中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (6): 926-941 DOI: 10.7536/PC200728 Previous Articles   Next Articles

• Review •

Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems

Xiaodong Jing1, Ying Sun1, Bing Yu2, Youqing Shen3, Hao Hu1,*(), Hailin Cong1,*()   

  1. 1 Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University,Qingdao 266071, China
    2 State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Chemistry and Chemical Engineering, Qingdao University,Qingdao 266071, China
    3 Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Contact: Hao Hu, Hailin Cong
  • About author:
    * Corresponding author e-mail: (Hao Hu);
    (Hailin Cong)
  • Supported by:
    National Natural Science Foundation of China(51703105); National Natural Science Foundation of China(21675091); National Natural Science Foundation of China(21874078); Natural Science Foundation of Shandong Province(ZR2017BEM012); Taishan Young Scholar Program of Shandong Province(TSQN20161027); Major Science and Technology Innovation Project of Shandong Province(2018CXGC1407); Key Research and Development Project of Shandong Province(2016GGX102028); Key Research and Development Project of Shandong Province(2016GGX102039); Key Research and Development Project of Shandong Province(2017GGX20111); China Postdoctoral Science Foundation(2018M630752); Innovation Leader Project of Qingdao(168325zhc); Postdoctoral Scientific Research Foundation of Qingdao; First Class Discipline Project of Shandong Province
Richhtml ( 99 ) PDF ( 1352 ) Cited
Export

EndNote

Ris

BibTeX

Chemotherapy is one of the most effective methods for cancer therapy in clinical practice, but the administration of chemotherapeutic drugs results in poor targeting of drugs to tumors and low utilization rates of drugs. While killing tumor cells, chemotherapeutic drugs also cause great damage to normal human cells, so chemotherapy is usually accompanied by serious side effects, such as nausea, vomiting, and hair loss. With the rapid development of oncology and nanomaterials, many nano-drug vectors have been used in the treatment of tumors. Nanometer drug vectors can improve the utilization rate of drugs and reduce side effects, which has become a research hotspot in the field of drug delivery. The tumor microenvironment responsive drug delivery systems have shown excellent performance in the controlled drug release, removal of the protective shell, and tumor targeting. In this paper, we discuss the common strategies for constructing tumor microenvironment responsive drug delivery systems based on abnormal biochemical indicators of tumor microenvironment or in tumor cells. The recent advances of tumor microenvironment responsive drug delivery systems are summarized. Finally, we outline the challenges and perspectives about the improvement of tumor microenvironment responsive drug delivery systems, aiming to provide a reference for the design and preparation of high-performance drug delivery systems.

Contents

1 Introduction

2 Design of microenvironment response vectors for tumor

2.1 Abnormal physiological indicators of tumor microenvironment

2.2 Design strategies of tumor microenvironment response vectors

3 Advances of microenvironment response vectors for tumor

3.1 pH responsive vectors

3.2 Redox responsive vectors

3.3 ROS responsive vectors

3.4 Anoxic response vectors

3.5 Enzyme responsive vectors

3.6 Other responsive vectors

4 Conclusion

Fig.1 Schematic diagram of several abnormal biochemical indexes in the tumor tissue and tumor cells
Table 1 Commonly used pH-responsive structures
Table 2 Examples of GSH-responsive structures
Table 3 Examples of ROS-responsive structures
Fig.2 Design strategies of tumor microenvironment responsive drug delivery systems
Fig.3 (a) Active osmotic mapping of PBEAGA-CPT in tumor tissue;(b) The structures of the GGT-responsive cationizing drug-conjugate PBEAGA-CPT and the non-GGT-responsive conjugate PEAGA-CPT, and their GGT-catalysed γ-glutamylamide hydrolysis to the primary amine;(c) The zeta potentials as a function of incubation time of PEAGACPT and PBEAGA-CPT in HEPES(pH=7.4, 2 mg·mL -1) at 37 ℃ in the presence of 10, 0.5 or 0.05 U·mL-1 GGT[103]. Adopted with permission from ref. 103 Copyright 2019 Springer Nature
Fig.4 Schematic diagram of exposed cell-penetrating peptides(CPPs) in response to the acidic environment[108]. Adopted with permission from ref. 108 Copyright 2017 Dovepress
Fig.5 A schematic diagram of vector size shrinkage via ROS response in the tumor microenvironment[112]. Adopted with permission from ref.112 Copyright 2019 Elsevier
Fig.6 Schematic diagram of the specific release of antibodies by M1 macrophage-derived exocrine vector in response to acid environment in tumor site[114]. Adopted with permission from ref. 114 Copyright 2020 John Wiley & Sons
Fig.7 GSH triggered Cu-CysNPs to produce ROS for tumor therapy[117]. Adopted with permission from ref. 117 Copyright 2019 American Chemical Society
Fig.8 ROS-activated breakdown of the vector to release siRNA[122]. Adopted with permission from ref. 122 Copyright 2020 John Wiley & Sons
Fig.9 Schematic diagram of the pH/ROS dual responsive drug delivery system for cancer therapy[123]. Adopted with permission from ref. 123 Copyright 2019 John Wiley & Sons
Fig.10 Controlled release of hypoxic-responsive drug delivery system[124]. Adopted with permission from ref. 124 Copyright 2015 Royal Society of Chemistry
Fig.11 Schematic diagram of facultative anaerobes VNP2009 for targeted tumor therapy[126]. Adopted with permission from ref. 126 Copyright 2018 American Chemical Society
Fig.12 BIM drug release triggered by enzyme cathepsin B[130]. Adopted with permission from ref. 130 Copyright 2017 American Chemical Society
[1]
Sun Q H, Zhou Z X, Qiu N S, Shen Y Q. Adv. Mater., 2017, 29(14):1606628.

