中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (1): 47-58 DOI: 10.7536/PC140908 Previous Articles   Next Articles

• Review •

Polyolefin Covalently Grafted Nanomaterials and Polyolefin Nanocomposites Derived Thereof

Zhang Yongjie1,2, Li Huayi*1, Dong Jin-Yong*1, Hu Youliang1   

  1. 1. Insistute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.51403216).

PDF ( 866 ) Cited
Export

EndNote

Ris

BibTeX

Over the past few decades, much effort has been devoted to the generation of polyolefin nanocomposites, which offers substantial improvements to polyolefin properties with minimal nanofiller mass (0.1 wt%~5 wt%). Nanomaterials covalently grafted with polyolefin show great potential in developing high performance polyolefin nanocomposites. Grafted polyolefin chains generally provide high compatibility and good interfacial interactions between nanomaterials and polyolefin matrix, and thus promote homogeneous dispersion of nanomaterials into polyolefin matrix and enhance mechanical, thermal (and other) properties of polyolefin nanocomposites. Three strategies employed to covalently graft polyolefin to nanomaterials include: graft-onto, graft-from and graft-through. The high availability and reactivity of functionalized polyolefin, together with the difficulties encountered in the latter two approaches, renders “grafting-onto” approach as the mainstream of surface grafting polyolefin to nanomaterials. Both chain end functionalized polyolefin and side group functionalized polyolefin (mainly maleic-anhydride-grafted polyolefin and its derivatives) have been extensively applied in surface grafting polyolefin to nanomaterials via “grafting-onto” approach while reports on “graft-from” and “graft-through” approaches are limited. Here we review recent progress on polyolefin covalently grafted nanomaterials (silica, zero dimensional; carbon nanotube, one dimensional; graphene (oxide), two dimensional) with a focus on the properties of polyolefin nanocomposites derived thereof.

Contents
1 Introduction
2 Graft-onto approach
2.1 Chain end functionalized polyolefin
2.2 Side group functionalized polyolefin
3 Graft-from approach
4 Graft-through approach
5 Conclusion and outlook

CLC Number: 

