中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (6): 809-830 DOI: 10.7536/PC171025 Previous Articles   Next Articles

• Review •

Fluorescent Probes Based on Silicon-Substituted Xanthene Dyes and Their Applications in Bioimaging

Man Du, Baolong Huo, Jiemin Liu*, Mengwen Li, Leqiu Fang, Yunxu Yang*   

  1. Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21575012) and the Natural Science Foundation of Beijing (No.2151003).
PDF ( 1342 ) Cited
Export

EndNote

Ris

BibTeX

During the past several years, fluorescence imaging techniques have provided a powerful technique for studying chemical and biological events and processes in living system in a noninvasive and real time manner in situ with high spatial and temporal resolution. Fluorescence imaging has been becoming a more and more powerful tool in diverse research fields ranging from biology, environmental monitoring, clinical diagnosis, to drug discovery. Recent advances in fluorescence bioimaging have spurred a higher demand for developing new small-molecule fluorescent probes. Fluorescent probes whose excitation and emission wavelengths are in the near-infrared(NIR) region (650~900 nm) are favorable for biological applications due to the low phototoxicity, minimum interference from the background autofluorescence of biomolecules, low light scattering and deep tissue penetration. Recent research has shown that the Si-substituted xanthenes, in which the O atom in xanthenes is replaced by the Si atom, have attracted considerable interest on account of their excellent NIR photophysical properties as well as biocompatible characteristics. Fluorescent probes based on Si-substituted xanthenes or their derivatives in literatures in recent years are summarized. The progress of the application of Si-substituted xanthenes in metal ions, pH, small molecules, enzymes, and biological imaging are expounded elaborately.
Contents
1 Introduction
2 The synthesis of SiRs
2.1 The synthesis of TMDHS
2.2 The synthesis of SiRs
3 Fluorescent probes for cations
3.1 Fluorescent probes for Zn2+
3.2 Fluorescent probes for Ca2+
3.3 Fluorescent probes for Cu2+
3.4 Fluorescent probes for Hg2+
4 Fluorescent probes for pH
5 Fluorescent probes for molecules
5.1 Fluorescent probes for HCHO
5.2 Fluorescent probes for HClO and ROS
6 Fluorescent probes for enzymes
6.1 Fluorescent probes for β-galactosidase
6.2 Fluorescent probes for MMPs
6.3 Fluorescent probes for caspase and LAP
6.4 Fluorescent probes for Btk
7 Fluorescent probes for gases
7.1 Fluorescent probes for O2
7.2 Fluorescent probes for 1O2
7.3 Fluorescent probes for NO
8 Applications of biological imaging
8.1 Imaging of cellular proteins
8.2 Imaging of the Golgi in live cells
8.3 Imaging of GFP cells
8.4 Imaging of tumor cells
8.5 Imaging of mouse transplantation tumor
8.6 Imaging of neurons
8.7 Imaging of bacterial peptidoglycan
8.8 Imaging of cytoskeletal filaments
8.9 DNA stains
8.10 Imaging of mitochondria in myeloma cells
9 Conclusion and outlook

CLC Number: 