doi: 10.1002/adma.v29.14
[2]
Sun Q H, Ma X P, Zhang B, Zhou Z X, Jin E L, Shen Y Q, van Kirk E A, Murdoch W J, Radosz M, Sun W L. Biomater. Sci., 2016, 4(6):958.

doi: 10.1039/C6BM00189K
[3]
Brannon-Peppas L, Blanchette J O. Adv. Drug Deliv. Rev., 2004, 56(11):1649.

doi: 10.1016/j.addr.2004.02.014
[4]
Fan Y, Leunig M, Shi K H, Berk D A, Papahadjopoulos D, Jain R K. Cancer Res., 1994, 54:3352.
[5]
Manzoor A A, Lindner L H, Landon C D, Park J Y, Simnick A J, Dreher M R, Das S, Hanna G B, Park W, Chilkoti A, Koning G A, ten Hagen T L M, Needham D, Dewhirst M W. Cancer Res., 2012, 72(21):5566.

doi: 10.1158/0008-5472.CAN-12-1683 pmid: 22952218
[6]
Mo R, Gu Z. Mater. Today, 2016, 19(5):274.

doi: 10.1016/j.mattod.2015.11.025
[7]
Langer R, Folkman J. Nature, 1976, 263(5580):797.

doi: 10.1038/263797a0
[8]
Fischel-Ghodsian F, Brown L, Mathiowitz E, Brandenburg D, Langer R. PNAS, 1988, 85(7):2403.

pmid: 3281165
[9]
Belfiore L, Saunders D N, Ranson M, Thurecht K J, Storm G, Vine K L. J. Control. Release, 2018, 277:1.

doi: 10.1016/j.jconrel.2018.02.040
[10]
Ekladious I, Colson Y L, Grinstaff M W. Nat. Rev. Drug Discov., 2019, 18(4):273.

doi: 10.1038/s41573-018-0005-0 pmid: 30542076
[11]
Li J, Liang H M, Liu J, Wang Z Y. Int. J. Pharm., 2018,5461-2: 215.
[12]
Kesharwani S S, Kaur S, Tummala H, Sangamwar A T. Colloids Surfaces B: Biointerfaces, 2019, 173:581.

doi: 10.1016/j.colsurfb.2018.10.022
[13]
Wang Z, Deng X P, Ding J S, Zhou W H, Zheng X, Tang G T. Int. J. Pharm., 2018, 5351/2:253.
[14]
Awasthi R, Roseblade A, Hansbro P M, Rathbone M J, Dua K, Bebawy M. Curr. Drug Targets, 2018, 19(14):1696.

doi: 10.2174/1389450119666180326122831
[15]
Yang L Y, Li W Y, Huang Y Y, Zhou Y L, Chen T F. Macromol. Rapid Commun., 2015, 36(17):1559.

doi: 10.1002/marc.201500243
[16]
Lei B Q, Wang M F, Jiang Z L, Qi W, Su R X, He Z M. ACS Appl. Mater. Interfaces, 2018, 10(19):16698.

doi: 10.1021/acsami.7b19693
[17]
Shi J J, Kantoff P W, Wooster R, Farokhzad O C. Nat. Rev. Cancer, 2017, 17(1):20.