[1] Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O. J. Mater. Res., 1993, 8: 1179.
[2] Zou H, Wu S, Shen J. Chem. Rev., 2008, 108: 3893.
[3] Potts J R, Dreyer D R, Bielawski C W, Ruoff R S. Polymer, 2011, 52: 5.
[4] Kim H, Abdala A A, Macosko C W. Macromolecules, 2010, 43: 6515.
[5] Panaitescu D, Ciuprina F, Iorga M, Frone A, Radovici C, Ghiurea M, Sever S, Plesa I. J. Appl. Polym. Sci., 2011, 122: 1921.
[6] Beyou E, Akbar S, Chaumont P, Cassagnau P. Syntheses and Applications of Carbon Nanotubes and Their Composites (Ed. Satoru S). InTech, 2013. 78.
[7] Kashiwagi T, Grulke E, Hilding J, Harris R, Awad W, Douglas J. Macromol. Rapid Commun., 2002, 23: 761.
[8] Barus S, Zanetti M, Bracco P, Musso S, Chiodoni A, Tagliaferro A. Polym. Degrad. Stabil., 2010, 95: 756.
[9] Lisunova M O, Mamunya Y P, Lebovka N I, Melezhyk A V. Eur. Polym. J., 2007, 43: 949.
[10] Kim H, Kobayashi S, AbdurRahim M A, Zhang M J, Khusainova A, Hillmyer M A, AbdalaA A, Macosko C W. Polymer, 2011, 52: 1837.
[11] Huang Y, Qin Y, Zhou Y, Niu H, Yu Z Z, Dong J Y. Chem. Mater., 2010, 22: 4096.
[12] Qin Y, Wang N, Zhou Y, Huang Y, Niu H, Dong J Y. Macromol. Rapid Commun., 2011, 32: 1052.
[13] Zapata P A, Palza H, Delgado K, Rabagliati F M. J. Polym. Sci. Part A: Polym. Chem., 2012, 50: 4055.
[14] Zapata P A, Tamayo L, Páez M, Cerda E, Azócar I, Rabagliati FM. Eur. Polym. J., 2011, 47: 1541.
[15] Zapata P A, Palza H, Cruz L S, Lieberwirth I, Catalina F, Corrales T, Rabagliati F M. Polymer, 2013, 54: 2690.
[16] Zapata P, Quijada R, Benavente R. J. Appl. Polym. Sci., 2011, 119: 1771.
[17] Guo N, DiBenedetto S A, Kwon D K, Wang L, Russell M T, Lanagan M T, Facchetti A, Marks T J. J. Am. Chem. Soc., 2007, 129: 766.
[18] Tong X, Liu C, Cheng H M, Zhao H, Yang F, Zhang X. J. Appl. Polym. Sci., 2004, 92: 3697.
[19] Li Z, Fredin L A, Tewari P, DiBenedetto S A, Lanagan M T, Ratner M A, Marks T J. Chem. Mater., 2010, 22: 5154.
[20] Ma W Z, Gong F H, Liu C L, Tao G L, Xu J P, Jiang B B. J. Appl. Polym. Sci., 2014, 131: 39891.
[21] Jain S, Goossens H, Picchioni F, Magusin P, Mezari B, van Duin M. Polymer, 2005, 46: 6666.
[22] Qian J, Zhang H G, Cheng G C, Huang Z J, Dang S Y, Xu Y S. J. Sol-Gel Sci. Technol., 2010, 56: 300.
[23] Ma W S, Li J, Deng B J, Zhao X S. J. Mater. Sci., 2013, 48: 156.
[24] Yang X, Mei T, Yang J, Zhang C, Lv M, Wang X. Appl. Surf. Sci., 2014, 305: 725.
[25] Bailly M, Kontopoulou M. Polymer, 2009, 50: 2472.
[26] Yang X, Wang X, Yang J, Li J, Wan L. Chem. Phys. Lett., 2013, 570: 125.
[27] Chen Y H, Hsu H C, Yu Y F, Hsiou Y F. Polym. Eng. Sci., 2011, 51: 434.
[28] Stojanovic D, Uskokovic P S, Balac I, Radojevic V, Aleksic R. Research Trends in Contemporary Materials Science (Eds. Uskokovic D P, Milonjic S K, Rakovic D I). Stafa-Zurich: Trans Tech Publications Ltd., 2007. 479.
[29] Dorigato A, D'Amato M, Pegoretti A. J. Polym. Res., 2012, 19: 11.
[30] Ma D, Hugener T A, Siegel R W, Christerson A, Mårtensson E, Önneby C, Schadler L S. Nanotechnology, 2005, 16: 724.
[31] Costantino U, Gallipoli A, Nocchetti M, Camino G, Bellucci F, Frache A. Polym. Degrad. Stabil., 2005, 90: 586.
[32] Zheng J Z, Zhou X P, Xie X L, Mai Y W. Nanoscale, 2010, 2: 2269.
[33] Kumar S K, Jouault N, Benicewicz B, Neely T. Macromolecules, 2013, 46: 3199.
[34] Nebhani L, Barner-Kowollik C. Adv. Mater., 2009, 21: 3442.
[35] Li N, Binder W H. J. Mater. Chem., 2011, 21: 16717.
