中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (11): 1665-1678 DOI: 10.7536/PC150401 Previous Articles   Next Articles

• Review and comments •

Preparation of Functional Carbon-Based Materials for Removal of Heavy Metals from Aqueous Solution

Liu Yu, Fu Ruiqi, Lou Zimo, Fang Wenzhe, Wang Zhuoxing, Xu Xinhua*   

  1. Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21477108, 21277119).
PDF ( 2225 ) Cited
Export

EndNote

Ris

BibTeX

Heavy metals pollution has become an environmental and public health concern all over the world, especially in China. Activated carbon, carbon nano-tubes and graphene are used to remove heavy metal ions from aqueous solutions due to their large surface area, high adsorption capacity and environmentally benign nature. Whereas, carbon-based materials assembled on functional groups possess excellent adsorption capacity for metal ions. In this study, the modification methods of activated carbon, carbon nano-tubes, graphene and biochar are reviewed, mainly including thiol-functionalization and amino-functionalization. The applications of functional carbon-based materials for heavy metal ions removal are also summarized. The removal efficiency and influential factors of heavy metal ions removal by different functionalized carbon-based materials are discussed in detail. In addition, the outlook and suggestion of heavy metal ions removal by functionalized carbon-based materials are presented.

Contents
1 Introduction
2 Preparation of functional carbon-based materials for removal of heavy metals from aqueous solution
2.1 Functional activated carbon
2.2 Functional graphene
2.3 Functional carbon nanotubes
2.4 Functional biochar
3 The influencing factors of heavy metal removal from water by functional carbon-based materials
3.1 The properties of composite materials
3.2 Environmental conditions
4 The application of functional carbon-based materials
5 Conclusion and outlook

CLC Number: 

