中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (12): 2053-2067 DOI: 10.7536/PC130515 Previous Articles   Next Articles

• Review •

Synthesis and Biomedical Applications of Magnetic Nanocomposites with Complex Morphologies

Li Tian1,2, Wang Yilong*2, Guo Fangfang2, Shi Donglu2   

  1. 1. School of Materials Science and Technology, Tongji University, Shanghai 200092;
    2. Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200092, China
  • Received: Revised: Online: Published:
PDF ( 898 ) Cited
Export

EndNote

Ris

BibTeX

Magnetic nanocomposites with complex structures and surface functionalities show the unique physical and chemical properties. Their applications in the drug carrier, bio-detection, in vivo imaging and catalysts are very promising. In this review, several typical magnetic composites with complex architectures, including Janus structure, Yolk-Shell shape and mesoporous structure composite are thoroughly discussed, the progresses in preparation method and biomedical applications are reviewed. The outlook of improvement of fabrication technology and potential applications are also concerned.

Contents
1 Introduction
2 The study of Janus magnetic composites
2.1 Inorganic-inorganic magnetic Janus particles
2.2 Inorganic-organic magnetic Janus particles
3 The study of Yolk-Shell magnetic composites
4 The study of magnetic mesoporous composites
4.1 Core-Shell mesoporous composites
4.2 Janus mesoporous composites
4.3 Yolk-Shell mesoporous composites
4.4 Other mesoporous composites
5 The application of magnetic composites
5.1 The application of Janus magnetic composites
5.2 The application of Yolk-Shell magnetic composites
5.3 The application of magnetic mesoporous compo-sites
6 Conclusions

CLC Number: 

