中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (11): 1749-1760 DOI: 10.7536/PC180118 Previous Articles   Next Articles

• Review •

Synthesis and Application of Molecularly Imprinted Polymers Based on Titanium Dioxide and Its Composites

Jie Guan, Lingna Sun, Qin Xu*, Xiaoya Hu*   

  1. College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225000, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21675140, 21575124).
PDF ( 689 ) Cited
Export

EndNote

Ris

BibTeX

Molecular imprinting technology (MIT) is an interdisciplinary approach which has been recently developed based on the advantages of macromolecular synthesis, molecular design, molecular recognition and biological simulation and bioengineering. The molecularly imprinted polymers (MIPs) obtained by MIT process have good affinity, high selectivity and excellent stability. TiO2 and its nanocomposites have been widely used in photocatalysis, photoelectric conversion and other fields due to their stable chemical properties and low chemical toxicity. MIPs based on TiO2 and its nanocomposites exhibit enhanced stability and photocatalytic activity, good selectivity, high accumulation and degradation properties towards low concentrations of pollutants. Furthermore, the application of TiO2 and its composite as the imprinting support could reduce the nonspecific adsorption, increase the relative adsorption capacity and accelerate the mass transfer rate. They have obtained a strong position in material science and technology and showed broad applications. This article provides a short review of the developments of MIPs based on TiO2 and its nanocomposites in recent two decades. Special attention is paid to their synthesis processes including different surface imprinting, sol-gel polymerization and liquid deposition process. Their applications in photocatalytic degradation and sensor construction areas have also been summarized. The prospects for their future development are also proposed.
Contents
1 Introduction
2 Synthesis of molecularly imprinted polymers based on titanium dioxide and its nanocomposites
2.1 Surface molecular imprinting techniques
2.2 Sol-gel polymerization
2.3 Liquid deposition method
3 Application of molecularly imprinted polymers based on titanium dioxide and its nanocomposites
3.1 Photocatalytic degradation
3.2 Sensors
3.3 Other fields
4 Conclusion and outlook

CLC Number: 

