中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (09): 1537-1550 DOI: 10.7536/PC140459 Previous Articles   Next Articles

• Review •

Metal Ion Recognition Functions Based on Cyclopeptides

Yang Chuting, Han Jun, Luo Yangming, Hu Sheng*, Wang Xiaolin   

  1. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 91326110) and 909 project of CAEP

PDF ( 1973 ) Cited
Export

EndNote

Ris

BibTeX

The conformational variability of linear peptides affects the strength and selectivity of receptor binding. In contrast, cyclopeptides adopt more rigid and conformationally constrained structures than their linear analogues, as the cyclization could lead to a restricted mobility of the peptide skeleton. Therefore, the cyclization is one of the important ways to improve the biological stability and physiological activity of the peptides. Furthermore, cyclopeptides are important building blocks in molecular material chemistry and life science, working in diverse areas such as physiological processes, nanoscale materials, and supramolecular chemistry. They are used to study the physiological process, construct transmembrane nanotube channels in order to transport molecules and ions, recognize molecules, anions, and cations. In recent years, the researchers pay more attention to the interaction of biological molecules and metal ions, especially with cyclopeptides as the models. In this paper, we review the research progress of the metal ion recognition functions of cyclopeptides. Alkali and alkaline earth metals, transition metals (such as Cu, Zn and Ni), heavy metals, and lanthanides are discussed. A major focus has been on the influencing factors to the metal ion affinity and selectivity. The challenges and prospects of the metal ion recognition are also discussed concisely.

Contents
1 Introduction
2 The research progress of the metal ion recognition functions of cyclopeptides
2.1 Alkali and alkaline earth metals
2.2 Transition metals
2.3 Heavy metals
2.4 Lanthanides
3 Outlook

CLC Number: 

