中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC120634 Previous Articles   Next Articles

• Review •

Synthesis and Adsorption of Graphene-Based Iron Oxide Magnetic Nanocomposites

Zhou Li, Deng Huiping*, Wan Junli, Zhang Ruijin   

  1. College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
  • Received: Revised: Online: Published:
PDF ( 2420 ) Cited
Export

EndNote

Ris

BibTeX

The novel and unique physical and chemical properties of graphene and graphene oxide, in recent years have attracted more and more attention from scientific and professional communities. Owning to their high surface and abundant functional groups, it is possible for them to be the excellent adsorption materials in water treatment processes. However, they are not easy to separate from water matrix. To overcome the problem, so far, numerous graphene-based iron oxide magnetic nanocomposites have been successfully synthesized in various ways and showed desirable combination of adsorption and easy separation properties. Herein, we briefly introduce adsorption ability of graphene, graphene oxide and iron oxide magnetic materials for heavy metal ions, organic dyes and aromatic pollutants, and then highlight the synthesis methods and adsorption ability of graphene-based iron oxide magnetic nanocomposites. Especially, the potential applications in water treatment of these magnetic composites are discussed. Finally, a prospect for future research developments in this field is proposed. Contents
1 Introduction
2 Adsorption of graphene
3 Adsorption of grapheme oxide and modified graphene oxide
4 Adsorption of magnetic material——iron oxide
5 Synthesis and adsorption of graphene/Fe3O4 magnetic composite material
5.1 Synthesis of graphene/Fe3O4
5.2 Adsorption application of graphene/Fe3O4 in water treatment process
6 Conclusion and outlook

CLC Number: 