doi: 10.1038/nrc.2016.108
[18]
Zhang C, Zhao K L, Bu W B, Ni D L, Liu Y Y, Feng J W, Shi J L. Angew. Chem. Int. Ed., 2015, 54(6):1770.

doi: 10.1002/anie.201408472
[19]
Lammers T, Kiessling F, Hennink W E, Storm G. J. Control. Release, 2012, 161(2):175.

doi: 10.1016/j.jconrel.2011.09.063
[20]
Maeda H. Adv. Drug Deliv. Rev., 2015, 91:3.

doi: 10.1016/j.addr.2015.01.002
[21]
Deshpande P, Jhaveri A, Pattni B, Biswas S, Torchilin V. Drug Deliv., 2018, 25(1):517.

doi: 10.1080/10717544.2018.1435747 pmid: 29433357
[22]
Danhier F, Kouhé T T B, Duhem N, Ucakar B, Staub A, Draoui N, Feron O, PrÉat V. Int. J. Pharm., 2014, 476(1/2):9.

doi: 10.1016/j.ijpharm.2014.09.028
[23]
Zhou S, Chen W, Xiao Z L, Ye S, Ding C D, Fu J J. Prog. Chem., 2017, 29:502.
[24]
Du J Z, Du X J, Mao C Q, Wang J. J. Am. Chem. Soc., 2011, 133(44):17560.

doi: 10.1021/ja207150n
[25]
Joyce J A, Pollard J W. Nat. Rev. Cancer, 2009, 9(4):239.

doi: 10.1038/nrc2618
[26]
Vaupel P. Semin. Radiat. Oncol., 2004, 14(3):198.

pmid: 15254862
[27]
Richtsmeier W J, Dauchy R T, Sauer L A. Cancer Res., 1987, 47:5230.

pmid: 3621209
[28]
Coles N W, Johnstone R M. Biochem. J., 1962, 83(2):284.

doi: 10.1042/bj0830284
[29]
Xie J S, Wu H, Dai C Y, Pan Q R, Ding Z H, Hu D Q, Ji B Y, Luo Y, Hu X. Sci. Rep., 2015, 4:4927.

doi: 10.1038/srep04927
[30]
Chiche J, Brahimi-Horn M C, Pouysségur J. J. Cell. Mol. Med., 2010, 14(4):771.

doi: 10.1111/j.1582-4934.2009.00994.x
[31]
DeBerardinis R J, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson C B. PNAS, 2007, 104(49):19345.

pmid: 18032601
[32]
Tredan O, Galmarini C M, Patel K, Tannock I F. JNCI J. Natl. Cancer Inst., 2007, 99(19):1441.

doi: 10.1093/jnci/djm135
[33]
Stubbs M, McSheehy P M J, Griffiths J R, Bashford C L. Mol. Med. Today, 2000, 6(1):15.

pmid: 10637570
[34]
Zou J, Zhang F W, Zhang S Y, Pollack S F, Elsabahy M, Fan J W, Wooley K L. Adv. Healthcare Mater., 2014, 3(3):441.

doi: 10.1002/adhm.v3.3
[35]
Meng Q Y, Hu H, Zhou L P, Zhang Y X, Yu B, Shen Y Q, Cong H L. Polym. Chem., 2019, 10(3):306.

doi: 10.1039/C8PY01160E
[36]
Crayton S H, Tsourkas A. ACS Nano, 2011, 5(12):9592.

doi: 10.1021/nn202863x pmid: 22035454
[37]
Li L, Sun W, Zhong J J, Yang Q Q, Zhu X, Zhou Z, Zhang Z R, Huang Y. Adv. Funct. Mater., 2015, 25(26):4101.

doi: 10.1002/adfm.v25.26
[38]
Koren E, Apte A, Jani A, Torchilin V P. J. Control. Release, 2012, 160(2):264.

doi: 10.1016/j.jconrel.2011.12.002
[39]
Yu Y, Zhang X L, Qiu L Y. Biomaterials, 2014, 35(10):3467.

doi: 10.1016/j.biomaterials.2013.12.096
[40]
Estrela J M, Ortega A, Obrador E. Crit. Rev. Clin. Lab. Sci., 2006, 43(2):143.

doi: 10.1080/10408360500523878
[41]
Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini A F. Biochem. Pharmacol., 2003, 66(8):1499.

pmid: 14555227
[42]
Kuppusamy P, Li H, Ilangovan G, Cardounel A J, Zweier J L, Yamada K, Krishna M C. Cancer Res., 2002, 62:307.
[43]
Saito G, Swanson J A, Lee K D. Adv. Drug Deliv. Rev., 2003, 55(2):199.