[1] Ovchinnikov Y A, Ivanov V T. Tetrahedron, 1975, 31: 2177.
[2] Tan N H, Zhou J. Chem. Rev., 2006, 106: 840.
[3] Gursoy R N, Siahaan T J. J. Pept. Res., 1999, 53: 414.
[4] Tosteson D C, Cook P, Andreoli T, Tieffenbenberg M. J. Gen. Physiol., 1967, 40: 2513.
[5] Bhattacharyya P, Epstein W, Silver S. Proc. Natl. Acad. Sci. U. S. A., 1971, 68: 1488.
[6] Varma S, Sabo D, Rempe S B. J. Mol. Biol., 2008, 376: 13.
[7] Deber C M, Bartman B, Blout E R. Peptides: Chemistry, Structure and Biology. Ann Arbor, Mich: Ann Arbor Science Publishers, 1975.203.
[8] Madison V, Deber C M, Blout E R. J. Am. Chem. Soc., 1977, 99: 4788.
[9] Rose M C, Henkens R W. Biochim. Eiophys. Acta, 1974, 372: 426.
[10] Wieland T, Faulstich H, Burgermeister W, Otting W, Mohle W, Shemyakin M M, Ovchinikov Y A, Ivanov V T, Malenkov G G. FEBS Lett., 1970, 9: 89.
[11] 穆林静(Mu L J), 黄海(Huang H), 何家骐(He J Q), 张宁(Zhang N), 程津培(Cheng J P). 科学通报(Chinese Science Bulletin),2000, 45 (20): 2175.
[12] García-Echeverría C, Albericio F, Giralt E, Pons M. J. Am. Chem. Soc., 1993, 115: 11663.
[13] Huang H, Mu L, He J, Cheng J P. Tetrahedron Letters, 2002, 43: 2255.
[14] Huang H, Mu L, He J, Cheng J P. J. Org. Chem., 2003, 68: 7605.
[15] Chowdhury S, Schatte G, Kraatz H B. Eur. J. Inorg. Chem., 2006, 988.
[16] Strauss J, Daub J. Org. Lett., 2002, 4: 683.
[17] Ishida H, Qi Z, Sokabe M, Donowaki K, Inoue Y. J. Org. Chem., 2001, 66: 2978.
[18] Ghadiri M R, Granja J R, Buehler L K. Nature, 1994, 369: 301.
[19] Sanchez-Quesada J, Isler M P, Ghadiri M R. J. Am. Chem. Soc., 2002, 124: 10004.
[20] Clark T D, Buehler L K, Ghadiri M R. J. Am. Chem. Soc., 1998, 120: 651.
[21] García-Fandio R, Amorín M, Castedo L, Granja J R. Chem. Sci., 2012, 3: 3280.
[22] Hwang H, Schatz G C, Ratner M A. J. Phys. Chem. B, 2006, 110(51): 26448.
[23] Dehez F, Tarek M, Chipot C. J. Phys. Chem. B, 2007, 111(36): 10633.
[24] Delemotte L, Dehez F, Treptow W. J. Phys. Chem. B, 2008, 112 (18): 5547.
[25] Montenegro J, Ghadiri M R., Granja J R. Acc. Chem. Res., 2013, 46 (12): 2955.
[26] Liu S, Pentelute B L, Kent S B H. Angew. Chem. Int. Ed., 2012, 51: 993.
[27] Avital-Shmilovici M, Mandal K, Gates Z P, Phillips N B, Weiss M A, Kent S B H. J. Am. Chem. Soc., 2013, 135: 3173.
[28] Tan Z, Shang S, Danishefsky S J. Proc. Natl. Acad. Sci. U.S.A., 2011, 108: 4297.
[29] Zheng J S, Chang H N, Wang F L, Liu L. J. Am. Chem. Soc., 2011, 133: 11080.
[30] Fang G M, Wang J X, Liu L. Angew. Chem. Int. Ed., 2012, 51: 10347.
[31] Richardson J S, Thomas K A, Rubin B H, Richardson D C. Proc. Natl. Acad. Sci. U. S. A., 1975, 72: 1349.
[32] Coleman P H, Freeman H C, Guss J M, Murata M, Norris V A, Ramshaw J A, Ventakappa M P. Narure, 1978, 272: 319.
[33] Sovago I, Osz K. Dalton Trans., 2006, 3841.
[34] Laussac J P, Robert A, Haran R, Sarkar R. Inorg. Chem., 1986, 25: 2160.
[35] Brasuń J, Gabbiani C, Ginanneschi M, Messori L, Orfeic M, DS wiatek-Koz?owska J. J. Inorg. Biochem., 2004, 98: 2016.
[36] Brasuń J, Matera-Witkiewicz A, O?dziej S, DS wiatek- Koz?owska J, Messori L, Gabbiani C, Orfei M, Ginanneschi M. J. Inorg. Biochem., 2007, 101: 452.
[37] Brasuń J, Matera-Witkiewicz A, Kamysz E, Kamyszc W, O?dziej S. Polyhedron, 2010, 29: 1535.
[38] Brasuń J, Matera-Witkiewicz A, O?dziej S, Pratesi A, Ginanneschic M, Messori L. J. Inorg. Biochem., 2009, 103: 813.
[39] Kotynia A, Bielińska S, Kamyszb W, Brasuń J. Dalton Trans., 2012, 41: 12114.
[40] Fragoso A, Lamosa P, Delgado R, Iranzo O. Chem. Eur. J., 2013, 19: 2076.
[41] Fragoso A, Delgado R, Iranzo O. Dalton Trans., 2013, 42: 6182.
[42] Boturyn D, Defrancq E, Dolphin G T, Garcia J, Labbe P, Renaudet O, Dumy P. J. Pept. Sci., 2008, 14: 224.
[43] Robinson J A. Acc. Chem. Res., 2008, 41: 1278.
[44] Harford C, Sarkar B. Acc. Chem. Res., 1997, 30: 123.
[45] Jin Y, Cowan J A. J. Am. Chem. Soc., 2005, 127: 8408.
[46] Joyner J C, Reichfield J, Cowan J A. J. Am. Chem. Soc., 2011, 133: 15613.
[47] Kosh P, Neupane K P, Aldous A R, Kritzer J A. Inorg. Chem., 2013, 52: 2729.
[48] Sovago I, Kallay C, Varnagy K. Coord. Chem. Rev., 2012, 256: 2225.
[49] Zhang L, Luo Z, Zhang L, Jia L, Wu L. J. Biol. Inorg. Chem., 2013, 18: 277.
[50] Rousselot-Pailley P, Seneque O, Lebrun C, Crouzy S, Boturyn D, Dumy P, Ferrand M, Delangle P. Inorg. Chem., 2006, 45: 5510.
[51] Bertram A, Pattenden G. Nat. Prod. Rep., 2007, 24: 18.
[52] Comba P, Dovalil N, Gahan L R, Hanson G R, Westphal M. Dalton Trans., 2014, 43: 1935.
[53] Michael S F, Kilfoil V J, Schmidt M H, Amann B T, Berg J M. Proc. Natl. Acad. Sci. U. S. A., 1992, 89: 4796.
[54] Grishin N V. Nucleic Acids Res., 2001, 29: 1703.
[55] Brown R S, Sanders C, Argos P. FEBS Lett., 1985, 186: 271.
[56] Rebar E, Pabo C O. Science, 1994, 263: 671.
[57] Tuchscherer G, Lehmann C, Mathieu M. Angew. Chem. Int. Ed., 1998, 37: 2990.
[58] Berg J M, Merkle D L. J. Am. Chem. Soc., 1989, 111: 3759.