[1] Perro A, Reculusa S, Ravaine S, Bourgeat-Lami E, Duguet E. J. Mater. Chem., 2005, 15: 3745—3760
[2] De Gennes P G. Rev. Mod. Phys., 1992, 64: 645—648
[3] Hu J, Zhou S X, Sun Y Y, Fang X S, Wu L M. Chem. Soc. Rev., 2011, 41: 4356—4378
[4] Gu H, Yang Z, Gao J, Chang C K, Xu B. J. Am. Chem. Soc., 2004, 127: 34—35
[5] Kaewsaneha C, Tangboriboonrat P, Polpanich D, Eissa M, Elaissari A. Colloids Surf., A, 2013, DOI: 10.1016/j. colsurfa. 201301004.
[6] Ohnuma A, Abe R, Shibayama T, Ohtani B. Chem. Commun., 2007, 3491—3493
[7] Glaser N, Adams D J, Boker A, Krausch G. Langmuir, 2006, 22: 5227—5229
[8] Lattuada M, Hatton T A. Nano Today, 2011, 6: 286—308
[9] Yang J, Elim H I, Zhang Q B, Lee J Y, Ji W. J. Am. Chem. Soc., 2006, 128: 11921—11926
[10] Shi W L, Zeng H, Sahoo Y, Ohulchanskyy T Y, Ding Y, Wang Z L, Swihart M, Prasad P N. Nano Lett., 2006, 6: 875—881
[11] Kwon K W, Shim M. J. Am. Chem. Soc., 2005, 127: 10269—10275
[12] Gu H W, Zheng R K, Zhang X X, Xu B. J. Am. Chem. Soc., 2004, 126: 5664—5665
[13] Selvan S T, Patra P K, Ang C Y, Ying J Y. Angew. Chem. Int. Ed., 2007, 46: 2448—2452
[14] Yu H, Chen M, Rice P M, Wang S X, White R L, Sun S H. Nano Lett., 2005, 5: 379—382
[15] Wang C, Xu C J, Zeng H, Sun S H. Adv. Mater., 2009, 21: 3045—3052
[16] Nandwana V, Chaubey G S, Yano K, Rong C B, Liu J P. J. Appl. Phys., 2009, 105: art. no. 014303
[17] Figuerola A, Fiore A, Di Corato R, Falqui A, Giannini C, Micotti E, Lascialfari A, Corti M, Cingolani R, Pellegrino T, Cozzoli P D, Manna L. J. Am. Chem. Soc., 2008, 130: 1477—1487
[18] Zhao N, Gao M Y. Adv. Mater., 2009, 21: 184—193
[19] Lattuada M, Hatton T A. J. Am. Chem. Soc, 2007, 129: 12878—12889
[20] Feyen M, Weidenthaler C, Schüth F, Lu A H. J. Am. Chem. Soc, 2010, 132: 6791—6799
[21] Montagne F, Mondain-Monval O, Pichot C, Elassari A. J. Polym. Sci. Part A: Polym. Chem., 2006, 44: 2642—2656
[22] Kaewsaneha C, Tangboriboonrat P, Polpanich D, Eissa M, Elaissari A. ACS Appl. Mater. Interfaces, 2013, 5: 1857—1869
[23] Ge J P, Hu Y X, Zhang T R, Yin Y D. J. Am. Chem. Soc., 2007, 129: 8974—8975
[24] Braconnot S, Eissa M M, Elaissari A. Colloid Polym. Sci., 2013, 291: 193—203
[25] Teo B M, Suh S K, Hatton T A, Ashokkumar M, Grieser F. Langmuir, 2011, 27: 30—33
[26] Wang Y L, Xu H, Ma Y S, Guo F F, Wang F, Shi D L. Langmuir, 2011, 27: 7207—7212
[27] Zhang L, Zhang F, Dong W F, Song J F, Huo Q S, Sun H B. Chem. Commun., 2011, 47: 1225—1227
[28] Ning Y, Wang C, Ngai T, Tong Z. Langmuir., 2013, 29: 5138—5144
[29] Chang E P, Hatton T A. Langmuir, 2012, 28: 9748—9758
[30] Furlan M, Kluge J, Mazzotti M, Lattuada M. J. Supercrit. Fluids, 2010, 54: 348—356
[31] Isojima T, Suh S K, Sande J B V, Hatton T A. Langmuir, 2009, 25: 8292—8298
[32] Yabu H, Kanahara M, Shimomura M, Arita T, Harano K, Nakamura E, Higuchi T, Jinnai H. ACS Appl. Mater. Interfaces, 2013, 5: 3262—3266
[33] Kamata K, Lu Y, Xia Y N. J. Am. Chem. Soc., 2003, 125:2384—2385
[34] Arnal P M, Comotti M, Schüth F. Angew. Chem. Int. Ed., 2006, 118: 8404—8407
[35] Lee J, Park J C, Bang J U, Song H. Chem. Mater., 2008, 20: 5839—5844
[36] Chen Y, Chen H R, Guo L M, He Q J, Chen F, Zhou J, Feng J W, Shi J L. ACS Nano, 2010, 4: 529—539
[37] Liu J, Qiao S Z, Chen J S, Lou X W, Xing X R, Lu G Q. Chem. Commun., 2011, 47: 12578—12591
[38] Zhu Y F, Kockrick E, Ikoma T, Hanagata N, Kaskel S. Chem. Mater., 2009, 21: 2547—2553