doi: 10.1016/S0169-409X(02)00179-5
[44]
Park S, Yang H. Anal., 2014, 139(16):4051.

doi: 10.1039/C4AN00465E
[45]
Sun H L, Guo B N, Cheng R, Meng F H, Liu H Y, Zhong Z Y. Biomaterials, 2009, 30(31):6358.

doi: 10.1016/j.biomaterials.2009.07.051
[46]
Ma N, Li Y, Xu H P, Wang Z Q, Zhang X. J. Am. Chem. Soc., 2010, 132(2):442.

doi: 10.1021/ja908124g
[47]
Wang X L, Li X L, Liang X Y, Liang J Y, Zhang C, Yang J, Wang C, Kong D L, Sun H F. J. Mater. Chem. B, 2018, 6(7):1000.

doi: 10.1039/C7TB02688A
[48]
Rhee S G. Science, 2006, 312(5782):1882.

pmid: 16809515
[49]
Ma X, Hortelão A C, Patiño T, Sánchez S. ACS Nano, 2016, 10(10):9111.

doi: 10.1021/acsnano.6b04108
[50]
Ma X, Jannasch A, Albrecht U R, Hahn K, Miguel-López A, Schäffer E, Sánchez S. Nano Lett., 2015, 15(10):7043.

doi: 10.1021/acs.nanolett.5b03100
[51]
Fan W P, Bu W B, Shen B, He Q J, Cui Z W, Liu Y Y, Zheng X P, Zhao K L, Shi J L. Adv. Mater., 2015, 27(28):4155.

doi: 10.1002/adma.v27.28
[52]
Chen H C, Tian J W, He W J, Guo Z J. J. Am. Chem. Soc., 2015, 137(4):1539.

doi: 10.1021/ja511420n
[53]
Doskey C M, Buranasudja V, Wagner B A, Wilkes J G, Du J, Cullen J J, Buettner G R. Redox Biol., 2016, 10:274.

doi: 10.1016/j.redox.2016.10.010
[54]
Park S, You X, Imlay J A. PNAS, 2005, 102(26):9317.

doi: 10.1073/pnas.0502051102
[55]
Haddad J J, Land S C. FEBS Lett., 2001, 505(2):269.

pmid: 11566189
[56]
Semenza G L. Nat. Rev. Cancer, 2003, 3(10):721.

doi: 10.1038/nrc1187
[57]
Forman H J. Free. Radic. Biol. Med., 2007, 42(7):926.

doi: 10.1016/j.freeradbiomed.2007.01.011
[58]
Ahmad K A, Iskandar K B, Hirpara J L, Clement M V, Pervaiz S. Cancer Res., 2004, 64(21):7867.

doi: 10.1158/0008-5472.CAN-04-0648
[59]
Winterbourn C C. Nat. Chem. Biol., 2008, 4(5):278.

doi: 10.1038/nchembio.85 pmid: 18421291
[60]
Ping J T, Peng H S, Qin J L, You F T, Wang Y Q, Chen G X, Song M. Microchimica Acta, 2018, 185(5):269.

doi: 10.1007/s00604-018-2815-5
[61]
Wang B, Shi L, Zhang Y F, Zhou Q, Zheng J, Szeimies R M, Wang X L. Br. J. Dermatol., 2017, 177(3):656.

doi: 10.1111/bjd.2017.177.issue-3
[62]
Osiecka B, Nockowski P, Szepietowski J. Acta Derm. Venereol., 2018, 98(7):689.

doi: 10.2340/00015555-2931
[63]
Subash-Babu P, Alshammari G M, Ignacimuthu S, Alshatwi A A. Biomed. Pharmacother., 2017, 87:388.

doi: S0753-3322(16)31784-X pmid: 28068628
[64]
Fukumura D, Kashiwagi S, Jain R K. Nat. Rev. Cancer, 2006, 6(7):521.

doi: 10.1038/nrc1910
[65]
Carpenter A W, Schoenfisch M H. Chem. Soc. Rev., 2012, 41(10):3742.

doi: 10.1039/c2cs15273h
[66]
Brigger I, Dubernet C, Couvreur P. Adv. Drug Deliv. Rev., 2002, 54(5):631.

doi: 10.1016/S0169-409X(02)00044-3
[67]
Liu J Y, Pang Y, Zhu Z Y, Wang D L, Li C T, Huang W, Zhu X Y, Yan D Y. Biomacromolecules, 2013, 14(5):1627.