[36] Feng C, Li Y, Yang D, Hu J, Zhang X, Huang X. Chem. Soc. Rev., 2011, 40: 1282.
[37] Minko S. Polymer Surfaces and Interfaces (Ed. Stamm M). Berlin Heidelberg: Springer, 2008. 215.
[38] Bieligmeyer M, Taheri S M, German I, Boisson C, Probst C, Milius W, Altstädt V, Breu J, Schmidt H W, D'Agosto F, Förster S. J. Am. Chem. Soc., 2012, 134: 18157.
[39] Kalluru S H, Cochran E W. Macromolecules, 2013, 46: 9324.
[40] 张勇杰(Zhang Y J),李化毅(Li H Y), 董金勇(Dong J Y), 胡友良(Hu Y L). 化学进展(Progress in Chemistry), 2014, 26: 110.
[41] Terao H, Ishii S I, Saito J, Matsuura S, Mitani M, Nagai N, Tanaka H, Fujita T. Macromolecules, 2006, 39: 8584.
[42] Mazzolini J, Espinosa E, D'Agosto F, Boisson C. Polym. Chem., 2010, 1: 793.
[43] Zhang Y, Li H, Dong J Y, Hu Y. Polym. Chem., 2014, 5: 105.
[44] Mazzolini J, Boyron O, Monteil V, Gigmes D, Bertin D, D'Agosto F. Macromolecules, 2011, 44: 3381.
[45] Lin B, Lawler D, McGovern G P, Bradley C A, Hobbs C E. Tetrahedron Lett., 2013, 54: 970.
[46] Huang H, Zhang C, Qin Y, Niu H, Dong J Y. Chin. J. Polym. Sci., 2013, 31: 550.
[47] 陈健壮(Chen J Z),崔崑(Cui K),张淑媛( Zhang S Y),马志(Ma Z). 化学进展 (Progress in Chemistry), 2008, 20: 1740.
[48] Shea K J. Chem. Eur. J., 2000, 6: 1113.
[49] Mazzolini J, Mokthari I, Briquel R, Boyron O, Delolme F, Monteil V, Bertin D, Gigmes D, D'Agosto F, Boisson C. Macromolecules, 2010, 43: 7495.
[50] Briquel R, Mazzolini J, Le Bris T, Boyron O, Boisson F, Delolme F, D'Agosto F, Boisson C, Spitz R. Angew. Chem. Int. Ed., 2008, 47: 9311.
[51] Akbar S, Beyou E, Chaumont P, Mazzolini J, Espinosa E, D'Agosto F, Boisson C. J. Polym. Sci. Part A: Polym. Chem., 2011, 49: 957.
[52] Guimont A, Beyou E, Cassagnau P, Martin G, Sonntag P, D'Agosto F, Boisson C. Polym. Chem., 2013, 4: 2828.
[53] Castelaín M, Martínez G, Marco C, Ellis G, Salavagione H J. Macromolecules, 2013, 46: 8980.
[54] Castelaín M, Martinez G, Ellis G, Salavagione H J. Chem. Commun., 2013, 49: 8967.
[55] Fukuyama Y, Kawai T, Kuroda S, Toyonaga M, Taniike T, Terano M. J. Therm. Anal. Calorim., 2013, 113: 1511.
[56] Taniike T, Toyonaga M, Terano M. Polymer, 2014, 55: 1012.
[57] Umemori M, Taniike T, Terano M. Polym. Bull., 2012, 68: 1093.
[58] Song P, Liu L, Huang G, Fu S, Yu Y, Guo Q. Ind. Eng. Chem. Res., 2013, 52: 14384.
[59] Li Y, Xie X M, Guo B H. Polymer, 2001, 42: 3419.
[60] Moad G. Prog. Polym. Sci., 1999, 24: 81.
[61] Zhou H J, Rong M Z, Zhang M Q, Ruan W H, Friedrich K. Polym. Eng. Sci., 2007, 47: 499.
[62] Chen J H, Rong M Z, Ruan W H, Mai Y L, Zhang M Q. Macromol. Chem. Phys., 2008, 209: 1826.
[63] Akbar S, Beyou E, Cassagnau P, Chaumont P, Farzi G. Polymer, 2009, 50: 2535.
[64] Guimont A, Beyou E, Alcouffe P, Cassagnau P, Serghei A, Martin G, Sonntag P. Polymer, 2014, 55: 22.
[65] Stojanovi D? D B, Orlovi D? A, Zrili D? M, Bala D? I, Tang C Y, Uskokovi D? P S, Aleksi D? R. Polym. Compos., 2013, 34: 1710.
[66] 谢存毅(Xie C Y). 物理(Physics), 2001, 30: 432.
[67] Yang B X, Pramoda K P, Xu G Q, Goh S H. Adv. Funct. Mater., 2007, 17: 2062.
[68] Yang B X, Shi J H, Pramoda K P, Goh S H. Compos. Sci. Technol., 2008, 68: 2490.
[69] Causin V, Yang B X, Marega C, Goh S H, Marigo A. Eur. Polym. J., 2009, 45: 2155.
[70] Li C, Zhao Q, Deng H, Chen C, Wang K, Zhang Q, Chen F, Fu Q. Polym. Int., 2011, 60: 1629.
[71] Li C, Deng H, Wang K, Zhang Q, Chen F, Fu Q. J. Appl. Polym. Sci., 2011, 121: 2104.
