中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (05): 772-783 DOI: 10.7536/PC131104 Previous Articles   Next Articles

• Review •

Synthesis and Application of Three-Dimensionally Ordered Macroporous Carbon with Designed Pore Architecture

Qiu Shi1, Zheng Jingwei1, Yang Guitang2, Zheng Jingtang*1, Wu Mingbo*1, Wu Wenting*1   

  1. 1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China;
    2. Shanxi Xinhua Chemicals Co., Ltd., Taiyuan 030008, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21376268, 21176260), the National Basic Research Development Program of China (973 Program) (No. 2011CB605703) and the Taishan Scholar Foundation (No. ts20130929)

PDF ( 1550 ) Cited
Export

EndNote

Ris

BibTeX

Porous carbon materials have been widely studied due to their remarkable physicochemical properties, including the high specific surface area, extensively pore structure, good thermal stability, high corrosion resistance, easy handling and low cost of manufacture. In order to reap the full benets of designer porous carbons, it is necessary to develop controlled surface properties and structural ordering from fundamental and application point of view. Three-dimensionally ordered macroporous (3DOM) carbon materials, prepared by colloidal crystal templating (CCT) methods, using so-called hard templates, possess well-ordered periodicity and interconnected pore systems that are of interest for numerous applications, such as sorption and controlled release, catalysts and power sources. Recent breakthroughs have resulted in the development of CCT methods for the preparation of macro-mesoporous carbon by combining CCT with additional templating techniques. This review surveys literatures and highlights recent progress in the synthesis routes of 3DOM carbon by CCT methods, and the hierarchical pore structure by a dual-templating method. It discusses aspects of the main performance parameters, including the choice of colloidal particles, precursors, deposition techniques, and other necessary modications to enhance the functionality of 3DOM carbon materials, and puts emphasis on overviewing the applications in environmental purification and advanced energy conversion and storage.

Contents
1 Introduction
2 Morphological control and structural design of 3DOM carbon materials
2.1 Microstructure
2.2 Macroscopic feature
3 Designing and constructing of 3DOM carbon materials
3.1 Hard templating pathways by colloidal crystal
3.2 Dual-templating methods
4 Key factors in the preparation of 3DOM carbon materials
4.1 Types of colloidal crystal templates
4.2 Types of carbon precursors
5 Application
5.1 Environmental purification
5.2 Advanced energy conversion and storage
6 Conclusion and outlook

CLC Number: 

