中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (12): 2119-2130 DOI: 10.7536/PC130542 Previous Articles   Next Articles

Special Issue: 酶化学

• Review •

Applications of DNAzymes in the Detection of Heavy Metal Ions

Li Hui, Kong Deming*   

  1. Research Centre for Analytical Sciences, Department of Chemistry, Nankai University, Tianjin 300071, China
  • Received: Revised: Online: Published:
PDF ( 1074 ) Cited
Export

EndNote

Ris

BibTeX

DNAzymes, obtained by in vitro screening technique (systematic evolution of ligands by exponential enrichment, SELEX technique), are single-stranded DNAs with enzymatic activities. Compared to natural enzymes, DNAzymes are superior in terms of stability, ease of synthesis, modification and storage. As for some DNAzymes, they need specific metal ions as cofactors, and their enzymatic activities are highly dependent on the metal ion concentration. Their applications in metal ions detection have attracted more and more attention in these years. In this review, we summarized the researches on DNAzyme-based metal ion sensors. The focus is on the design of fluorescent sensors and colorimetric sensors.

Contents
1 Introduction
2 Pb2+ sensor
2.1 Pb2+ DNAzyme
2.2 DNAzyme-based fluorescent Pb2+ sensor
2.3 DNAzyme-based colorimetric Pb2+ sensor
3 Cu2+ sensor
3.1 Cu2+ DNAzyme
3.2 DNAzyme-based fluorescent Cu2+ sensor
3.3 DNAzyme-based colorimetric Cu2+ sensor
4 UO22+ sensor

4.1 DNAzyme-based fluorescent UO22+ sensor
4.2 DNAzyme-based colorimetric UO22+ sensor
5 Hg2+ sensor
5.1 DNAzyme-based fluorescent Hg2+ sensor
5.2 DNAzyme-based colorimetric Hg2+ sensor
6 Outlook

CLC Number: 