[1] Summerield S, Miller J N. Anal. Proc., 1993, 30:131.
[2] Patony G, Antoine M D. Anal. Chem., 1991, 63:321A.
[3] Imasaka T, Tsukamoto A, Ishibashi N. Anal. Chem., 1989, 61:2285.
[4] Yuan L, Lin W, Zheng K, He L, Huang W. Chem. Soc. Rev., 2013, 42:622.
[5] Morris M C. ACS Med. Chem. Lett., 2014, 5:99.
[6] Kobayashi H, Ogawa M, Alford R, Choyke P L, Urano Y. Chem. Rev., 2010, 110:2620.
[7] Sun Y Q, Liu J, Lv X, Liu Y, Zhao Y, Guo W. Angew. Chem. Int. Edit., 2012, 51:7634.
[8] Frangioni J V. Curr. Opin. Chem. Biol., 2003, 7:626.
[9] Tsien R Y, Harootunian A T. Cell Calcium, 1990, 11:93.
[10] Minta A, Kao J P, Tsien R Y. J. Biol. Chem., 1989, 264:8171.
[11] Keereweer S, Kerrebijn J D, von Driel P B, Xie B, Kaijzel E L, Snoeks T J, Que I, Hutteman M, van der Vorst J R, Vahrmeijer A L, van de velde C J, Baatenburg de Jong R J, Löwik C W. Mol. Imaging Biol., 2011, 13:199.
[12] Vendrell M, Zhai D, Er J C, Chang Y T. Chem. Rev., 2012, 112:4391.
[13] Terai T, Nagano T. Curr. Opin. Chem. Biol., 2008, 12:515.
[14] Chan J, Dodani S C, Chang C J. Nat. Chem., 2012, 4:973.
[15] Fu M, Xiao Y, Qian X, Zhao D, Xu Y. Chem. Commun., 2008, (15):1780.
[16] Yamaguchi S, Tamao K. J. Chem. Soc. Dalton Trans., 1998, (22):3693.
[17] Koide Y, Urano Y, Hanaoka K, Terai T, Nagano T. ACS Chem. Biol., 2011, 6:600.
[18] Egawa T, Koide Y, Hanaoka K, Komatsu T, Terai T, Nagano T. Chem. Commun., 2011, 47:4162.
[19] Wang B G, Chai X Y, Zhu W W, Wang T, Wu Q Y. Chem. Commun., 2014, 50:14374.
[20] Grimm J B, Brown T A, Tkachuk A N, Lavis L D. ACS Cent. Sci., 2017, 3:975.
[21] Prodi L, Bolletta F, Montalti M, Zaccheroni N. Coord. Chem. Rev., 2000, 205:59.
[22] Silva A P, Gunaratne H Q, Gunnlaugsson T, Huxley A J, McCoy C P, Rademacher J T, Rice T E. Chem. Rev., 1997, 97:1515.
[23] Hirano T, Kikuchi K, Urano Y, Higuchi T, Nagano T. J. Am. Chem. Soc., 2000, 122:12399.
[24] Clapham D E. Cell, 2007, 131:1047.
[25] Egawa T, Hanaoka K, Koide Y, Ujita S, Takahashi N, Ikegaya Y, Matsuki N, Terai T, Ueno T, Komatsu T, Nagano T. J. Am. Chem. Soc., 2011, 133:14157.
[26] Wang B G, Cui X Y, Zhang Z Q, Chai X Y, Ding H, Wu Q Y, Guo Z W, Wang T. Org. Biomol. Chem., 2016, 14:6720.
[27] Wang A Z, Yang Y X, Yu F F, Xue L W, Hu B W, Fan W P, Dong Y J. Talanta, 2015, 132:864.
[28] Wang T, Zhao Q J, Hu H G, Yu S C, Liu X, Liu L, Wu Q Y. Chem. Commun., 2012, 48:8781.
[29] Tao J, Wan X C, Chen X Q, Li T C, Diao Q P, Yu H F, Wang T. Dyes and Pigments, 2017, 137:601.
[30] Zhu W W, Chai X Y, Wang B G, Zou Y, Wang T, Meng Q G, Wu Q Y. Chem. Commun., 2015, 51:9608.
[31] Hirabayashi K, Hanaoka K, Takayanagi T, Toki Y, Egawa T, Kamiya M, Komatsu T, Ueno T, Terai T, Yoshida K, Uchiyama M, Nagano T, Urano Y. Anal. Chem., 2015, 87:9061.
[32] Brewer T F, Chang C J. J. Am. Chem. Soc., 2015, 137:10886.
[33] Roth A, Li H, Anorma C, Chan J. J. Am. Chem. Soc., 2015, 137:10890.
[34] Koide Y, Urano Y, Hanaoka K, Terai T, Nagano T. J. Am. Chem. Soc., 2011, 133:5680.
[35] Quinn A B, Narsimha S, Daniel J D, Colleen N S, Matthew E M. J. Am. Chem. Soc., 2013, 135:13365
[36] Zhang H X, Liu J, Liu C L, Yu P C, Sun M J, Yan X H, Guo J P, Guo W. Biomaterials, 2017, 133:60.
[37] Myochin T, Hanaoka K, Komatsu T, Terai T, Nagano T. J. Am. Chem. Soc., 2012, 134:13730.
[38] Myochin T, Hanaoka K, Iwaki S, Ueno T, Komatsu T, Terai T, Nagano T, Urano Y. J. Am. Chem. Soc., 2015, 137:4759.
[39] Kushida Y, Hanaoka K, Komatsu T, Terai T, Ueno T, Yoshida K, Uchiyama M, Nagano T. Bioorg. Med. Chem. Lett., 2012, 22:3908.
[40] Kim E, Yang K S, Kohler R H, Dubach J M, Mikula H, Weissleder R. Bioconjugate Chem., 2015, 26:1513.
