中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (0203): 450-457 DOI: 10.7536/PC130705 Previous Articles   Next Articles

• Review •

Preparation and Theranostic Applications of Polymer-Inorganic Hybrid Nanospheres

Lin Ying*1,2, Ding Yin2,3, Jiang Xiqun*2   

  1. 1. School of Biology and Chemical Engineering, AnHui Polytechnic University, Wuhu 241000, China;
    2. College of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093;
    3. State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing 210093, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.51033002,51303003) and Talented Foundation of Anhui Polytechnic University (No.2012YQQ003)

PDF ( 2404 ) Cited
Export

EndNote

Ris

BibTeX

Polymer-inorganic hybrid nanospheres have attracted increasing attention in recent years because of the synergic properties arising from both the polymeric nanospheres and inorganic nanomaterials. Especially, the nanospheres composed by the polymers that have desirable plasticity and biocompatibility, and the inorganic materials with unique optical, magnetic and electric properties are greatly useful in diagnosis and therapy disease. The combinations of functional polymers, inorganic nanomaterials and bioactive molecules can offer synergetic multifunctional nanomedical platforms, which make it possible to accomplish multimodal imaging and monitoring therapy. This article provides a review on the synthetic methodologies for building hybrid nanospheres, and their applications in targeted drug delivery, bio-imaging, cell separation, biosensing and hyperthermia. Perspective and challenges in nanomedical fields are discussed to provide the reference information for development of novel theranostic hybrid nanospheres.

Contents
1 Introduction
2 Preparation of polymer-inorganic hybrid nanospheres
2.1 Encapsulation method
2.2 In situ synthesis of inorganic nanoparticles
2.3 Surface-initiated polymerization coated method
2.4 Hole-doping method
2.5 Layer-by-layer method
2.6 Film rehydration method
3 Theranostic applications of polymer-inorganic hybrid nanospheres
3.1 Magnetic resonance imaging
3.2 CT imaging and surface enhanced raman imaging
3.3 Optical imaging in vivo
3.4 Triggered drug release and monitoring of therapy
3.5 Targeted drug delivery and hyperthermia treatment
3.6 Photothermal therapy
3.7 Cell separation
4 Conclusion and outlook

CLC Number: 