[1] Boehm H P, Clauss A, Fischer G O, Hofmann U. Z. Anorg. Allg. Chem., 1962, 316: 119-127
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666-669
[3] Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R, Ruoff R S. Adv. Mater., 2010, 22: 3906-3924
[4] Brodie B C. Philos. T. R. Soc. Lond., 1859, 149: 249-259
[5] Dreyer D R, Park S, Bielawski C W, Ruoff R S. Chem. Soc. Rev., 2010, 39: 228-240
[6] Green A A, Hersam M C. J. Phys. Chem. Lett., 2009, 1: 544-549
[7] Shao G L, Lu Y G, Wu F F, Yang C L, Zeng F L, Wu Q L. J. Mater. Sci., 2012, 47: 4400-4409
[8] Allen M J, Tung V C, Kaner R B. Chem. Rev., 2010, 110: 132-145
[9] Marcano D C, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z, Slesarev A, Alemany L B, Lu W, Tour J M. ACS Nano, 2010, 4: 4806-4814
[10] Hong X, Zou K, DaSilva A M, Ahn C H, Zhu J. Solid State Commun., 2012, 152: 1365-1374
[11] Pei S, Cheng H M. Carbon, 2012, 50: 3210-3228
[12] Prezhdo O V, Kamat P V, Schatz G C. J. Phys. Chem. C, 2011, 115: 3195-3197
[13] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958, 80: 1339-1339
[14] Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H. Small, 2011, 7: 1876-1902
[15] Sun H, Yang Y, Huang Q. Integr. Ferroelectr., 2011, 128: 163-170
[16] Koo H Y, Lee H J, Go H A, Lee Y B, Bae T S, Kim J K, Choi W S. Chem-Eur. J., 2011, 17: 1214-1219
[17] Staudenmaier L. Ber. Dtsch. Chem. Ges., 1898, 31: 1481-1487
[18] Kim J, Cote L J, Kim F, Yuan W, Shull K R, Huang J. J. Am. Chem. Soc., 2010, 132: 8180-8186
[19] Buchsteiner A, Lerf A, Pieper J J. Phys. Chem. B, 2006, 110: 22328-22338
[20] Tung V C, Allen M J, Yang Y, Kaner R B. Nat. Nano, 2009, 4: 25-29
[21] 柏嵩(Bai S), 沈小平(Shen X P). 化学进展(Progress in Chemistry), 2010, 22: 2106-2118
[22] Qu J. J. Environ. Sci., 2008, 20: 1-13
[23] Babel S, Kurniawan T A. J. Hazard. Mater., 2003, 97: 219-243
[24] Stoller M D, Park S, Zhu Y, An J, Ruoff R S. Nano Lett., 2008, 8: 3498-3502
[25] Dong X, Cheng J, Li J, Wang Y. Anal. Chem., 2010, 82: 6208-6214
[26] Chen J, Zou J, Zeng J, Song X, Ji J, Wang Y, Ha J, Chen X. Anal. Chim. Acta, 2010, 678: 44-49
[27] Wu T, Cai X, Tan S, Li H, Liu J, Yang W. Chem. Eng. J., 2011, 173: 144-149
[28] Liu Q, Shi J, Zeng L, Wang T, Cai Y, Jiang G. J. Chromatogr. A, 2011, 1218: 197-204
[29] Zhang H, Lee H K. J. Chromatogr. A, 2011, 1218: 4509-4516
[30] Zhang H, Lee H K. Anal. Chim. Acta, 2012, 742(SI): 67-73. doi:10.1016/j. aca. 2012.03.016
[31] Wang P, Shi Q, Shi Y, Clark K K, Stucky G D, Keller A A. J. Am. Chem. Soc., 2009, 131: 182-188
[32] Wu Z S, Wang D W, Ren W, Zhao J, Zhou G, Li F, Cheng H M. Adv. Funct. Mater., 2010, 20: 3595-3602
[33] Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Nat. Nano, 2008, 3: 101-105
[34] Balapanuru J, Yang J X, Xiao S, Bao Q L, Jahan M, Polavarapu L, Wei J, Xu Q H, Loh K P. Angew. Chem. Int. Ed., 2010, 49: 6549-6553
[35] Dékány I, Krüger-Grasser R, Weiss A. Colloid Polym. Sci., 1998, 276: 570-576
[36] Seredych M, Bandosz T J. J. Phys. Chem. C, 2007, 111: 15596-15604
[37] Seredych M, Rossin J A, Bandosz T J. Carbon, 2011, 49: 4392-4402
[38] Slabaugh W H, Seiler B C. J. Phys. Chem., 1962, 66: 396-401
[39] Petit C, Bandosz T J. Adv. Funct. Mater., 2010, 20: 111-118
[40] Seredych M, Bandosz T J. J. Colloid Interf. Sci., 2008, 324: 25-35
[41] Aragon F, Cano Ruiz J, Macewan D M C. Nature, 1959, 183: 740-741
[42] Matsuo Y, Niwa T, Sugie Y. Carbon, 1999, 37: 897-901
[43] Matsuo Y, Miyabe T, Fukutsuka T, Sugie Y. Carbon, 2007, 45: 1005-1012
[44] Xu C, Wang X, Yang L, Wu Y. J. Solid State Chem., 2009, 182: 2486-2490
[45] Yang S T, Chang Y, Wang H, Liu G, Chen S, Wang Y, Liu Y, Cao A. J. Colloid Interf. Sci., 2010, 351: 122-127
[46] Yang S T, Chen S, Chang Y, Cao A, Liu Y, Wang H. J. Colloid Interf. Sci., 2011, 359: 24-29
[47] Zhao M, Liu P. Desalination, 2009, 249: 331-336
[48] Ramesha G K, Kumara A V, Muralidhara H B, Sampath S. J. Colloid Interf. Sci., 2011, 361: 270-277
[49] Sun L, Yu H W, Fugetsu B. J. Hazard. Mater., 2012, 203: 101-110
[50] Hartono T, Wang S, Ma Q, Zhu Z. J. Colloid Interf. Sci., 2009, 333: 114-119
[51] Gao W, Majumder M, Alemany L B, Narayanan T N, Ibarra M A, Pradhan B K, Ajayan P M. ACS Appl. Mater. Interfaces, 2011, 3: 1821-1826
[52] Zhao G, Jiang L, He Y, Li J, Dong H, Wang X, Hu W. Adv. Mater., 2011, 23: 3959-3963
[53] Zhao G, Li J, Wang X. Chem. Eng. J., 2011, 173: 185-190
[54] Luo Y B, Cheng J S, Ma Q, Feng Y Q, Li J H. Anal. Methods, 2011, 3: 92-98
[55] Hua M, Zhang S J, Pan B C, Zhang W M, Lv L, Zhang Q X. J. Hazard. Mater., 2012, 211: 317-331
[56] Hu J, Chen G, Lo I M C. Water Res., 2005, 39: 4528-4536
[57] Hu J, Lo I M C, Chen G. Sep. Purif. Technol., 2007, 56: 249-256