[1] Fu F, Wang Q. J. Environ. Manage., 2011, 92(3):407.
[2] 邹照华(Zhou Z H), 何素芳(He S F), 韩彩芸(Han C Y), 张六一(Zhang L Y), 罗永明(Luo Y M). 水处理技术(Technology of Water Treatment), 2010, 36(6):17.
[3] Ngah W S W, Hanafiah M. Bioresource Technol., 2008, 99(10):3935.
[4] 李灵香玉(Li L X Y), 吴坚阳(Wu J Y), 田光明(Tian G M),许振岚(Xu Z L).农机化研究(Journal of Agricultural Mechanization Research), 2009, 31(9):209.
[5] 杨丰科(Yang F K), 王守满(Wang S M), 姜萍(Jinag P), 李思东(Li S D). 化学与生物工程(Chemistry & Bioengineering), 2009, 26(6):1.
[6] Sun Y Y, Yue Q Y, Mao Y P, Gao B Y, Gao Y, Huang L H. J. Hazard. Mater., 2014, 265:191.
[7] Rodriguez-Reinoso F. Int. J. Urol., 2014, 21(S2):A6.
[8] Jusoh A, Shiung L S, Noor M.Desalination, 2007, 206(1/3):9.
[9] Seco A, Marzal P, Gabaldón C. J. Chem. Tech. Biotechnol., 1997, 68:23.
[10] Park H S, Koduru J R, Choo K H, Lee B. J. Hazard. Mater., 2015, 286:315.
[11] Han Z, Sani B, Mrozik W, Obst M, Beckingham B, Karapanagioti H K, Werner D.Water Res., 2015, 70(1):394.
[12] Yantasee W, Lin Y, Fryxell G E, Alford K L, Busche B J, Johnson C D. Ind. Eng. Chem. Res., 2004, 43(11):2759.
[13] Monser L, Adhoum N. Sep. Purif. Technol., 2002, 26(2):137.
[14] Zhu J H, Yang J, Deng B L. J. Hazard. Mater., 2009, 166(2/3):866.
[15] Zhang L,Chang X J, Li Z H, He Q. J. Mol. Struct., 2010, 964(1/3):58.
[16] Peñas-Sanjuán A, López-Garzón R, López-Garzón J, Pérez-Mendoza M, Melguizo M. Carbon, 2012, 50(6):2350.
[17] Sharififard H, Soleimani M, Ashtiani F Z. J.Taiwan Inst. Chem. E., 2012, 43(5):696.
[18] Kasnejad M H, Esfandiari A, Kaghazchi T, Asasian N. J. Taiwan Inst. Chem. E., 2012, 43(5):736.
[19] Mahaninia M H, Rahimian P, Kaghazchi T. Chinese J. Chem. Eng., 2015, 23(1):50.
[20] Ismaiel A A, Aroua M K, Yusoff R. Chem. Eng. J., 2013, 225:306.
[21] Li Z C, Wu L Y, Liu H J, Lan H C, Qu J H. Chem. Eng. J., 2013, 228:925.
[22] Kim E, Seyfferth A L, Fendorf S, Luthy R G. Water Res., 2011, 45(2):453.
[23] Tian H, Hu Z, He Q, Liu X L, Zhang L, Chang X J. Spectrochim. Acta A, 2012, 93:335.
[24] Jin G P, Zhu X H, Li C Y, Fu Y, Guan J X,Wu X P. J. Environ. Chem. Engin., 2013, 1(4):736.
[25] Chen W F, Pan L, Chen L F, Yu Z, Wang Q, Yan C C. Appl. Surf. Sci., 2014, 309:38.
[26] Starvin A M, Rao T P. J. Hazard. Mater., 2004, 113(1/3):75.
[27] Ensafi A A, Shiraz A Z. J. Hazard. Mater., 2008, 150(3):554.
[28] Mallakpour S, Abdolmaleki A, Borandeh S. Appl. Surf. Sci., 2014, 307:533.
[29] Wang H, Liu Y G, Zeng G M, Hu X J, Hu X, Li T T, Li H Y, Wang Y Q, Jiang L H. Carbohyd. Polym., 2014, 113:166.
[30] Pan Y Z, Bao H Q, Li L. ACS Appl. Mater. Inter., 2011, 3(12):4819.
[31] Luo S L, Xu X L, Zhou G Y, Liu C B, Tang Y H, Liu Y T. J. Hazard. Mater., 2014, 274:145.
[32] Zhang C Y, Shan C, Jin Y J, Tong M P. Chem. Eng. J., 2014, 254:340.
[33] Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Nat. Nanotechnol., 2008, 3(2):101.
[34] Guo X Y, Du B, Wei Q, Yang J, Hu L H, Yan L G, Xu W Y. J. Hazard. Mater., 2014, 278:211.
[35] Ma H L, Zhang Y, Hu Q H, Yan D, Yu Z Z, Zhai M. J. Mater. Chem., 2012, 22(13):5914.
[36] Dong Z H, Zhang F, Wang D, Liu X, Jin J. J.Solid State Chem., 2014.