[1] Bannon D I, Murashchik C, Zapf C R, Farfel M R, Chisolm J J Jr. Clin. Chem., 1994, 40: 1730—1734
[2] Kumar B N, Ramana D K, Harinath Y, Seshaiah K, Wang M C. J. Agric. Food Chem., 2011, 59: 11352—11358
[3] Peng X J, Du J J, Fan J L, Wang J Y, Wu Y K, Zhao J Z, Sun S G, Xun T. J. Am. Chem. Soc., 2007, 129: 1500—1501
[4] Wegner S V, Okesli A, Chen P, He C A. J. Am. Chem. Soc., 2007, 129: 3474—3475
[5] Lee M H, Cho B K, Yoon J Y, Kim J S. Org. Lett., 2007, 9: 4515—4518
[6] Miyake Y, Togashi H, Tashiro M, Yamaguchi H, Oda S, Kudo M, Sawa R, Fujimoto T, Machinami T, Ono A. J. Am. Chem. Soc., 2006, 128: 2172—2173
[7] Vester B, Wengel J. Biochemistry, 2004, 43: 13233—13241
[8] Yang H, Zhou Z G, Huang K W, Yu M X, Li F Y, Yi T, Huang C H. Org. Lett., 2007, 9: 4729—4732
[9] Bonnet C S, Tóth E. Future Med. Chem., 2010, 2: 367—384
[10] Cech T R, Zaug A J, Graowski P J. Cell, 1981, 27: 487-496
[11] Breaker R R. Curr. Opin. Chem. Biol., 1997, l: 26—31
[12] Santoro S W, Joyce G F. Proc. Natl. Acad. Sci. U. S. A., 1997, 94: 4262—4266
[13] Schlosser K, Li Y F. ChemBioChem, 2010, 11: 866—879
[14] Palchetti I, Mascimi M. Analyst, 2008, 133: 846—854
[15] Chow C S, Bogdan F M. Chem. Rev., 1997, 97: 1489—1513
[16] Walt D R. Science, 2000, 287: 451—452
[17] Taylor L C, Walt D R. Anal. Biochem., 2000, 278: 132—142
[18] Zhu J B, Zhang L B, Li T, Dong S J, Wang E K. Adv. Mater., 2013, 25: 2440—2444
[19] Fu T, Zhao X H, Bai H R, Zhao Z L, Hu R, Kong R M, Zhang X B, Tan W H, Yu R Q. Chem. Commun., 2013, 49: 6644—6646
[20] Sun H J, Li X H, Li Y C, Fan L Z, Kraatz H B. Analyst, 2013, 138: 856—862
[21] Ye S J, Guo Y Y, Xiao J, Zhang S S. Chem. Commun., 2013, 49: 3643—3645
[22] Deng S Y, Cheng L X, Lei J P, Cheng Y, Huang Y, Ju H X. Nanoscale, 2013, 5: 5435—5441
[23] Kaneko N, Horii K, Kato S, Akitomi J, Waga I. Anal. Chem., 2013, 85: 5430—5435
[24] Liu X, Tang Y, Wang L. Adv. Mater., 2007, 19: 1471—1474
[25] Li J, Lu Y. J. Am. Chem. Soc., 2000, 122: 10466—10467
[26] Liu J W, Lu Y. Ana1. Chem., 2003, 75: 6666—6672
[27] Zhang X B, Wang Z D, Xing H, Xiang Y, Lu Y. Anal. Chem., 2010, 82: 5005—5011
[28] Li H, Zhang Q, Cai Y, Kong D M. Biosens. Bioelectron., 2012, 34: 159—164
[29] Liu J W, Lu Y. J. Am. Chem. Soc., 2003, 125: 6642—6643
[30] Liu J W, Lu Y. J. Am. Chem. Soc., 2004, 126: 12298—12305
[31] Liu J W, Lu Y. J. Am. Chem. Soc., 2005, 127: 12677—12683
[32] Liu J W, Lu Y. Org. Biomol. Chem., 2006, 4: 3435—3441
[33] Zhao W, Lam J C, Chiuman W, Brook M A, Li Y. Small, 2008, 4: 810—816
[34] Wei H, Li B L, Li J, Dong S J, Wang E K. Nanotechnology, 2008, 19: art. no. 115709
[35] Wang Z, Lee J H, Lu Y. Adv. Mater., 2008, 20: 3263—3267
[36] Vummidi B R, Alzeer J, Luedtke N W. ChemBioChem, 2013, 14: 540—558
[37] Rizzo A, Salvati E, Biroccio A. Methods, 2012, 57: 93—99
[38] Travascio P, Li Y, Sen D. Chem. Biol., 1998, 5: 505—517
[39] Travascio P, Bennet A J, Wang D Y, Sen D. Chem. Biol., 1999, 6: 779—787
[40] Elbaz J, Shlyahovsky B, Willner I. Chem. Commun., 2008, 1569—1571
[41] Zhang Q, Cai Y, Li H, Kong D M. Biosens. Bioelectron., 2012, 38: 331—336
[42] Carmi N, Breaker R R. Bioorg. Med. Chem., 2001, 9: 2589—2600
[43] Carmi N, Balkhi H R, Breaker R R. Proc. Natl. Acad. Sci. U. S. A., 1998, 95: 2233—2237
[44] Carmi N, Shultz L A, Breaker R R. Chem. Biol., 1996, 3: 1039—1046
[45] Liu J W, Lu Y. J. Am. Chem. Soc., 2007, 129: 9838—9839
[46] Li H, Huang X X, Kong D M, Shen H X, Liu Y. Biosens. Bioelectron., 2013, 42: 225—228
[47] Yin B C, Ye B C, Tan W H, Wang H, Xie C C. J. Am. Chem. Soc., 2009, 131: 14624—14625
[48] Liu J, Brown A K, Meng X, Cropek D M, Istok J D, Watson D B, Lu Y. Proc. Natl. Acad. Sci. U. S. A., 2007, 104: 2056—2061
[49] Wu P W, Hwang K, Lan T, Lu Y. J. Am. Chem. Soc., 2013, 135: 5254—5257
[50] Lee J H, Wang Z, Liu J W, Lu Y. J. Am. Chem. Soc., 2008, 130: 14217—14226
[51] Vannela R, Adriaens P. Environ. Eng. Sci., 2007, 24: 73—84
[52] Hollenstein M, Hipolito C, Lam C, Dietrich D, Perrin D M. Angew. Chem. Int. Ed., 2008, 47: 4346—4350
[53] Liu J, Lu Y. Angew. Chem. Int. Ed., 2007, 46: 7587—7590
[54] Santoro S W, Joyce G F, Barbas C F. J. Am. Chem. Soc., 2000, 122: 2433—2439
[55] Kim H, Liu J W, Lu Y. J. Am. Chem. Soc., 2007, 129: 6896—6902
[56] Shimron S, Elbaz J, Henning A, Willner I. Chem. Commun., 2010, 46: 3250—3252
[57] Mei S H J, Liu Z J, Brennan J D, Li Y F. J. Am. Chem. Soc., 2003, 125: 412—420
[58] Bruesehoff P J, Li J, Anfustine A J Ⅲ, Lu Y. Comb. Chem. High Throughput Screen., 2002, 5: 327—335
[59] Peracchi A J. J. Biol. Chem., 2000, 275: 11693—11697

[1] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[2] Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu. Flexible Sensors Based on Electrohydrodynamic Jet Printing [J]. Progress in Chemistry, 2022, 34(9): 1982-1995.
[3] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[4] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[5] Lujie Fan, Li Chen, Yin He, Hao Liu. Flexible Pressure/Strain Sensors Based on 3D Conductive Materials [J]. Progress in Chemistry, 2021, 33(5): 767-778.
[6] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[7] Jinke Wu, Jianjun Wang, Lixing Dai, Donghao Sun, Jiajia Chen. Metal Coordination Polyurethanes [J]. Progress in Chemistry, 2021, 33(12): 2188-2202.
[8] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[9] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[10] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.
[11] Yuanming Tan, Hao Meng, Xia Zhang. Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes [J]. Progress in Chemistry, 2019, 31(7): 980-995.
[12] Yaoxu Xiong, Yougen Hu, Pengli Zhu, Rong Sun, Ching-Ping Wong. Fabrication and Application of Flexible Pressure Sensors with Micro/Nano-Structures [J]. Progress in Chemistry, 2019, 31(6): 800-810.
[13] Yanan Zheng, Dan Wang. Structures, Properties, and Applications of Metalloregulatory Proteins [J]. Progress in Chemistry, 2019, 31(10): 1372-1383.
[14] Cheng Chen, Zhiqiang Dong, Haowen Chen, Yang Chen, Zhigang Zhu, Weiheng Shih. Two-Dimensional Photonic Crystals [J]. Progress in Chemistry, 2018, 30(6): 775-784.
[15] Yangyang Zhou, Jian Zhong, Xiaojun Bian, Gang Liu, Liang Li, Juan Yan. Application of Signal Amplification Technology in the Area of Food Safety Detection [J]. Progress in Chemistry, 2018, 30(2/3): 206-224.