[1] Cheong W J, Yang S H, Ali F. J. Sep. Sci., 2013, 36:609.
[2] Xiao D L,Jiang Y, Bi Y P,Microchim. Acta, 2018, 185:247.
[3] Yang S, Wang Y H, Jiang Y D, Li S, Liu W. Polymers, 2016, 8:216.
[4] Mosbach K, Ramström O. Biotechnology, 1996, 14:163.
[5] Beyazit S, Bui B T S, Karsten H, Gonzato C. Prog. Polym. Sci., 2016, 62:1
[6] Chen L X, Wang X, Lu W, Wu X, Li J. Chem. Soc. Rev., 2016, 45:2137.
[7] Chen L X, Xu S, Li J. Chem. Soc. Rev., 2011, 40:2922.
[8] Wang H, Xu Q, Wang J, Du W, Liu F, Hu X. Biosens. Bioelectron., 2017, 100:105.
[9] Li J, Xu Z, Liu M, Deng P, Tang S, Jiang J, Feng H, Qian D, He L. Biosens. Bioelectron., 2016, 90:210.
[10] Yang Y Q, Wang Z Z, Niu H, Zhang, H Q. Biosens. Bioelectron., 2016, 86:580.
[11] Pluhar B, Ziener U, Mizaikoff B. J. Mater. Chem. B, 2015, 3:6248.
[12] Shen X T, Zhu L H, Liu G X, Yu H W, Tang H Q. Environ. Sci. Technol., 2008, 42:1687.
[13] Mirzajani R, Bagheban M. Int. J. Environ. Anal. Chem., 2016, 42:1.
[14] Qiu X Z, Xu X Y, Liang Y, Guo H S. Food Chem., 2018, 258:295.
[15] Gao R X, Kong X, Wang X, He X W, Chen L X, Zhang Y K. J. Mater. Chem., 2011, 21:17863.
[16] Lahcen A A, Baleg A A, Baker P, Lwuoha E, Amine A. Sens. Actuators, B, 2017, 241:698.
[17] Ning F J, Peng H H, Dong L L, Zhang Z, Li J H, Chen L X, Xiong H. J. Agric. Food. Chem., 2014, 62:11138.
[18] Yáñez-Sedeño P, Campuzano S, Pingarrón J M. Anal. Chim. Acta, 2017, 960:1.
[19] Li J, Dong R, Wang X, Xiong H, Xu S, Shen D, Song X, Chen L. RSC Adv., 2015, 5:10611.
[20] Xu S F, Lu H Z, Chen L X, Wang X C. RSC Adv., 2014, 4:45266.
[21] Shklover V, Nazeeruddin M K, Zakeeruddin S M, Barbé C, Kay A, Haibach T, Steurer W, Hermann R, Nissen H U, Grätzel M. Chem. Mater., 1997, 9:430.
[22] Wackerlig J, Schirhagl R. Anal. Chem., 2016, 88:250.
[23] Wackerlig J, Lieberzeit P A. Sens. Actuators, B, 2015, 207:144.
[24] Gui R J, Jin H, Guo H J, Wang Z H. Biosens. Bioelectron., 2018, 100:56.
[25] Dai H, Xiao D L, He H, Li H, Yuan D H, Zhang C. Microchim. Acta, 2015, 182:893.
[26] Yang Y, Che A, Wu J, Xu Z. Chemistry, 2007, 70:324.
[27] 丛姣姣(Cong J J),罗静(Luo J),高雅涵(Gao Y H),刘晓亚(Liu X Y).高分子通报(Chinese Polymer Bulletin), 2015:10.
[28] 侯会卿(Hou H Q),苏黎明(Su L M),黄嫣嫣(Huang Y Y),金钰龙(Jin Y L),赵睿(Zhao R).色谱(Chinese Journal of Chromatography), 2016, 34:1206.
[29] 明魏娜(Ming W N),王晓艳(Wang X Y),明永飞(Ming Y F),李金花(Li J H),陈令新(Chen L X). 化学进展(Progress in Chemistry), 2016, 28:552.
[30] Luo X, Li C, Duan Y, Zhang H, Zhang D, Zhang C, Sun G, Sun X. J. Appl. Polym. Sci., 2016, 43126.
[31] Shiomi T, Matsui M, Mizukami F, Sakaguchi K. Biomaterials, 2005, 26:5564.
[32] Wang Y T, Zhou Y X, Sokolov J, Rigas B, Levon K, Rafailovich M. Biosens. Bioelectron., 2008, 24:162.
[33] Liu D, Ulbricht M. RSC Adv., 2017, 7:11012.
[34] Bossi A, Piletsky S A, Piletska E V, Righetti P G, Turner A P. Anal. Chem., 2001, 73:5281.
[35] Li Y, Yang H H, You Q H, Wang X R. Anal. Chem., 2006, 78:317.
[36] 王嘉楠(Wang J N),李媛媛(Li Y Y), 倪刚(Ni G),李玲玲(Li L L). 化工新型材料(New Chemical Materials), 2015,43:49.
[37] Yao Q J, Zhou Y M, Sun Y Q, Ye X Y. Inorg. Organomet. Polym. Mater., 2009, 19:466.