[1] Velev O D, Jede T A, Lobo R F, Lenhoff A M. Nature, 1997, 389: 447.
[2] Holland B T, Blanford C F, Stein A. Science, 1998, 281 (5376): 538.
[3] Zakhidov A A, Baughman R H, Iqbal Z, Cui C, Khayrullin I, Dantas S O, Marti J, Ralchenko V G. Science, 1998, 282 (5390): 897.
[4] Knox J H, Kaur B, Millward G. J. Chromator. A, 1986, 352: 3.
[5] Qiu S, Zheng J T, Jiang B. 10th China-Japan-Korea Joint Symposium on Carbon Materials to Save the Earth. Guangzhou, 2012. 173.
[6] Yu J S, Kang S, Yoon S B, Chai G. J. Am. Chem. Soc., 2002, 124 (32): 9382.
[7] Su F B, Zhao X S, Wang Y, Zeng J H, Zhou Z C, Lee J Y. J. Phys. Chem. B, 2005, 109 (43): 20200.
[8] Zhao Y, Zheng M B, Cao M J, Ke X F, Liu J S, Chen Y P, Tao J. Mater. Lett., 2008, 62(3): 548.
[9] Woo S W, Dokkoa K, Nakanoa H, Kanamura K. ECS Transactions, 2007, 3(36): 223.
[10] Hoa M L K, Lu M H, Zhang Y. Adv. Colloid Interface Sci., 2006, 121 (1/3): 9.
[11] 仇实(Qiu S), 郑经堂(Zheng J T), 苏美慧(Su M H). 第十一届新型炭材料学术研讨会论文集(Processing of the 11th National Symposium on New Carbon Materials). 太原(Taiyuan), 2013. 246.
[12] Tabata S, Isshiki Y, Watanabe M. J. Electrochem. Soc., 2008, 155(2): 42.
[13] Lee K T, Lytle J C, Ergang N S, Oh S M, Stein A. Adv. Funct. Mater., 2005, 15(4): 547.
[14] Zhang J M, Zhang Y X, Lian S Y, Liu Y, Kang Z H, Lee S T. J. Colloid Interface Sci., 2011, 361 (2): 503.
[15] 李石(Li S). 中国石油大学(华东)博士论文(Doctoral Dissertation of China University of Petroleum (East China)), 2009.
[16] Cai Z Y, Teng J H, Wan Y, Zhao X S. J. Colloid Interface Sci., 2012, 380 (1): 42.
[17] Dai Z F, Li Y, Duan G T, Jia L C, Cai W P. ACS Nano, 2012, 6 (8): 6706.
[18] Chai G S, Shin I S, Yu J S. Adv. Mater., 2004, 16 (22): 2057.
[19] Woo S W, Dokko K, Nakano H, Kanamura K. J. Mater. Chem., 2008, 18 (14): 1674.
[20] Kim J H, Fang B Z, Kim M S, Yoon S B, Bae T S, Ranade D R, Yu J S. Electrochim. Acta, 2010, 55 (26): 7628.
[21] Sui W B, Zheng J T, Yang Z, Wu M B. Mater. Lett., 2011, 65 (15): 2534.
[22] Zhang S L, Chen L, Zhou S X, Zhao D Y, Wu L M. Chem. Mater., 2010, 22 (11): 3433.
[23] Meng Y, Gu D, Zhang F Q, Shi Y F, Yang H F, Li Z, Yu C Z, Tu B, Zhao D Y. Angew. Chem. Int. Ed., 2005, 117 (43): 7215.
[24] Tanaka S, Nishiyama N, Egashira Y, Ueyama K. Chem. Commun., 2005, (16): 2125.
[25] Petkovich N D, Stein A. Chem. Soc. Rev., 2013, 42 (9): 3721.
[26] Deng Y H, Liu C, Yu T, Liu F, Zhang F Q, Wan Y, Zhang L J, Wang C C, Tu B, Webley P A, Wang H T, Zhao D Y. Chem. Mater., 2007, 19 (13): 3271.
[27] Wang Z Y, Kiesel E R, Stein A. J. Mater. Chem., 2008, 18 (19): 2194.
[28] 周颖(Zhou Y), 王志超(Wang Z C), 王春雷(Wang C L), 王六平(Wang L P), 许钦一(Xu Q Y), 邱介山(Qiu J S). 无机材料学报(Journal of Inorganic Materials), 2011, 26 (2): 145.
[29] Li N W, Zheng M B, Feng S Q, Lu H L, Zhao B, Zheng J F, Zhang S T, Ji G B, Cao J M. J. Phys. Chem. C, 2013, 117 (17): 8784.
[30] Meng Y, Gu D, Zhang F Q, Shi Y F, Cheng L, Feng D, Wu Z X, Chen Z X, Wan Y, Stein A, Zhao D Y. Chem. Mater., 2006, 18 (18): 4447.
[31] Huang X, Chen J, Lu Z Y, Yu H, Yan Q Y, Hng H H. Sci. Rep., 2013, 3: 2317.
[32] Franklin R E. Proc. R. Soc. Lond. A, 1951, 209 (1097): 196.
[33] Yoon S B, Chai G S, Kang S K, Yu J S, Gierszal K P, Jaroniec M. J. Am. Chem. Soc., 2005, 127 (12): 4188.
[34] Wang Z Y, Li F, Ergang N S, Stein A. Carbon, 2008, 46 (13): 1702.
[35] Huang C H, Doong R A, Gu D, Zhao D Y. Carbon, 2011, 49 (9): 3055.
[36] Kang D Y, Lee Y, Cho C Y, Moon J H. Langmuir, 2012, 28 (17): 7033.
[37] Yu J S, Yoon S B, Chai G S. Carbon, 2001, 39 (9): 1442.
[38] Lai C Z, Fierke M A, Stein A, Bühlmann P. Anal. Chem., 2007, 79 (12): 4621.
[39] Huang C H, Doong R A, Gu D, Zhao D Y. Carbon, 2011, 49 (9): 3055.
[40] Chu Y, Pan Q M. ACS Appl. Mater. Interfaces, 2012, 4 (5): 2420.
[41] Yuan R S, Guan R B, Shen W Z, Zheng J T. J. Colloid Interface Sci., 2005, 282 (1): 87.
[42] Jiang B, Zheng J T, Qiu S, Wu M B, Zhang Q H, Yan Z F, Xue Q Z. Chem. Eng. J., 2014, 236 (15): 348.
[43] Qu X F, Zheng J T, Zhang Y Z. J. Colloid Interface Sci., 2007, 309 (2): 429.
[44] Xiong A F, Yin Z L, Zhou Y J, Peng X Z, Yan W B, Liu Z X, Zhang X Y. Bull. Korean Chem. Soc., 2013, 34 (10): 3039.
[45] Li S, Zhao D F, Zheng J T, Wan Y, Zhao X S, Zhao C C, Liu Y, Liu F, Lu L, Wang Y Q. Mater. Res. Bull., 2010, 45 (9): 1069.
[46] 隋吴彬(Sui W B), 郑经堂(Zheng J T), 仇实(Qiu S), 吴明铂(Wu M B). 天津工业大学学报(Journal of Tianjin Polytechnic University), 2012, 31 (2): 47.
[47] Sui W B, Zheng J T, Pittman C U Jr, Bensalah N, Wu M B, Zhao Y C. Funct. Mater. Lett., 2014, DOI: 10.1142/S1793604713500689.
[48] 肖义(Xiao Y). 辽宁师范大学硕士论文(Master Dissertation of Liaoning Normal University), 2008.
[49] Kang D Y, Kim S O, Chae Y J, Lee J K, Moon J H. Langmuir, 2013, 29 (4): 1192.
[50] Wang Z Y, Li F, Ergang N S, Stein A. Chem. Mater., 2006, 18 (23): 5543.
[51] Conway B. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. NY: Kluwer Academic/Plenum, 1999.
[52] Yamada H, Nakamura H, Nakahara F, Moriguchi I, Kudo T. J. Phys. Chem. C, 2007, 111 (1): 227.
[53] Zhang L L, Li S, Zhang J T, Guo P Z, Zheng J T, Zhao X S. Chem. Mater., 2010, 22 (3): 1195.
[54] Fang B Z, Kim J H, Kim M, Yu J S. Chem. Mater., 2009, 21 (5): 789.
[55] Fan S Q, Fang B, Kim J H, Jeong B, Kim C, Yu J S, Ko J. Langmuir, 2010, 26 (16): 13644.
[56] Lai C Z, Joyer M M, Fierke M A, Petkovich N D, Stein A, Bühlmann P. J. Solid State Electrochem., 2009, 13 (1): 123.
[57] Fierke M A, Lai C Z, Bühlmann P, Stein A. Anal. Chem., 2010, 82 (2): 680.:3318.
[125] Su D S, Delgado J, Liu X, Wang D, Schlögl R, Wang L, Zhang Z, Shan Z, Xiao F S. Chem - An Asian J., 2009, 4:1108.
[126] Wang L F, Zhang J, Su D S, Ji Y Y, Cao X J, Xiao F S. Chem. Mater., 2007, 19:2894.
[127] Liu L, Deng Q F, Agula B, Zhao X, Ren T Z, Yuan Z Y. Chem. Commun., 2011, 47:8334.
[128] Liu L, Deng Q F, Liu Y P, Ren T Z, Yuan Z Y. Catal. Commun., 2011, 16:81.
[129] Liu L, Deng Q F, Agula B, Ren T Z,Liu Y P, Zhaorigetu B, Yuan Z Y. Catal. Today, 2012, 186:35.
[130] Ma T Y, Liu L, Yuan Z Y. Chem. Soc. Rev., 2013, 42:3977.