[59] Sénèque O, Bourlès E, Lebrun V, Bonnet E, Dumy P, Latour J M. Angew. Chem. Int. Ed., 2008, 47: 6888.
[60] Janda I, Devedjiev Y, Derewenda U, Dauter Z, Bielnicki J, Cooper D R, Graf P C F, Joachimiak A, Jakob U, Derewenda Z S. Structure, 2004, 12: 1901.
[61] Jakob U, Eser M, Bardwell J C A. J. Biol. Chem., 2000, 275: 38302.
[62] Jacques A, Mettra B, Lebrun V, Latour J M, Sénèque O. Chem. Eur. J., 2013, 19: 3921.
[63] Du Vigneaud V, Ressler C, Trippett S. J. Biol. Chem., 1953, 205: 949.
[64] Liu D F, Seuthe A B, Ehrler O T, Zhang X H, Wyttenbach T, Hsu J F, Bowers M T. J. Am. Chem. Soc., 2005, 127: 2024.
[65] Wyttenbach T, Liu D F, Bowers M T. J. Am. Chem. Soc., 2008, 130: 5993.
[66] Halcrow M, Christou G. Chem. Rev., 1994, 94: 2421.
[67] Witkowska D, Rowińska- DZ· yrek M, Valensin G, Koz?owski H. Coord. Chem. Rev., 2012, 256: 133.
[68] Peana M, Medicia S, Nurchib V M, Crisponi G, Zoroddu M A. Coord. Chem. Rev., 2013, 257: 2737.
[69] Long E C. Acc. Chem. Res., 1999, 32: 837.
[70] Liang Q, Ananias D C, Long E C. J. Am. Chem. Soc., 1998, 120: 248.
[71] Ngyen H, Orlamuender M, Pretzel D, Agricola I, Sternberg U, Reissmann S. J. Pept. Sci., 2008, 14(9): 1010.
[72] Liu C C, Mack A V, Tsao M L, Mills J H, Lee H S, Choe H, Farzan M, Schultz P G, Smider V V. Proc. Natl. Acad. Sci. U.S.A., 2008, 105: 17688.
[73] Liu C C, Mack A V, Brustad E M, Mills J H, Groff D, Smider V V, Schultz P G. J. Am. Chem. Soc., 2009, 131: 9616.
[74] Xie J, Liu W, Schultz P G. Angew. Chem. Int. Ed., 2007, 46: 9239.
[75] Day J W, Kim C H, Smider V V, Schultz P G. Bioorg. Med. Chem. Lett., 2013, 23: 2598.
[76] Czarnik A W. ACS Symposium Series 538. Washinghton, DC: Czarnik A W. 1993. Chap. 1.
[77] Ghosh P, Bharadwaj P K, Mandal S, Ghosh S. J. Am. Chem. Soc., 1996, 118: 1553.
[78] Vazquez M E, Rothman D M, Imperiali B. Org. Biomol. Chem., 2004, 2: 1965.
[79] Ngu-Schwemlein M, Butko P, Cook B, Whigham T J. Peptide Res., 2006, 66(s1): 72.
[80] Ngu-Schwemlein M, Gilbert W, Askew K, Schwemlein S. Bioorg. Med. Chem., 2008, 16: 5778.
[81] Steele R A, Opella S J. Biochemistry, 1997, 36: 6885.
[82] Banci L, Bertini I, Ciofi-Baffoni S, Finney L A, Outten E. O'Halloran T V. J. Mol. Biol., 2002, 323: 883.
[83] Veglia G, Porcelli F, DeSilva T, Prantner A, Opella S J. J. Am. Chem. Soc., 2000, 122: 2389.
[84] Urvoas A, Moutiez M, Estienne C, Couprie J, Mintz E, Le Clainche L. Eur. J. Biochem., 2004, 271: 993.
[85] Pufahl R A, Singer C P, Peariso K L, Lin S J, Schmidt P J, Fahrni C J, Culotta V C, Penner-Hahn J E, O'Halloran T V. Science, 1997, 278: 853.
[86] Hou Z, Mitra B. J. Biol. Chem., 2003, 278: 28455.
[87] Sénèque O, Crouzy S, Boturyn D, Dumy P, Ferrand M, Delangle P. Chem. Commun., 2004, 769.
[88] Pujol A M, Cuillel M, Renaudet O, Lebrun C, Charbonnier P, Cassio D, Gateau C, Dumy P, Mintz E, Delangle P. J. Am. Chem. Soc., 2011, 133: 286.
[89] Wu J, Nantz M H, Zern M A. Front. Biosci., 2002, 7: 717.
[90] Lee Y C, Lee R T. Acc. Chem. Res., 1995, 28: 321.
[91] Caravan P. Chem. Soc. Rev., 2006, 35: 512.
[92] Zhang S R, Merritt M, Woessner D E, Lenkinski R E, Sherry A D. Acc. Chem. Res., 2003, 36: 783.
[93] Bünzli J C, Piguet C. Chem. Soc. Rev., 2005, 34: 1048.
[94] Bünzli J C. Acc. Chem. Res., 2006, 39: 53.
[95] MacManus J P, Hogue C W, Marsden B J, Sikorska M, Szabo A G. J. Biol. Chem., 1990, 265: 10358.
[96] Hogue C W, MacManus J P, Banville D, Szabo A G. J. Biol. Chem., 1992, 267: 13340.
[97] Kovacic R T, Welch J T, Franklin S J. J. Am. Chem. Soc., 2003, 125: 6656.
[98] Caravan P, Greenwood J M, Welch J T, Franklin S J. Chem.Commun., 2003, 2574.
[99] Nitz M, Sherawat M, Franz K J, Peisach E, Allen K N, Imperiali B. Angew. Chem. Int. Ed., 2004, 43: 3682.
[100] Whnert J, Franz K J, Nitz M, Imperiali B, Schwalbe H. J. Am. Chem. Soc., 2003, 125: 13338.
[101] Barthelmes K, Reynolds A M, Peisach E, Jonker H R A, De Nunzio N J, Allen K N, Imperiali B, Schwalbe H. J. Am. Chem. Soc., 2011, 133: 808.
[102] Nitz M, Franz K J, Maglathlin R L, Imperiali B. ChemBioChem, 2003, 4: 272.
[103] Bonnet C S, Fries P H, Crouzy S, Sénèque O, Cisnetti F, Boturyn D, Dumy P, Delangle P. Chem. Eur. J., 2009, 15: 7083.
[104] LeClainche L, Plancque G, Amekraz B, Moulin C, Pradines-Lecomte C, Peltier G, Vita C. J. Biol. Inorg. Chem., 2003, 8: 334.
[105] Fukuzumi T, Ju L, Bode J W. Org. Biomol. Chem., 2012, 10: 5837.
[106] Fang G M, Li Y M, Shen F, Huang Y C, Li J B, Lin Y, Cui H K, Liu L. Angew. Chem. Int. Ed., 2011, 50: 7645.
[107] Tam J P, Wong C T. J. Biol. Chem., 2012, 287: 27020.
[108] Cui H K, Guo Y, He Y, Wang F L, Chang H N, Wang Y J, Wu F M, Tian C L, Liu L. Angew. Chem. Int. Ed., 2013, 52: 9558.
[109] Wong C T T, Lam H Y, Song T, Chen G H, Li X C. Angew. Chem. Int. Ed. 2013, 52: 10212.
[110] Crich D, Sharma I. Angew. Chem. Int. Ed., 2009, 48: 7591.

