中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (07): 1132-1142 DOI: 10.7536/PC140136 Previous Articles   Next Articles

• Review •

Preparation and Application of Mesoporous Metal-Organic Frameworks

Song Lifang*, Xia Huiyun, Chen Huaxin, Li Zhuo, Lu Jiajia   

  1. Engineering Research Center of Transportation Materials, Ministry of Education, School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 51202016), the Shaanxi Postdoctoral Sustentation Fund, China and the Fundamental Research Funds for the Central Universities(No. CHD2011JC167,CHD2011JC192,CHD2013G3312019)

PDF ( 2347 ) Cited
Export

EndNote

Ris

BibTeX

Mesoporous metal-organic frameworks(MOFs), comparing with those with micropores, have attracted tremendous attention for expanding their applications in gas storage, heterogeneous catalysis, volatile organic compounds (VOCs) adsorption, drug carrier, etc. Metal-organic frameworks are still largely restricted to the microporous regins to date, with the negative impact of small pore size on the diffusion and mass transfer inside. The development of reliable and reproducible methods to prepare and stabilize mesoporous metal-organic frameworks with tailored structures and tunable properties remains a great challenge to meet many future applications. The structure of materials can be designed on molecular level, but the problem remains that the frameworks tend to interpenetrate one another to maximize packing efficiency or collapse while solvent molecules removed. The preparation and applications of mesoporous metal-organic frameworks are reviewed in this paper. Several preparation approaches, such as combining secondary building units(SBUs) and extended ligands, designing zinc-adeninate octahedral building units with lager size, using long ligands or mixed-ligands, surfactant template to get mesosize channels, cages or pockets are presented in detail, and the advantages and disadvantages of each method are summarized. In addition, applications of mesoporous metal-organic frameworks in the areas of gas storage, catalysis, sensors, adsorption of VOCs and drug carrier are introduced.

Contents
1 Introduction
2 Design of mesoporous metal-organic frameworks
2.1 SBU and extended ligands
2.2 Metal-adeninate vertices
2.3 Long ligands
2.4 Utility of mixed-ligands
2.5 Surfactant template
3 Application of mesoporous metal-organic frameworks
3.1 Gas storage
3.2 Heterogeneous catalysis
3.3 Sensors
3.4 Adsorption of VOCs
3.5 Drug carrier
4 Conclusion

CLC Number: 