[37] Xu Z W, Zhang Y Y, Qian X M, Shi J, Chen L, Li B D, Niu J R, Liu L S. Appl. Surf. Sci., 2014, 316:308.
[38] Yang L, Li Z C, Nie G D, Zhang Z, Lu X F, Wang C. Appl. Surf. Sci., 2014, 307:601.
[39] Li R J, Liu L F, Yang F L. Chem. Eng. J., 2013, 229:460.
[40] Chandra V, Kaim K S. Chem. Commun., 2011, 47(13):3942.
[41] Wang H, Yuan X H, Wu Y, Chen X H, Leng L, Wang H, Li H, Zeng G M. Chem. Eng. J., 2015, 262:597.
[42] Wu S B, Zhang K S, Wang X L, Jia Y, Sun B, Luo T, Meng F L, Jin Z, Lin D Y, Shen W, Kong L T, Liu J H. Chem. Eng. J., 2015, 262:1292.
[43] Hu X J, Liu Y G, Wang H, Chen A W, Zeng G M, Liu S M, Guo Y M, Hu X, Li T T, Wang Y Q, Zhou L, Liu S H. Sep. Purif. Technol., 2013, 108:189.
[44] Deng X J, Lü L L, Li H W, Luo F. J. Hazard. Mater., 2010, 183(1/3):923.
[45] Behbahani M, Bagheri A, Amini M M, Sadeghi O, Salarian M, Najafi F, Taghizadeh M. Food Chem., 2013, 141(1):48.
[46] Lemos V A, Teixeira L S G, Bezerra M D A, Costa A C S, Castro J T, Cardoso L A M, Jesus D S, Santos E S, Baliza P X,Santos L N. Appl. Spectrosc. Rev., 2008, 43:303.
[47] Grobert N. Mater. Today., 2007, 10(1):28.
[48] Pyrzynska K.Trac-Trend. Anal. Chem., 2010, 29(7):718.
[49] Vainrot N, Eisen M S, Semiat R. Mrs Bull., 2008, 33(1):16.
[50] Liu Y, Li Y, Wu Z Q, Yan X P. Talanta, 2009, 79(5):1464.
[51] Sitko R,Zawisza B,Malicka E.Trac-Trend. Anal. Chem., 2012, 37:22.
[52] Vukovi D? G D, Marinkovi D? A D, ?oli D? M, Risti D? M D, Aleksi D? R, Peri D?-Gruji D? A A, Uskokovi D? P S. Chem. Eng. J., 2010, 157(1):238.
[53] Yang W J, Ding P, Zhou L, Yu J G, Chen X Q, Jiao F P. Appl. Surf. Sci., 2013, 282:38.
[54] Vukovi D? G D, Marinkovi D? A D, škapin S D, Risti D? M D, Aleksi D? R, Peri D?-Gruji D? A A, Uskokovi D? P S. Chem. Eng. J., 2011, 173(3):855.
[55] Vukovi D? G, Marinkovi D? A, Obradovi D? M, Radmilovi D? V, D?oli D? M, Aleksi D? R, Uskokovi D? P S. Appl. Surf. Sci., 2009, 255(18):8067.
[56] Felten A, Bittencourt C, Pireaux J J, van Lier G, Charlier J C. J. Appl. Phys., 2005, 98(7):74308.
[57] Wang Y, Gu Z X, Yang J J, Liao J L, Yang Y Y, Liu N, Tang J. Appl. Surf. Sci., 2014, 320:10.
[58] Zhang C, Sui J H, Li J, Tang Y L, Cai W. Chem. Eng. J., 2012, 210:45.
[59] Bandaru N M, Reta N, Dalal H, Ellis A V, Shapter J, Voelcker N H. J. Hazard. Mater., 2013, 261:534.
[60] Wang J P, Ma X X, Fang G Z, Pan M F, Ye X K, Wang S. J. Hazard. Mater., 2011, 186(2/3):1985.
[61] Hadavifar M, Bahramifar N, Younesi H, Li Q. Chem. Eng. J., 2014, 237:217.
[62] Liu Y, Li Y, Yan X P. Adv. Funct. Mater., 2008, 18(10):1536.
[63] Shao D D, Jiang Z Q, Wang X K, Li J X, Meng Y D. J. Phys. Chem. B, 2009, 113(4):860.
[64] Ahmad M, Rajapaksha A U, Lim J E, Zhang M, Bolan N, Mohan D, Vithanage M, Lee S S, Ok Y S. Chemosphere, 2014, 99:19.
[65] Xue Y W, Gao B, Yao Y, Inyang M D, Zhang M, Zimmerman A R, Ro K S. Chem. Eng. J., 2012, 200/202:673.
[66] Chowdhury Z Z, Hasan M R, Hamid S B, Samsudin E M, Mohd S, Zain, Khalid K. RSC Adv., 2015, 5:6345.
[67] Li Y C, Shao J G, Wang X H, Deng Y, Yang H P, Chen H P. Energ. Fuel, 2014, 28(8):5119.