[39] Wang Y, Tang C, Deng Q, Liang C, Ng D H L, Kwong F, Wang H, Cai W, Zhang L, Wang G. Langmuir, 2010, 26: 14830—14834
[40] Wang Z, Luan D, Madhavi S, Li C M, Lou X W. Chem. Commun., 2011, 47: 8061—8063
[41] De Vos D E, Thibault-Starzyk F, Knops-Gerrits P P, Parton R F, Jacobs P A. Macromol. Symp., 1994, 80: 157—184
[42] Guo L, Cui X, Li Y, He Q, Zhang L, Bu W, Shi J. Chem. Asian J., 2009, 4: 1480—1485
[43] Yin Y, Rioux R M, Erdonmez C K, Hughes S, Somorjai G A, Alivisatos A P. Science, 2004, 304: 711—714
[44] Yin Y, Erdonmez C K, Cabot A, Hughes S, Alivisatos A P. Adv. Funct. Mater., 2006, 16: 1389—1399
[45] Gao J, Liang G, Cheung J S, Pan Y, Kuang Y, Zhao F, Zhang B, Zhang X, Wu E X, Xu B. J. Am. Chem. Soc., 2008, 130: 11828—11833
[46] Gao J, Liang G, Zhang B, Kuang Y, Zhang X, Xu B. J. Am. Chem. Soc., 2007, 129: 1428—1433
[47] Lou X W, Archer L A, Yang Z C. Adv. Mater., 2008, 20: 3987—4019
[48] Caruso F, Caruso R A, Möhwald H. Science, 1998, 282: 1111—1114
[49] Lou X W, Archer L A. Adv. Mater., 2008, 20: 1853—1858
[50] Choi W S, Koo H Y, Zhongbin Z, Li Y, Kim D Y. Adv. Funct. Mater., 2007, 17: 1743—1749
[51] Lou X W, Yuan C, Zhang Q, Archer L A. Angew. Chem. Int. Ed., 2006, 45: 3825—3829
[52] Chen Y, Chen H, Guo L, He Q, Chen F, Zhou J, Feng J, Shi J. ACS Nano, 2009, 4: 529—539
[53] Wang Y L, Wang F, Chen B D, Xu H, Shi D L. Chem. Commun., 2011, 47: 10350—10352
[54] Sun Q, Guo C Z, Wang G H, Li W C, Bongard H J, Lu A H. Chem. Eur. J., 2013, 19: 6217—6220
[55] Liu J, Cheng J, Che R, Xu J, Liu M, Liu Z. ACS Appl. Mater. Inter., 2013, 5: 2503—2509
[56] Robinson D B, Persson H H J, Zeng H, Li G, Pourmand N, Sun S, Wang S X. Langmuir, 2005, 21: 3096—3103
[57] Liu J, Wang B, Hartono S B, Liu T, Kantharidis P, Middelberg A P J, Lu G Q, He L, Qiao S Z. Biomaterials, 2012, 33: 970—978
[58] Li X, Xie Q R, Zhang J, Xia W, Gu H. Biomaterials, 2011, 32: 9546—9556
[59] Rosenholm J M, Mamaeva V, Sahlgren C, Linden M. Nanomed., 2012, 7: 111—120
[60] Andersson J, Rosenholm J, Areva S, Linden M. Chem. Mater., 2004, 16: 4160—4167
[61] Chen K, Zhang J, Gu H. J. Mater. Chem., 2012, 22: 22005—22012
[62] Kecht J, Schlossbauer A, Bein T. Chem. Mater., 2008, 20: 7207—7214
[63] Rosenholm J M, Penninkangas A, Linden M. Chem. Commun., 2006, 909—3911
[64] Kang X, Cheng Z, Yang D, Ma P a, Shang M, Peng C, Dai Y, Lin J. Adv. Funct. Mater., 2012, 22: 1539—1539
[65] Zhao W R, Gu J L, Zhang L X, Chen H R, Shi J L. J. Am. Chem. Soc., 2005, 127: 8916—8917
[66] Fuertes A B, Sevilla M, Valdes-Solis T, Tartaj P. Chem. Mater., 2007, 19(22): 5418—5423
[67] Chen L B, Zhang F, Wang C C. Small, 2009, 5: 621—628
[68] Kim J, Lee J E, Lee J, Yu J H, Kim B C, An K, Hwang Y, Shin C H, Park J G, Hyeon T. J. Am. Chem. Soc., 2006, 128: 688—689
[69] Kim J, Kim H S, Lee N, Kim T, Kim H, Yu T, Song I C, Moon W K, Hyeon T. Angew. Chem. Int. Ed., 2008, 47: 8438—8441
[70] Lu A H, Li W C, Kiefer A, Schmidt W, Bill E, Fink G, Schüth F. J. Am. Chem. Soc., 2004, 126: 8616—8617
[71] Kim J, Lee J, Na H B, Kim B C, Youn J K, Kwak J H, Moon K, Lee E, Kim J, Park J, Dohnalkova A, Park H G, Gu M B, Chang H N, Grate J W, Hyeon T. Small, 2005, 1: 1203—1207
[72] Lin Y S, Wu S H, Hung Y, Chou Y H, Chang C, Lin M L, Tsai C P, Mou C Y. Chem. Mater., 2006, 18: 5170—5172
[73] Zhang L, Qiao S Z, Jin Y G, Chen Z G, Gu H C, Lu G Q. Adv. Mater., 2008, 20: 805—809