[1] Allen T M, Cullis P R. Science, 2004, 303(5665): 1818.
[2] Boyer C, Whittaker M R, Bulmus V, Liu J, Davis T P. NPG Asia Mater., 2010, 2(1): 23.
[3] Fredin N J, Zhang J, Lynn D M. J. Control. Release, 2005, 106(1/2): 214.
[4] You J, Peng C. Macromol. Symp., 2004, 219(1): 147.
[5] Zezin A, Rogacheva V, Skobeleva V, Kabanov V. Polym. Adv. Technol., 2002, 13(10/12): 919.
[6] Shiotani A, Akiyama Y, Kawano T, Niidome Y, Mori T, Katayama Y, Niidome T. Bioconjugate Chem., 2010, 21(11): 2049.
[7] Huang Y F, Sefah K, Bamrungsap S, Chang H T, Tan W. Langmuir, 2008, 24(20): 11860.
[8] Wu X, He X, Wang K, Xie C, Zhou B, Qing Z. Nanoscale, 2010, 2(10): 2244.
[9] Guével X L, Hötzer B, Jung G, Schneider M. J. Mater. Chem., 2011, 21(9): 2974.
[10] Lin C J, Yang T, Lee C, Huang S H, Sperling R A, Zanella M, Li J K, Shen J, Wang H, Yeh H, Parak W J, Chang W H. ACS Nano, 2009, 3(2): 395.
[11] Jiang J, Gu H, Shao H, Devlin E, Papaefthymiou G C, Ying J Y. Adv. Mater., 2008, 20(23): 4403.
[12] Yu J, Patel S A, Dickson R M. Angew. Chem. Int. Ed., 2007, 46(12): 2028.
[13] Noguez C, Garzón I L. Chem. Soc. Rev., 2009, 38(3): 757.
[14] Medintz I L, Uyeda H T, Goldman E R, Mattoussi H. Nat. Mater., 2005, 4(6): 435.
[15] Al-Jamal W T, Al-Jamal K T, Tian B, Lacerda L, Bomans P H, Kostarelos K. ACS Nano, 2008, 2(3): 408.
[16] Gao X, Cui Y, Levenson R M, Chung L W K, Nie S. Nat. Biotechnol., 2004, 22(8): 969.
[17] Kairdolf B A, Mancini M C, Smith A M, Nie S. Anal. Chem., 2008, 80(8): 3029.
[18] Wu X, Liu H, Liu J, Haley K N, Treadway J A, Larson J P, Ge N, Peale F, Bruchez M P. Nat. Biotechnol., 2003, 21(1): 41.
[19] Jun Y W, Huh Y M, Choi J S, Lee J H, Song H T, Kim S, Yoon S, Kim K S, Shin J S, Suh J S, Cheon J. J. Am. Chem. Soc., 2005, 127(16): 5732.
[20] Langer R S. Nature, 1998, 392(6679): 5.
[21] Tarkanyi I, Horváth A, Szatmari I, Eizert H, Vámosi G, Damjanovich S, Séqal-Bendirdjian E, Aradi J. FEBS Lett., 2005, 579(6): 1411.
[22] Wu W, Mitra N, Yan E, Zhou S. ACS Nano, 2010, 4(8): 4831.
[23] Song J, Zhou J, Duan H. J. Am. Chem. Soc., 2012, 134(32): 13458.
[24] Cho E C, Glaus C, Chen J, Welch M J, Xia Y. Cell, 2010, 16(12): 561.
[25] Yigit M V, Zhu L, Ifediba M A, Zhang Y, Carr K, Moore A, Medarova Z. ACS Nano, 2011, 5(2): 1056.
[26] Yu M K, Jeong Y Y, Park J, Park S, Kim J W, Min J J, Kim K, Jon S. Angew. Chem. Int. Ed., 2008, 47(29): 5362.
[27] Sheng W, Kim S, Lee J, Kim S W, Jensen K, Bawendi M G. Langmuir, 2006, 22(8): 3782.
[28] Ding Y, Hu Y, Zhang L, Chen Y, Jiang X. Biomacromolecules, 2006, 7(6): 1766.
[29] Guo R, Zhang L, Qian H, Li R, Jiang X, Liu B. Langmuir, 2010, 26(8): 5428.
[30] Lin Y, Yao W, Cheng Y, Qian H, Wang X, Ding Y, Wu W, Jiang X. J. Mater. Chem., 2012, 22(12): 5684.
[31] Wu W, Aiello M, Zhou T, Berliner A, Baneriee P, Zhou S. Biomaterials, 2010, 31(11): 3023.
[32] Guo R, Zhang L, Zhu Z, Jiang X. Langmuir, 2008, 24(7): 3459.
[33] Guo R, Li R, Li X, Zhang L, Jiang X, Liu B. Small, 2009, 5(6): 709.
[34] Boyer C, Bulmus V, Priyanto P, Teoh W Y, Amal R, Davis T P. J. Mater. Chem., 2009, 19(1): 111.
[35] Kim D J, Kang S M, Kong B, Kim W, Paik H, Choi H, Choi I S. Macromol. Chem. Phys., 2005, 206(19): 1941.
[36] Tian J, Feng Y K, Xu Y S. Macromol. Res., 2006, 14(2): 209.
[37] Wang L, Neoh K G, Kang E T, Shuter B, Wang S. Adv. Funct. Mater., 2009, 19(16): 2615.
[38] Xiao Z, Yang K, Liang H, Lu J. J. Polym. Sci. Part A: Polym. Chem., 2010, 48(3): 542.
[39] Wang Y, Teng X, Wang J, Yang H. Nano Lett., 2003, 3(6): 789.
[40] Nuβ S, Böttcher H, Wurm H, Hallensleben M L. Angew. Chem. Int. Ed., 2001, 40(21): 4016.
[41] Gong Y, Gao M, Wang D, Möhwald H. Chem. Mater., 2005, 17(10): 2648.
[42] Han M, Gao X, Su J Z, Nie S. Nat. Biotechnol., 2001, 19(7): 631.
[43] Jiang W, Mardyani S, Fischer H, Chan W C W. Chem. Mater., 2006, 18(4): 872.
[44] Hao E, Lian T. Chem. Mater., 2000, 12(11): 3392.
[45] Liu R, Liu B, Guan G, Jiang C, Zhang Z. Chem. Commun., 2012, 48(75): 9421.
[46] Wang G, Su X. Analyst, 2011, 136(9): 1783.
[47] Discher B M, Won Y, Ege D S, Lee J, Bates F S, Discher D E, Hammer D A. Science, 1999, 284(5417): 1143.
[48] Tam N C M, McVeigh P Z, MacDonald T D, Farhadi A, Wilson B C, Zheng G. Bioconjugate Chem., 2012, 23(9): 1726.
[49] Kotsuchibashi Y, Ebara M, Aoyagi T, Narain R. Polym. Chem., 2012, 3(6): 2545.
[50] Yan E, Ding Y, Chen C, Li R, Hu Y, Jiang X. Chem. Commun., 2009, 19: 2718.
[51] Sun C, Du K, Fang C, Bhattarai N, Veiseh O, Kievit F, Stephen Z, Zhang M. ACS Nano, 2010, 4(4): 2402.
[52] Kim D, Park S, Lee J H, Jeong Y Y, Jon S. J. Am. Chem. Soc., 2007, 129(24): 7661.
[53] Rabin O, Perez J M, Grimm J, Wojtkiewicz G, Weissleder R. Nat. Mater., 2006, 5(2): 118.
[54] Chen L, Jiang L, Wang Y, Qian J, He S. J. Biomed. Biotechnol., 2010, 11(6): 417.
[55] Jiang W, Papa E, Fischer H, Mardyani S, Chan W C W. Trends Biotechnol., 2004, 22(12): 607.
[56] Huang J, Xie J, Chen K, Bu L, Lee S, Cheng Z, Li X, Chen X. Chem. Commun., 2010, 46(36): 6684.
[57] Wang H, Lin C J, Lee C, Lin Y, Tseng Y, Hsieh C, Chen C, Tsai C, Yeh H. ACS Nano, 2011, 5(6): 4337.
[58] Koo H, Huh M S, Sun I, Yuk S H, Choi K, Kim K, Kwon I C. Acc. Chem. Res., 2011, 44(10): 1018.
[59] Mu B, Liu P, Du P, Dong Y, Lu C. J. Polym. Sci. Part A: Polym. Chem., 2011, 49(9): 1969.
[60] Sanson C, Diou O, Thévenot J, Ibarboure E, Soum A, Brlet A, Sandre O, Lecommandoux S. ACS Nano, 2011, 5(2): 1122.
[61] Jordan A, Scholz R, Maier-Hauff K, Johannsen M, Wust P, Nadobny J, Felix R. J. Magn. Magn. Mater., 2001, 225(1/2): 118.
[62] Moroz P, Jones S K, Gray B N. J. Surg. Oncol., 2002, 80(3): 149.
[63] Chen R, Zheng X, Qian H, Wang X, Wang J, Jiang X. Biomater. Sci., 2013, 1(3): 285.
[64] Choi W I, Kim J Y, Kang C, Byeon C C, Kim Y H, Tae G. ACS Nano, 2011, 5(3): 1995.
[65] Wedemeyer N, Pötter T. Clin. Genet., 2001, 60(1): 1.
[66] Lu W, Singh A K, Khan S A, Senapati D, Yu H, Ray P C. J. Am. Chem. Soc., 2010, 132(51): 18103.
[67] Li W, Sun C, Wang F, Wang Y, Zhai Y, Liang M, Wang J, Sun F. Nano Lett., 2013, 13(6): 2477.
[68] Zhang J, Yuan Z, Wang Y, Chen W, Guo F L, Cheng S, Zhuo R, Zhang X. J. Am. Chem. Soc., 2013, 135(13): 5068.
[69] 杜凯(Du K), 朱艳红(Zhu Y H ), 徐辉碧(Xu H B), 杨祥良(Yang X L). 化学进展(Progress in Chemistry), 2011, 23(11): 2287.
[70] 周慧睿(Zhou H R), 陶可(Tao K), 孙康(Sun K). 化学进展(Progress in Chemitry), 2011, 23(6): 1100.