[38] Li Y, Yin X F, Chen F R, Yang H H, Zhuang Z X, Wang X R. Macromolecules, 2006. 39:4497.
[39] Huang Z J, Zhang Z M, Xia Q, Li C L, Yun Y B. J. Appl. Polym. Sci., 2017, 134:1097.
[40] Du T, Cheng J, Wu M, Wang X, Zhou H, Cheng M. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 951/952:104.
[41] Moein M M, Javanbakht M, Akbari-Adergani B. J. Chromatogr. B, 2011, 879:777.
[42] Corcione C E, Striani R, Frigione M. Prog. Org. Coat., 2014, 77:1117.
[43] Lee S W, Park J W, Park C H, Lim D H, Kim H J, Song J Y, Lee J H. Int. J. Adhes. Adhes., 2013, 44:138.
[44] Shen X T, Zhu L H, Li J, Tang H Q. Chem. Commun., 2007, 11:1163.
[45] 吕运开(Lv Y K), 严秀平(Yan X P). 分析化学(Chinese Journal of Analytical Chemistry), 2005, 33:254.
[46] Ansari S, Karimi M. Talanta, 2016, 164:612.
[47] Wang Z, HelmerssonU, Käll P O. Thin Solid Films, 2009, 405:50.
[48] Takahara N, Wang T, Lee S W. Kobunshi Ronbunshu, 2013, 70:214.
[49] 张磊(Zhang L), 周文静(Zhou W J),龚雪云(Gong X Y), 缪娟(Miu J). 化学研究(Chemical Research), 2014, 25:504.
[50] Liu Y T, Liu R H, Liu C B, Luo S L, Yang L X, Sui F, Teng Y R, Yang R B, Cai Q Y. J. Hazard. Mater., 2010, 182:912.
[51] 冯莎莎(Feng S S), 梁春凤(Liang C F),梁顺超(Liang S C),魏小平(Wei X P),李建平(Li J P). 分析测试学报(Journal of Instrumental Analysis), 2017, 36:684.
[52] Cai Z F, Dai H J, Si S H, Ren F L. Appl. Surf. Sci., 2008, 254:4457.
[53] 周婉媛(Zhou W Y), 尹佳音(Yi J Y),伊玉(Yi Y),姬广凯(Ji G K),李晔(Li Y),许士洪(Xu S H). 武汉理工大学学报(Journal of Wuhan University of Technology), 2014, 2:111.
[54] 黄利强(Huang L Q), 林鹏(Lin P). 厦门大学学报(自然版)(Journal of Xiamen University(Natural Science)), 2012, 51:224.
[55] Maki H, Okumura Y, Ikuta H, Mizuhata M. J. Phys. Chem. C, 2014, 118:11964.
[56] Shen X T, Zhu L H, Yu H W, Tang H Q, Liu S S, Li W Y. New J. Chem., 2009, 33:1673.
[57] 余琼卫(Yu Q W), 冯钰锜(Feng Y Q). 化学进展(Progress in Chemistry), 2011, 23:1211.
[58] Wang C H, Li C Y, Wang F, Wang C F. Appl. Surf. Sci., 2006, 253:2282.
[59] Wang C H, Li C Y, Wei L F, Wang C F. Microchim. Acta, 2007, 158:307.
[60] Wang H T, Wu X, Zhao H M, Quan X. Chin. Sci. Bull., 2012, 57:601.
[61] Feng L A, Liu Y J, Hu J M. Langmuir, 2004, 20:1786.
[62] Tatemichi M, Sakamoto M A, Mizuhata M, Deki S, Takeuchi T. J. Am. Chem. Soc., 2007, 129:10906.
[63] Fujishima A, Honda K. Nature, 1972, 238:37.
[64] Zhang J, Xiao X, Nan J. J. Hazard. Mater., 2010, 176:617.
[65] Lee C K, Fen S K, Chao H P, Liu S S, Huang F C. Adsorption, 2012, 18:349.
[66] Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Chem. Rev., 1995, 95:69.
[67] Lin Z K, He Q Y, Wang L T, Wang X D, Dong Q X, Huang C J. J. Hazard. Mater., 2013, s 252/253:57.
[68] Zhang W L, Li Y, Wang Q, Wang C, Wang P F, Mao K. Environ. Sci. Pollut. Res. Int., 2013, 20:1431.
[69] He M Q, Bao L L, Sun K Y, Zhao D X, Li W B, Xia J X, Li H M. Express Polym. Lett., 2014, 8:850.
[70] Liu Y, Zhu J L, Liu X, Li H X. RSC Adv., 2016, 6:69326.
[71] Liu C, Chang V W, Gin K Y. Environ. Toxicol. Chem., 2013, 32:2226.
[72] Jian J M, Guo Y, Zeng L X, Liu L Y, Lu X W, Wang F, Zeng E Y. Environ. Int., 2017,108:51.
[73] Wu Y B, Li Y, Tian A J, Mao K, Liu J. Int. J. Photoenergy, 2016, 133:1.