[41] Piao W, Tsuda S, Tanaka Y, Maeda S, Liu F, Takahashi S, Kushida Y, Komatsu T, Ueno T, Terai T, Nakazawa T, Uchiyama M, Morokuma K, Nagano T, Hanaoka K. Angew. Chem. Int. Edit., 2013, 52:13028.
[42] Kim S, Tachikawa T, Fujitsuka M, Majima T. J. Am. Chem. Soc., 2014, 136:11707.
[43] Wang B G, Yu S C, Chai X Y, Li T J, Wu Q Y, Wang T. Chem. Eur. J., 2016, 22:5649.
[44] Mao Z Q, Jiang H, Song X J, Hu W, Liu Z H. Anal. Chem., 2017, 89:9620.
[45] Lukinavicius G, Umezawa K, Olivier N, Honigmann A, Yang G, Plass T, Mueller V, Reymond L, Correa I R, Luo Z G, Schultz C, Lemke E A, Heppenstall P, Eggeling C, Manley S, Johnsson K. Nat. Chem., 2013, 5:132.
[46] Lukinavicius G, Reymond L, D'este E, Masharina A, Gottfert F, Ta H, Guther A, Fournier M, Rizzo S, Waldmann H, Blaukopf C, Sommer C, Gerlich D W, Arndt H D, Hell S W, Johnsson K. Nat. Methods, 2014, 11:731.
[47] Lukinavicius G, Reymond L, Umezawa K, Sallin O, D'Este E, Göttfert F, Ta H, Hell S W, Urano Y, Johnsson K. J. Am. Chem. Soc., 2016, 138:9365.
[48] Uno S, Kamiya M, Yoshihara T, Sugawara K, Okabe K, Tarhan M C, Fujita H, Funatsu T, Okada Y, Tobita S, Urano Y. Nat. Chem., 2014, 6:681.
[49] Grimm J B, Klein T, Kopek B G, Shtengel G, Hess H F, Sauer M, Lavis L D. Angew. Chem. Int. Edit., 2016, 55:1723.
[50] Erdmann R S, Takakura H, Thompson A D, Riveramolina F, Allgeyer E S, Bewersdorf J, Toomre D, Schepartz A. Angew. Chem. Int. Edit., 2014, 53:10242.
[51] Kim E, Yang K S, Giedt R J, Weissleder R. Chem. Commun., 2014, 50:4504.
[52] Kim S Y, Fujitsuka M, Tohnai N, Tachikawa T, Hisaki I, Miyata M, Majima T. Chem. Commun., 2015, 51:11580.
[53] Kim S Y, Fujitsuka M, Miyata M, Majima T. Phys. Chem. Chem. Phys., 2016, 18:2097.
[54] Shen S X, Yu J R, Lu Y M, Zhang S C, Yi X G, Gao B X. RSC Adv., 2017, 7:10922.
[55] McCann T E, Kosaka N, Koide Y, Mitsunaga M, Choyke P L., Nagano T, Urano Y, Kobayashi H. Bioconjugate Chem., 2011, 22:2531.
[56] Koide Y, Urano Y, Hanaoka K, Piao W, Kusakabe M, Saito N, Terai T, Okabe T, Nagano T. J. Am. Chem. Soc., 2012, 134:5029.
[57] Huang Y L, Walker A S, Miller E W. J. Am. Chem. Soc., 2015, 137:10767.
[58] Shieh P, Siegrist M S, Cullen A J, Bertozzi C R. Proc.Natl.Acad.Sci.U.S.A., 2014, 111:5456.
[59] Butkevich A N, Mitronova G Y, Sidenstein S C, Klocke J L, Kamin D, Meineke D N, D'Este E, Kraemer P T, Danzl J G, Belov V N, Hell S W. Angew. Chem. Int. Ed., 2016, 55:3290.
[60] Lukinavicius G, Blaukopf C, Pershagen E, Schena A, Reymond L, Derivery E, Marcos G G, D'este E, Hell S W, Wolfram G D, Johnsson K. Nat. Commun., 2015, 6:8497.
[61] Pastierik T, Šebej P, Medalova J, Štacko P, Klan P. J. Org. Chem., 2014, 79:3374.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[7] Liqing Li, Minghao Zheng, Dandan Jiang, Shuxin Cao, Kunming Liu, Jinbiao Liu. Colorimetric and Fluorescent Probes Based on the Oxidation of o-Phenylenediamine for the Detection of Bio-Molecules [J]. Progress in Chemistry, 2022, 34(8): 1815-1830.
[8] Yuhang Zhou, Sha Ding, Yong Xia, Yuejun Liu. Fluorescent Probes for Cysteine Detection [J]. Progress in Chemistry, 2022, 34(8): 1831-1862.
[9] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[10] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[11] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[12] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[13] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[14] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[15] Fanyong Yan, Yueyan Zang, Yuyang Zhang, Xiang Li, Ruijie Wang, Zhentong Lu. The Fluorescent Probe for Detecting Glutathione [J]. Progress in Chemistry, 2022, 34(5): 1136-1152.