[74] Lu A H, Li W C, Matoussevitch N, Spliethoff B, Bonnemann H, Schüth F. Chem. Commun., 2005, 98—100
[75] Souza K C, Salazar-Alvarez G, Ardisson J D, Macedo W A, Sousa E M B. Nanotechnology, 2008, 19: art. no. 185603
[76] Zhao W R, Chen H R, Li Y S, Li L, Lang M D, Shi J L. Adv. Funct. Mater., 2008, 18: 2780—2788
[77] Zhou J, Wu W, Caruntu D, Yu M H, Martin A, Chen J F, O'Connor C J, Zhou W L. J. Phys. Chem. C, 2007, 111: 17473—17477
[78] Xia L Y, Zhang M Q, Yuan C, Rong M Z. J. Mater. Chem., 2011, 21: 9020—9026
[79] Wang F, Tang Y, Zhang B, Chen B, Wang Y. J. Colloid. Interface Sci., 2012, 386: 129—134
[80] Zhang L, Zhang F, Dong W F, Song J F, Huo Q S, Sun H B. Chem. Commun., 2011, 47: 1225—1227
[81] Liu J, Qiao S Z, Hu Q H, Lu G Q. Small, 2011, 7: 425—443
[82] Lin Y S, Wu S H, Tseng C T, Hung Y, Chang C, Mou C Y. Chem. Commun., 2009, 3542—3544
[83] Yeo K M, Shin J, Lee I S. Chem. Commun., 2010, 46: 64—66
[84] Yang Y, Liu J, Li X, Liu X, Yang Q. Chem. Mater., 2011, 23: 3676—3684
[85] Zhang Q, Ge J, Goebl J, Hu Y, Lu Z, Yin Y. Nano Res., 2009, 2: 583—591
[86] Salgueiriño Maceira V, Correa Duarte M A, Spasova M, Liz Marzan L M, Farle M. Adv. Funct. Mater., 2006, 16: 509—514
[87] Salgueirino Maceira V, Correa Duarte M A, Farle M, Lopez Quintela A, Sieradzki K, Diaz R. Chem. Mater., 2006, 18: 2701—2706
[88] Slowing I I, Vivero-Escoto J L, Wu C W, Lin V S Y. Adv. Drug Delivery Rev., 2008, 60: 1278—1288
[89] Giri S, Trewyn B G, Stellmaker M P, Lin V S Y. Angew. Chem. Int. Ed., 2005, 44: 5038—5044
[90] Zhu Y, Kockrick E, Ikoma T, Hanagata N, Kaskel S. Chem. Mater., 2009, 21: 2547—2553
[91] Sen T, Bruce I J. Microporous Mesoporous Mater., 2009, 120: 246—251
[92] Hao R, Xing R J, Xu Z C, Hou Y L, Gao S, Sun S H. Adv. Mater., 2010, 22: 2729—2742
[93] Xu C J, Wang B D, Sun S H. J. Am. Chem. Soc., 2009, 131: 4216—4217
[94] Kelland L. Clin. Cancer Res., 2007, 13: 4960—4963
[95] Wang D, Lippard S J. Nat. Rev. Drug Discovery, 2005, 4: 307—320
[96] Jiang J, Gu H, Shao H, Devlin E, Papaefthymiou G C, Ying J Y. Adv. Mater., 2008, 20: 4403—4407
[97] Hu S H, Gao X H. J. Am. Chem. Soc., 2010, 132: 7234—7237
[98] Sotiriou G A, Hirt A M, Lozach P Y, Teleki A, Krumeich F, Pratsinis S E. Chem. Mater., 2011, 23: 1985—1992
[99] Wang F, Pauletti G M, Wang J, Zhang J, Ewing R C, Wang Y, Shi D. Adv. Mater., 2013, 25: 3485—3489
[100] Lou X W, Archer L A, Yang Z. Adv. Mater., 2008, 20: 3987—4019
[101] Wu H, Liu G, Zhang S, Shi J, Zhang L, Chen Y, Chen F, Chen H. J. Mater. Chem., 2011, 21: 3037—3045
[102] Zhu Y, Ikoma T, Hanagata N, Kaskel S. Small, 2009, 6: 471—478
[103] Wu S H, Hung Y, Mou C Y. Chem. Commun., 2011, 47: 9972—9985
[104] Zhang F, Braun G B, Pallaoro A, Zhang Y, Shi Y, Cui D, Moskovits M, Zhao D, Stucky G D. Nano Lett., 2011, 12: 61—67
[105] Lin Y S, Haynes C L. Chem. Mater., 2009, 21: 3979—3986
[106] Hu S H, Chen Y Y, Liu T C, Tung T H, Liu D M, Chen S Y. Chem. Commun., 2011, 47: 1776—1778
[107] Wu H, Zhang S, Zhang J, Liu G, Shi J, Zhang L, Cui X, Ruan M, He Q, Bu W. Adv. Funct. Mater., 2011, 21: 1850—1862
[108] Wei L M, Hu N T, Zhang Y F. Materials, 2010, 3: 4066—4079
[109] Liong M, Lu J, Kovochich M, Xia T, Ruehm S G, Nel A E, Tamanoi F, Zink J I. ACS Nano, 2008, 2: 889—896
[110] Zhang X, Clime L, Roberge H, Normandin F, Yahia L, Sacher E, Veres T. J. Phys. Chem. C, 2011, 115: 1436—1443