[58] Shen Y F, Tang J, Nie Z H, Wang Y D, Ren Y, Zuo L. Sep. Purif. Technol., 2009, 68: 312-319
[59] Khodabakhshi A, Amin M M, Mozaffari M. Iran. J. Environ. Healt., 2011, 8: 189-200
[60] Uheida A, Iglesias M, Fontàs C, Hidalgo M, Salvadó V, Zhang Y, Muhammed M. J. Colloid Interf. Sci., 2006, 301: 402-408
[61] Chen L, Xu Z, Dai H, Zhang S. J. Alloy. Compd., 2010, 497: 221-227
[62] Hu J, Shao D, Chen C, Sheng G, Li J, Wang X, Nagatsu M. J. Phys. Chem. B, 2010, 114: 6779-6785
[63] Yan J, Wei T, Qiao W, Shao B, Zhao Q, Zhang L, Fan Z. Electrochim. Acta, 2010, 55: 6973-6978
[64] Ai L H, Zhang C Y, Chen Z L. J. Hazard. Mater., 2011, 192: 1515-1524
[65] 于文广(Yu W G), 张同来(Zhang T L), 张建国(Zhang J G), 郭金玉(Guo J Y), 吴瑞凤(Wu R F). 化学进展(Progress in Chemistry), 2007, 19: 884-892
[66] 季俊红(Ji J H), 季生福(Ji F S), 杨伟(Yang W), 李成岳(Li C Y). 化学进展(Progress in Chemistry), 2010, 22: 1566-1574
[67] He F, Fan J, Ma D, Zhang L, Leung C, Chan H L. Carbon, 2010, 48: 3139-3144
[68] 张燚(Zhang Y), 陈彪(Chen B), 杨祖培(Yang Z P), 张智军(Zhang Z J). 物理化学学报(Acta Physico-Chimica Sinica), 2011, 27: 1261-1266
[69] Zhang Y, Chen B, Zhang L, Huang J, Chen F, Yang Z, Yao J, Zhang Z. Nanoscale, 2011, 3: 1446-1450
[70] Li Y, Chu J, Qi J, Li X. Appl. Surf. Sci., 2011, 257: 6059-6062
[71] Xie G Q, Xi P X, Liu H Y, Chen F J, Huang L, Shi Y J, Hou F P, Zeng Z Z, Shao C W, Wang J. J. Mater. Chem., 2012, 22: 1033-1039
[72] Zhan Y, Yang X, Meng F, Wei J, Zhao R, Liu X. J. Colloid Interf. Sci., 2011, 363: 98-104
[73] Zhan Y, Meng F, Yang X, Liu X. Colloid Surface A, 2011, 390: 112-119
[74] Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y. J. Mater. Chem., 2009, 19: 2710-2714
[75] Kassaee M Z, Motamedi E, Majdi M. Chem. Eng. J., 2011, 172: 540-549
[76] Wu Q, Zhao G, Feng C, Wang C, Wang Z. J. Chromatogr. A, 2011, 1218: 7936-7942
[77] He H, Gao C. ACS Appl. Mater. Interfaces, 2010, 2: 3201-3210
[78] Sun H M, Cao L Y, Lu L H. Nano Res., 2011, 4: 550-562
[79] Su J, Cao M, Ren L, Hu C. J. Phys. Chem. C, 2011, 115: 14469-14477
[80] Cong H P, He J J, Lu Y, Yu S H. Small, 2010, 6: 169-173
[81] Shen J, Hu Y, Shi M, Li N, Ma H, Ye M. J. Phys. Chem. C, 2010, 114: 1498-1503
[82] Zhu J H, Wei S Y, Gu H B, Rapole S B, Wang Q, Luo Z P, Haldolaarachchige N, Young D P, Guo Z H. Environ. Sci. Technol., 2012, 46: 977-985
[83] Zhang M, Lei D, Yin X, Chen L, Li Q, Wang Y, Wang T. J. Mater. Chem., 2010, 20: 5538-5543
[84] Chandra V, Park J, Chun Y, Lee J W, Hwang I C, Kim K S. ACS Nano, 2010, 4: 3979-3986
[85] Liang J, Xu Y, Sui D, Zhang L, Huang Y, Ma Y, Li F, Chen Y. J. Phys. Chem. C, 2010, 114: 17465-17471
[86] Wang H, Robinson J T, Li X, Dai H. J. Am. Chem. Soc., 2009, 131: 9910-9911
[87] Dubin S, Gilje S, Wang K, Tung V C, Cha K, Hall A S, Farrar J, Varshneya R, Yang Y, Kaner R B. ACS Nano, 2010, 4: 3845-3852
[88] Deng H, Li X, Peng Q, Wang X, Chen J, Li Y. Angew. Chem. Ger. Ed., 2005, 117: 2842-2845
[89] 付佳(Fu J). 西安建筑科技大学硕士论文(Master Dissertation of Xi'an University of Architecture and Technology), 2007
[90] Geng Z G, Lin Y, Yu X X, Shen Q H, Ma L, Li Z Y, Pan N, Wang X P. J. Mater. Chem., 2012, 22: 3527-3535
[91] Luo Y B, Shi Z G, Gao Q A, Feng Y Q. J. Chromatogr. A, 2011, 1218: 1353-1358
[92] Zhao G Y, Song S J, Wang C, Wu Q H, Wang Z. Anal. Chim. Acta, 2011, 708: 155-159
[93] Wu Q, Zhao G, Feng C, Wang C, Wang Z. J. Chromatogr. A, 2011, 1218: 7936-7942
[94] Wu Q, Liu M, Ma X, Wang W, Wang C, Zang X, Wang Z. Microchimica Acta, 2012, 177: 23-30
[95] Yao Y J, Miao S D, Liu S Z, Ma L P, Sun H Q, Wang S B. Chem. Eng. J., 2012, 184: 326-332
[96] Wang C, Feng C, Gao Y, Ma X, Wu Q, Wang Z. Chem. Eng. J., 2011, 173: 92-97
[97] Afkhami A, Moosavi R. J. Hazard. Mater., 2010, 174: 398-403
[98] Wang W L, Xu J, Sun Z, Zhang X, Lu Y, Lai Y H. Macromolecules, 2006, 39: 7277-7285
[99] Qi X, Pu K Y, Zhou X, Li H, Liu B, Boey F, Huang W, Zhang H. Small, 2010, 6: 663-669

[1] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[2] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[3] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[4] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[5] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[6] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[7] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[8] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[9] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[10] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[11] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[12] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[13] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[14] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[15] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.