol. Chem., 1997,272:8932.
[74]
Cobine P A, George G N, Jones C E, Wickramasinghe W A, Solioz M, Dameron C T . Biochemistry, 2002,41:5822.
[75]
Solioz M, Abicht H K, Mermod M, Mancini S . J. Biol. Inorg. Chem., 2010,15:3.
[76]
Cantini F, Banci L, Solioz M . Biochem. J., 2009,417:493.
[77]
Chen P, He C . J. Am. Chem. Soc., 2004,126:728.
[78]
Wegner S V, Okesli A, Chen P, He C . J. Am. Chem. Soc., 2007,129:3474.
[79]
Chen P, Greenberg B, Taghavi S, Romano C, van der Lelie D, He C . Angew. Chem. Int. Edit., 2005,117:2775.
[80]
Wei W, Zhu T, Wang Y, Yang H, Hao Z, Chen P R, Zhao J . Chem. Sci., 2012,3:1780.
[81]
Wei W, Liu X, Sun P, Wang X, Zhu H, Hong M, Mao Z W, Zhao J . Environ. Sci. Technol., 2014,48:3363.
[82]
Cai S, Shen Y, Zou Y, Sun P, Wei W, Zhao J, Zhang C . Analyst, 2018,143:630.
[83]
Wegner S V, Boyaci H, Chen H, Jensen M P, He C . Angew. Chem. Int. Edit., 2009,48:2339.
[84]
Zhou L, Bosscher M, Zhang C, Özçubukçu S, Zhang L, Zhang W, Li C J, Liu J, Jensen M P, Lai L, He C . Nat. Chem., 2014,6:236.
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[3] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[4] Jinke Wu, Jianjun Wang, Lixing Dai, Donghao Sun, Jiajia Chen. Metal Coordination Polyurethanes [J]. Progress in Chemistry, 2021, 33(12): 2188-2202.
[5] Yuanming Tan, Hao Meng, Xia Zhang. Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes [J]. Progress in Chemistry, 2019, 31(7): 980-995.
[6] Shanye Yang, Xiangxue Wang, Zhongshan Chen, Qian Li, Benben Wei, Xiangke Wang. Synthesis of Fe3O4-Based Nanomaterials and Their Application in the Removal of Radionuclides and Heavy Metal Ions [J]. Progress in Chemistry, 2018, 30(2/3): 225-242.
[7] Zhou Hongwei, Ding Xiaobin. Smart Polymer Materials Driven by the Belousov-Zhabotinsky Reaction:Topological Structures and Biomimetic Functions [J]. Progress in Chemistry, 2016, 28(1): 111-120.
[8] Zhu Qianjiang, Xue Saifeng, Tao Zhu. Supramolecular Coordination Polymers Based on the Outer-Surface Interaction of Cucurbit [n] urils [J]. Progress in Chemistry, 2015, 27(6): 625-632.
[9] Liu Yu, Fu Ruiqi, Lou Zimo, Fang Wenzhe, Wang Zhuoxing, Xu Xinhua. Preparation of Functional Carbon-Based Materials for Removal of Heavy Metals from Aqueous Solution [J]. Progress in Chemistry, 2015, 27(11): 1665-1678.
[10] Yang Chuting, Han Jun, Luo Yangming, Hu Sheng, Wang Xiaolin. Metal Ion Recognition Functions Based on Cyclopeptides [J]. Progress in Chemistry, 2014, 26(09): 1537-1550.
[11] Chang Dingming, Zhang Haiqin, Lu Zhihao, Huang Guangtuan, Cai Lankun, Zhang Lehua. Behavior of Metal Ions in Microbial Fuel Cells [J]. Progress in Chemistry, 2014, 26(07): 1244-1254.
[12] Li Hui, Kong Deming. Applications of DNAzymes in the Detection of Heavy Metal Ions [J]. Progress in Chemistry, 2013, 25(12): 2119-2130.
[13] Li Xingjian, Wang Yaru, Zheng Zhaohui, Ding Xiaobin, Peng Yuxing. Structural Design and Property Study of Shape Memory Polymer Network [J]. Progress in Chemistry, 2013, 25(10): 1726-1738.
[14] Xu Caihong, Zhao Yaqin, Yang Binsheng*. Mediating Roles of Metal Ions in the Structures and Functions of Metalloproteins [J]. Progress in Chemistry, 2013, 25(04): 520-529.
[15] Hu Huiyuan, Zhu Hong. Adsorption of Heavy Metal Ions by Chitosan and Its Derivatives [J]. Progress in Chemistry, 2012, 24(11): 2212-2223.