 

[1] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[2] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[3] Wanqiu Huang, Miaomiao Gao, Hongjing Dou. Polypyrrole and Its Nanocomposites Applied in Photothermal Therapy [J]. Progress in Chemistry, 2020, 32(4): 371-380.
[4] Lu Jia, Jianzhong Ma, Dangge Gao, Bin Lv. Layered Double Hydroxides/Polymer Nanocomposites [J]. Progress in Chemistry, 2018, 30(2/3): 295-303.
[5] Jie Guan, Lingna Sun, Qin Xu*, Xiaoya Hu*. Synthesis and Application of Molecularly Imprinted Polymers Based on Titanium Dioxide and Its Composites [J]. Progress in Chemistry, 2018, 30(11): 1749-1760.
[6] Jing Ru, Biyao Geng, Congcong Tong, Haiying Wang, Shengchun Wu, Hongzhi Liu. Nanocellulose-Based Adsorption Materials [J]. Progress in Chemistry, 2017, 29(10): 1228-1251.
[7] Gao Dangge, Liang Zhiyang, Lyu Bin, Ma Jianzhong. Organic/Inorganic Nanocomposites Prepared by Miniemulsion Polymerization [J]. Progress in Chemistry, 2016, 28(7): 1076-1083.
[8] Zhang Yongjie, Li Huayi, Dong Jin-Yong, Hu Youliang. Polyolefin Covalently Grafted Nanomaterials and Polyolefin Nanocomposites Derived Thereof [J]. Progress in Chemistry, 2015, 27(1): 47-58.
[9] Zhong Zhen, Lu Hang, Ren Tianbin. Shape Control Synthesis of Silver Nanoparticles and Silver Polymeric Nanocomposites [J]. Progress in Chemistry, 2014, 26(12): 1930-1941.
[10] Zhou Sukun, Mao Jianzhen, Xu Feng. Preparation and Applications of Microfibrillated Cellulose [J]. Progress in Chemistry, 2014, 26(10): 1752-1762.
[11] Qi Meizhou, Fu Zhisheng, Fan Zhiqiang. Immobilization of Metallocene Catalysts [J]. Progress in Chemistry, 2014, 26(05): 737-748.
[12] Qi Zhigang, Gong Chenliang*, Liang Yu, Li Hui, Zhang Shujiang, Li Yanfeng. Highly Proton-Conductive Sulfonated Aromatic Polymers for Medium-Temperature Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2013, 25(12): 2103-2111.
[13] Li Tian, Wang Yilong, Guo Fangfang, Shi Donglu. Synthesis and Biomedical Applications of Magnetic Nanocomposites with Complex Morphologies [J]. Progress in Chemistry, 2013, 25(12): 2053-2067.
[14] Zhou Li, Deng Huiping*, Wan Junli, Zhang Ruijin. Synthesis and Adsorption of Graphene-Based Iron Oxide Magnetic Nanocomposites [J]. Progress in Chemistry, 2013, 25(01): 145-155.
[15] Zhou Huirui, Tao Ke, Sun Kang. Synthesis and Perspectives of Fluorescent-Magnetic Nanocomposites [J]. Progress in Chemistry, 2011, 23(6): 1100-1107.