[68] Xu X Y, Cao X D, Zhao L, Zhou H J,Luo Q S. RSC Adv., 2014, 4:44930.
[69] Wang S S, Gao B, Zimmerman A R, Li Y C, Ma L N, Harris W G, Migliaccio K W. Bioresource Technol., 2015, 175:391.
[70] Yang G, Jiang H. Water Res., 2014, 48:396.
[71] Zhou Y M, Gao B, Zimmerman A R, Fang J, Sun Y N, Cao X D. Chem. Eng. J., 2013, 231:512.
[72] Amuda O S, Giwa A A, Bello I A. Biochem. Eng. J., 2007, 36(2):174.
[73] Ma Y, Liu W J, Zhang N, Li Y S, Jiang H, Sheng G P. Bioresource Technol., 2014, 169:403.
[74] Sun Y Y, Yue Q Y, Gao B Y, Gao Y, Li Q, Wang Y. Chem. Eng. J., 2013, 217:240.
[75] Ghasemi M, Zeinaly K M, Bavand A A, Ghasemi N, Javadian H, Fattahi M. Powder Technol.2015,274:362.
[76] 徐啸(Xu X), 刘伯羽(Liu B Y), 邓正栋(Deng Z D).能源环境保护(Energy Environmental Protection), 2010, 24(2):48.
[77] 刘娟(Liu J). 华南理工大学硕士论文(Master Dissertation of South China University of Technology), 2011.
[78] 林雪原(Lin X Y), 荆延德(Jing Y D), 巩晨(Gong C), 何振立(He Z L). 环境污染与防治(Environmental Pollution and Control), 2014,(05):83.
[79] Lu Q, Sorial G A. Chemosphere, 2004, 55(5):671.
[80] Liu X Y, Zhang W B, Zhang Z Y. Mater. Lett., 2014, 116:304.
[81] Wang S Y, Tsai M H, Lo S F, Tsai M J. Bioresource Technol., 2008, 99(15):7027.
[82] 杨熙(Yang X). 华中师范大学硕士论文(Master Dissertation of Central China Normal University), 2012.
[83] 刘莹莹(Liu Y Y).南京农业大学硕士论文(Master Dissertation of Nanjing Agricultural University), 2012.
[84] 刘莹莹(Liu Y Y), 秦海芝(Qin H Z), 李恋卿(Li L Q), 潘根兴(Pan G X), 张旭辉(Zhang X H), 郑金伟(Zhang J W), 韩晓君(Han X J), 俞欣(Yu X). 生态环境学报(Ecology and Environmental Sciences), 2012,(01):146.
[85] 谭丽莎(Tan L S), 孙明洋(Sun M Y), 胡运俊(Hu Y J), 程丽华(Cheng L H), 徐新华(Xu X H). 化学进展(Progress in Chemistry), 2013,(12):2147.
[86] Alijani H, Beyki M H, Shariatinia Z, Bayat M, Shemirani F.Chem. Eng. J., 2014, 253:456.
[87] Hadavifar M, Bahramifar N, Younesi H, Li Q. Chem. Eng. J., 2014, 237:217.
[88] Auta M,Hameed B H.Colloids and Surfaces B:Biointerfaces.2013, 105:199.
[89] de Oliveira F M, Somera B F, Corazza M Z, Yabe M J S, Segatelli M G, Ribeiro E S, Lima  C, Dias S L P, Tarley C R T.Talanta, 2011, 85(5):2417.
[90] Behbahani M,Bagheri A,Amini M M,Sadeghi O,Salarian M,Najafi F, Taghizadeh M. Food Chem., 2013, 141(1):48.
[1] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[2] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[3] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[4] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[5] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[6] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[7] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[8] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[9] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[10] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[11] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[12] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[13] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[14] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[15] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.