[1] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[2] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[3] Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu. Flexible Sensors Based on Electrohydrodynamic Jet Printing [J]. Progress in Chemistry, 2022, 34(9): 1982-1995.
[4] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[5] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[6] Lujie Fan, Li Chen, Yin He, Hao Liu. Flexible Pressure/Strain Sensors Based on 3D Conductive Materials [J]. Progress in Chemistry, 2021, 33(5): 767-778.
[7] Yunxue Wu, Hengyi Zhang, Yu Liu. Application of Azobenzene Derivative Probes in Hypoxia Cell Imaging [J]. Progress in Chemistry, 2021, 33(3): 331-340.
[8] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[9] Jinke Wu, Jianjun Wang, Lixing Dai, Donghao Sun, Jiajia Chen. Metal Coordination Polyurethanes [J]. Progress in Chemistry, 2021, 33(12): 2188-2202.
[10] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[11] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[12] Yunxue Xu, Renfu Liu, Kun xu, Zhifei Dai. Fluorescent Probes for Intraoperative Navigation [J]. Progress in Chemistry, 2021, 33(1): 52-65.
[13] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.
[14] Shiying Yang, Yichao Xue, Manqian Wang. Complexed Heavy Metal Wastewater Treatment: Decomplexation Mechanisms Based on Advanced Oxidation Processes [J]. Progress in Chemistry, 2019, 31(8): 1187-1198.
[15] Yuanming Tan, Hao Meng, Xia Zhang. Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes [J]. Progress in Chemistry, 2019, 31(7): 980-995.