[72] Chen C, Pang H, Liu Z, Li Y B, Chen Y H, Zhang W Q, Ji X, Tang J H. J. Appl. Polym. Sci., 2013, 130: 961.
[73] Hermann A, Chaudhuri T, Spagnol P. Int. J. Hydrogen Energ., 2005, 30: 1297.
[74] Hsiao M C, Liao S H, Lin Y F, Weng C C, Tsai H M, Ma C C M, Lee S H, Yen M Y, Liu P I. Energ. Environ. Sci., 2011, 4: 543.
[75] Liao S H, Yen C Y, Hung C H, Weng C C, Tsai M C, Lin Y F, Ma C C M, Pan C, Su A. J. Mater. Chem., 2008, 18: 3993.
[76] Munteanu D. Reactive Modifiers for Polymers (Ed. Al-Malaika S). Netherlands: Springer, 1997. 196.
[77] Kuan C F, Kuan H C, Ma C C M, Chen C H, Wu H L. Mater. Lett., 2007, 61: 2744.
[78] Chen D, Feng H, Li J. Chem. Rev., 2012, 112: 6027.
[79] Lin Y, Jin J, Song M J. Mater. Chem., 2011, 21: 3455.
[80] Hsiao M C, Liao S H, Lin Y F, Wang C A, Pu N W, Tsai H M, Ma C C. Nanoscale, 2011, 3: 1516.
[81] Ryu S H, Shanmugharaj A M. Mater. Chem. Phys., 2014, 146: 478.
[82] Kim J, Cote L J, Huang J. Acc. Chem. Res., 2012, 45: 1356.
[83] Cao Y, Feng J, Wu P. J. Mater. Chem., 2012, 22: 14997.
[84] Yuan B, Bao C, Song L, Hong N, Liew K M, Hu Y. Chem. Eng. J., 2014, 237: 411.
[85] Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok H A. Chem. Rev., 2009, 109: 5437.
[86] Brittain W J, Minko S. J. Polym. Sci. Part A: Polym. Chem., 2007, 45: 3505.
[87] Olivier A, Meyer F, Raquez J M, Damman P, Dubois P. Prog. Polym. Sci., 2012, 37: 157.
[88] Tuberquia J C, Nizamidin N, Jennings G K. Langmuir, 2010, 26: 14039.
[89] Ye Z, Xu L, Dong Z, Xiang P. Chem. Commun., 2013, 49: 6235.
[90] Zhang Y, Ye Z. Macromolecules, 2008, 41: 6331.
[91] Xiang P, Petrie K, Kontopoulou M, Ye Z, Subramanian R. Polym. Chem., 2013, 4: 1381.
[92] Zheng J, Wang Y, Ye L, Lin Y, Tang T, Zhang J. Macromol. Rapid Commun., 2014, 35: 1198.
[93] 陈立谊(Chen L Y), 杨海健(Yang H J), 孙文华(Sun W H). 化学进展(Progress in Chemistry), 2003, 15: 401.
[94] Hu H, Wang X, Wang J, Wan L, Liu F, Zheng H, Chen R, Xu C. Chem. Phys. Lett., 2010, 484: 247.
[95] Mittal V. Polymer Nanocomposites by Emulsion and Suspension Polymerization. (Ed. Mittal V). Cambridge: The Royal Society of Chemistry, 2011. 1.
[96] Monteil V, Stumbaum J, Thomann R, Mecking S. Macromolecules, 2006, 39: 2056.
[97] Li S Y, Chen H, Bi W G, Zhou J J, Wang Y H, Li J Z, Cheng W X, Li M Y, Li L, Tang T. J. Polym. Sci. Part A: Polym. Chem., 2007, 45: 5459.
[98] Tang J J, Li S Y, Wang Y H, Tang T. Chin. J. Polym. Sci., 2013, 31: 1329.

[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[3] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[4] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[5] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[6] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[7] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[8] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[9] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[10] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[11] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[12] Shiying Yang, Junqin Liu, Qianfeng Li, Yang Li. Modification Mechanism of Zero-Valent Aluminum by Mechanical Ball Milling [J]. Progress in Chemistry, 2021, 33(10): 1741-1755.
[13] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[14] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[15] Hao Sun, Chengwei Song, Yuepeng Pang, Shiyou Zheng. Functional Design of Separator for Li-S Batteries [J]. Progress in Chemistry, 2020, 32(9): 1402-1411.