[74] Li S, Fang L, Ye M M, Zhang Y. Desalin. Water Treat., 2016, 57:408.
[75] BialkBielińska A, Stolte S, Arning J, Uebers U, Böschen A, Stepnowski P, Matzke M. Chemosphere, 2011, 85:928.
[76] García-Galán M J, González B S, López R R, Díaz-Cruz S, Barceló D E. Sci. Total Environ., 2012, 437:403.
[77] 王云(Wang Y),陈芳艳(Chen F Y),丁旻炜(Ding M W),高承娟(Gao C J),李启祥(Li Q X),顾昊晨(Gu H C). 环境科技(Environmental Science and Technology), 2016, 29:6.
[78] Wu Y Y, Dong Y M, Xia X F, Liu X, Li H X. Appl. Surf. Sci., 2016, 364:829.
[79] Deng F, Lu X Y, Pei X L, Luo X B A, Luo S L, Dionysiou D D, Au C. Sci. Adv. Mater., 2016, 8:1737.
[80] Shen X T, Zhu L H, Huang C X, Tang H Q, Yu Z W, Deng F. J. Mater. Chem., 2009, 19:4843.
[81] Sharabi D, Paz Y. Appl. Catal. B-Environ., 2010, 95:169.
[82] Danielle W K,Gabriel L, Mika E M, David E C. Anal. Chem., 2012, 84:685.
[83] Zhu C, Yang G, Li H, Du D, Lin Y. Anal. Chem., 2015, 87:230.
[84] Malitesta C, Mazzotta E, Picca R A, Poma A, Chianella I, Piletsky S A. Anal. Bioanal.Chem., 2012, 402:1827.
[85] Bagheri H, Pajooheshpour N, Afkhami A, Khoshsafar H. RSC Adv., 2016, 6:51135.
[86] 李春涯(Li C Y),王长发(Wang C F),王成行(Wang C X),胡胜水(Hu S S). 全国电分析化学学术会议(Chinese National Symposium on Electroanalytical Chemistry). 2005.
[87] Wang P P, Ge L, Li M, Li W P, Li L, Wang Y H, Yu J H. J. Inorg. Organomet. Polym. Mater., 2013, 23:703.
[88] 孙兵(Sun B),艾仕云(Ai S Y). 化学进展(Progress in Chemistry), 2014, 26:834.
[89] Gomi M, Osaki Y, Mori M, Sakagami Y. Biocontrol Sci., 2012, 17:175.
[90] 赵伟伟(Zhao W W),马征远(Ma Y Z),徐静娟(Xu J J),陈洪渊(Chen H Y). 科学通报(Chinese Science Bulletin), 2014, 2:122.
[91] 张兆霞(Zhang Z X), 赵常志(Zhao C Z). 分析化学(Chinese Journal of Analytical Chemistry), 2013, 41:436.
[92] Wang G, Xu J, Chen H. Sci. China, Ser. B Chem., 2009, 52:1789.
[93] Wang G L, Jiao H J, Liu K L, Wu X M, Dong Y M, Li Z J, Zhang C. Electrochem. Commun., 2014, 41:47.
[94] Ma W, Han D, Gan S, Zhang N, Liu S, Wu T, Zhang Q, Dong X, Niu L. Chem. Commun., 2013, 49:7842.
[95] Wang P, Dai W, Ge L, Yan M, Ge S, Yu J. Analyst, 2013, 138:939.
[96] 刘桂明(Liu G M), 邓义敏(Deng Y M),李怡(Li Y).环境科学导刊(Environmental Science Survey), 2002, 21:7.
[97] Liu M C, Ding X, Yang Q W, Wang Y, Zhao G H, Yang N J. J. Hazard. Mater., 2017, 331:309.
[98] Geng H R, Miao S S, Jin S F, Yang H. Anal. Bioanal.Chem., 2015, 407:8803.97.
[99] Khoddami N, Shemirani F. Talanta, 2016, 146:244.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[4] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[5] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[6] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[7] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[8] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[9] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[10] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[11] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[12] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[13] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[14] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[15] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.