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[3] Anchen Fu, Yanjia Mao, Hongbo Wang, Zhijuan Cao. Development and Application of Dioxetane-based Chemiluminescent Probes [J]. Progress in Chemistry, 2023, 35(2): 189-205.
[4] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[5] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[6] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[7] Xiaofeng Chen, Kaiyuan Wang, Fangming Liang, Ruiqi Jiang, Jin Sun. Exosomes Drug Delivery Systems and Their Application in Tumor Treatment [J]. Progress in Chemistry, 2022, 34(4): 773-786.
[8] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[9] Zhen Wang, Xi Li, Yuanyuan Li, Qi Wang, Xiaomei Lu, Quli Fan. Activatable NIR-Ⅱ Probe for Tumor Imaging [J]. Progress in Chemistry, 2022, 34(1): 198-206.
[10] Zilin Zhu, Zhongxian Fan, Mengzhao Miao, Huaiyi Huang. Photodynamic Therapy of Hypoxic Tumors with Ir(Ⅲ) Complexes [J]. Progress in Chemistry, 2021, 33(9): 1473-1481.
[11] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[12] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[13] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[14] Yecheng Dang, Yangzhen Feng, Dugang Chen. Red/Near-Infrared Biothiol Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(5): 868-882.
[15] Jiajia Wang, Huiying Wu, Renfeng Dong, Yuepeng Cai. Micro/Nanomotors on the Way to Intelligent Cancer Diagnosis, Delivery and Therapy [J]. Progress in Chemistry, 2021, 33(5): 883-894.