[1] Furukawa H, Cordova K E, O'Keeffe M, Yaghi O M.Science,2013, 341(6149): 974.
[2] 谢生明(Xie S M), 袁黎明(Yuan L M).化学进展(Progress in Chemistry), 2013, 25(10): 1763.
[3] Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T.Chem. Soc. Rev., 2009, 38(5): 1450.
[4] Fang Q R, Zhou H C, Makal T A, Young M D.Comments Inorg. Chem., 2010, 31(5/6): 165.
[5] Xuan W, Zhu C, Liu Y, Cui Y.Chem. Soc. Rev., 2012, 41(5): 1677.
[6] Song L, Zhang J, Sun L, Xu F, Li F, Zhang H, Si X, Jiao C, Li Z, Liu S, Liu Y, Zhou H, Sun D, Du Y, Cao Z, Gabelica Z.Energy Environ. Sci., 2012, 5(6): 7508.
[7] Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi O M.Science, 2002, 295(5554): 469.
[8] Furukawa H, Ko N, Go Y B, Aratani N, Choi S B, Choi E, Yazaydin A Ö, Snurr R Q, O'Keeffe M, Kim J, Yaghi O M.Science, 2010, 329(5990): 424.
[9] An J, Farha O K, Hupp J T, Pohl E, Yeh J I, Rosi N L.Nat. Commun., 2012, 3: 604.
[10] Li T, Kozlowski M T, Doud E A, Blakely M N, Rosi N.J. Am. Chem. Soc., 2013, 135(32): 11688.
[11] Park J, Li J R, Carolina S E, Yuan D, Zhou H C. Chem. Commun., 2012, 48(6): 883.
[12] Wang X S, Ma S Q, Sun D F, Parkin S, Zhou H C.J. Am. Chem. Soc., 2006, 128(51): 16474.
[13] Zhao D, Yuan D, Sun D, Zhou H C.J. Am. Chem. Soc., 2009, 131(26): 9186.
[14] Yuan D, Zhao D, Sun D, Zhou H C.Angew. Chem. Int. Ed., 2010, 49(31): 5357.
[15] Yuan D, Zhao D, Zhou H C.Inorg. Chem., 2011, 50(21): 10528.
[16] Yuan D, Getman R B, Wei Z, Snurr R Q, Zhou H C.Chem. Commun., 2012, 48(27): 3297.
[17] Fang Q R, Yuan D Q, Sculley J, Lu W G, Zhou H C.Chem. Commun., 2012, 48(2): 254.
[18] Latroche M, Surble S, Serre C, Mellot-Draznieks C, Llewellyn P L, Lee J H, Chang J S, Jhung S H, Ferey G.Angew. Chem. Int. Ed., 2006, 45(48): 8227.
[19] Sonnauer A, Hoffmann F, Froba M, Kienle L, Duppel V, Thommes M, Serre C, Ferey G, Stock N.Angew. Chem. Int. Ed., 2009, 48(21): 3791.
[20] Yan Y, Lin X, Yang S, Blake A J, Dailly A, Champness N R, Hubberstey P, Schröder M.Chem. Commun., 2009, (9): 1025.
[21] Yan Y, Yang S, Blake A J, Lewis W, Poirier E, Barnett S A, Champness N R, Schroder M.Chem. Commun., 2011, 47(36): 9995.
[22] Farha O K, Yazaydn A Ö, Eryazici I, Malliakas C D, Hauser B G, Kanatzidis M G, Nguyen S T, Snurr R Q, Hupp J T.Nat. Chem., 2010, 2(11): 944.
[23] Qiu S L, Zhu G S.Coord. Chem. Rev., 2009, 253(23/24): 2891.
[24] Jiang H L, Xu Q.Chem. Commun., 2011, 47(12): 3351.
[25] Park Y K, Choi S B, Kim H, Kim K, Won B H, Choi K, Choi J S, Ahn W S, Won N, Kim S, Jung D H, Choi S H, Kim G H, Cha S S, Jhon Y H, Yang J K, Kim J.Angew. Chem. Int. Ed., 2007, 46: 8230.
[26] Lan Y Q, Jiang H L, Li S L, Xu Q.Adv. Mater., 2011, 23(43): 5015.
[27] Koh K, Wong-Foy A G, Matzger A J.Angew. Chem. Int. Ed., 2008, 47(4): 677.
[28] Koh K, Wong-Foy A G, Matzger A J.J. Am. Chem. Soc., 2009, 131(12): 4184.
[29] Klein N, Senkovska I, Gedrich K, Stoeck U, Henschel A, Mueller U, Kaskel S.Angew. Chem. Int. Ed., 2009, 48(52): 9954.
[30] Gu X J, Lu Z H, Xu Q.Chem. Commun., 2010, 46(39): 7400.
[31] Zhao Y J, Zhang J L, Han B X, Song J L, Li J S, Wang Q A.Angew. Chem. Int. Ed., 2011, 50(3): 636.
[32] Sun L B, Li J R, Park J, Zhou H C.J. Am. Chem. Soc., 2011, 134(1): 126.
[33] Gorka J, Fulvio P F, Pikus S, Jaroniec M.Chem. Commun., 2010, 46(36): 6798.
[34] Qiu L G, Xu T, Li Z Q, Wang W, Wu Y, Jiang X, Tian X Y, Zhang L D.Angew. Chem. Int. Ed., 2008, 47(49): 9487.
[35] Mu B, Schoenecker P M, Walton K S.J. Phys. Chem. C, 2010, 114(14): 6464.
[36] Ma L Q, Lin W B.J. Am. Chem. Soc., 2008, 130(42): 13834.
[37] Hwang Y K, Hong D Y, Chang J S, Jhung S H, Seo Y K, Kim J, Vimont A, Daturi M, Serre C, Ferey G.Angew. Chem. Int. Ed., 2008, 47(22): 4144.
[38] Maksimchuk N V, Kovalenko K A, Fedin V P, Kholdeeva O A.Adv. Synth. Catal., 2010, 352(17): 2943.
[39] Fang Q R, Zhu G S, Jin Z, Ji Y Y, Ye J W, Xue M, Yang H, Wang Y, Qiu S L.Angew. Chem. Int. Ed., 2007, 46(35): 6638.
[40] Jhung S H, Lee J H, Yoon J W, Serre C, Ferey G, Chang J S.Adv. Mater., 2007, 19(1): 121.
[41] Zhao Z X, Li X M, Huang S S, Xia Q B, Li Z.Ind. Eng. Chem. Res., 2011, 50(4): 2254.
[42] Yang K, Sun Q, Xue F, Lin D H.J. Hazard. Mater., 2011, 195: 124.
[43] Horcajada P, Serre C, Vallet-Regi M, Sebban M, Taulelle F, Ferey G.Angew. Chem. Int. Ed., 2006, 45(36): 5974.

[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[3] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[6] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[7] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[8] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[9] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[10] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[11] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[12] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[13] Zhao Xiaoxi, Wang Cong, Tian Yong, Wang Xiufang. Preparation of Mesoporous Carbon Materials via Emulsion Method [J]. Progress in Chemistry, 2022, 34(10): 2316-2328.
[14] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[15] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.