[1] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[2] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[3] Pingping Zhao, Junxing Yang, Jianhui Shi, Jingyi Zhu. Construction and Application of Dendrimer-Based SPECT Imaging Agent [J]. Progress in Chemistry, 2021, 33(3): 394-405.
[4] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[5] Qiangqiang Hu, Heze Guo, Hongjing Dou. Size Control and Biomedical Applications of ZIF-8 Nanoparticles [J]. Progress in Chemistry, 2020, 32(5): 656-664.
[6] Xiao Xiao, Changsheng Chen, Weiqiang Liu, Yeshun Zhang. Structure, Features and Biomedical Applications of Silk Sericin [J]. Progress in Chemistry, 2017, 29(5): 513-523.
[7] Liu Yingya, Fan Xiao, Li Yanyan, Qu Lulu, Qin Haiyue, Cao Yingnan, Li Haitao. Multispectral Photoacoustic Tomography and Its Development in Biomedical Application [J]. Progress in Chemistry, 2015, 27(10): 1459-1469.
[8] Song Lifeng, Zhao Jin, Yuan Xiaoyan. Strengthening of Hydrogels Based on Polysaccharide and Polypeptide [J]. Progress in Chemistry, 2014, 26(0203): 385-393.
[9] Zhou Li, Deng Huiping*, Wan Junli, Zhang Ruijin. Synthesis and Adsorption of Graphene-Based Iron Oxide Magnetic Nanocomposites [J]. Progress in Chemistry, 2013, 25(01): 145-155.
[10] Dong Haiqing, Li Yongyong, Li Lan, Shi Donglu. Cyclodextrins/Polymer Based (Pseudo)Polyrotaxanes for Biomedical Applications [J]. Progress in Chemistry, 2011, 23(5): 914-922.
[11] Du Kai, Zhu Yanhong, Xu Huibi, Yang Xiangliang. Multifunctional Magnetic Nanoparticles: Synthesis, Modification and Biomedical Applications [J]. Progress in Chemistry, 2011, 23(11): 2287-2298.
[12] Huang Yi|Huang Jinhua|Xie Qingji**|Yao Shouzhuo**. Carbohydrate-Protein Interactions [J]. Progress in Chemistry, 2008, 20(06): 942-950.