doi: 10.1021/bm4002574
[68]
Wang M, Sun S, Neufeld C I, Perez-Ramirez B, Xu Q B. Angew. Chem. Int. Ed., 2014, 53(49):13444.

doi: 10.1002/anie.201407234
[69]
Hu P, Tirelli N. Bioconjugate Chem., 2012, 23(3):438.

doi: 10.1021/bc200449k
[70]
Min Suk, Shim, Younan, Xia. Angew. Chem., 2013, 52:6926.

doi: 10.1002/anie.201209633
[71]
Staff R H, Gallei M, Mazurowski M, Rehahn M, Berger R, Landfester K, Crespy D. ACS Nano, 2012, 6(10):9042.

doi: 10.1021/nn3031589
[72]
Brown J M, Wilson W R. Nat. Rev. Cancer, 2004, 4(6):437.

doi: 10.1038/nrc1367
[73]
Büchler P, Reber H A, Büchler M W, Friess H, Lavey R S, Hines O J. Cancer, 2004, 100(1):201.

pmid: 14692041
[74]
Maxwell P H, Dachs G U, Gleadle J M, Nicholls L G, Harris A L, Stratford I J, Hankinson O, Pugh C W, Ratcliffe P J. PNAS, 1997, 94(15):8104.

pmid: 9223322
[75]
Thambi T, Son S, Lee D S, Park J H. Acta Biomater., 2016, 29:261.

doi: 10.1016/j.actbio.2015.10.011
[76]
Callmann C E, Barback C V, Thompson M P, Hall D J, Mattrey R F, Gianneschi N C. Adv. Mater., 2015, 27(31):4611.

doi: 10.1002/adma.v27.31
[77]
Sun L, Zhu B S, Su Y, Dong C M. Polym. Chem., 2014, 5(5):1605.

doi: 10.1039/C3PY00533J
[78]
Hu J M, Zhang G Q, Liu S Y. Chem. Soc. Rev., 2012, 41(18):5933.

doi: 10.1039/c2cs35103j
[79]
Xu J H, Gao F P, Li L L, Ma H L, Fan Y S, Liu W, Guo S S, Zhao X Z, Wang H. Microporous Mesoporous Mater., 2013, 182:165.

doi: 10.1016/j.micromeso.2013.08.050
[80]
Choi K Y, Jeon E J, Yoon H Y, Lee B S, Na J H, Min K H, Kim S Y, Myung S J, Lee S, Chen X Y, Kwon I C, Choi K, Jeong S Y, Kim K, Park J H. Biomaterials, 2012, 33(26):6186.

doi: 10.1016/j.biomaterials.2012.05.029
[81]
Jiang T Y, Mo R, Bellotti A, Zhou J P, Gu Z. Adv. Funct. Mater., 2014, 24(16):2295.

doi: 10.1002/adfm.v24.16
[82]
Schneider G F, Subr V, Ulbrich K, Decher G. Nano Lett., 2009, 9(2):636.

doi: 10.1021/nl802990w pmid: 19170551
[83]
Lee G Y, Qian W P, Wang L Y, Wang Y A, Staley C A, Satpathy M, Nie S M, Mao H, Yang L. ACS Nano, 2013, 7(3):2078.

doi: 10.1021/nn3043463
[84]
Fleige E, Quadir M A, Haag R. Adv. Drug Deliv. Rev., 2012, 64(9):866.

doi: 10.1016/j.addr.2012.01.020
[85]
Gorman M W, Feigl E O, Buffington C W. Clin. Chem., 2007, 53(2):318.

pmid: 17185366
[86]
Gribble F M, Loussouarn G, Tucker S J, Zhao C, Nichols C G, Ashcroft F M. J. Biol. Chem., 2000, 275(39):30046.

pmid: 10866996
[87]
Chen H C, Liu D Y, Guo Z J. Chem. Lett., 2016, 45(3):242.

doi: 10.1246/cl.151176
[88]
Cong H L, Zhou L P, Meng Q Y, Zhang Y X, Yu B, Shen Y Q, Hu H. Biomater. Sci., 2019, 7(9):3918.

doi: 10.1039/C9BM00960D
[89]
Li G L, Yang B, Gu C T. J. Mater. Sci., 2020, 55(2):738.

doi: 10.1007/s10853-019-04020-7
[90]
Meng Q Y, Cong H L, Hu H, Xu F J. Mater. Today Bio., 2020, 7:100056.
[91]
Walkey C D, Olsen J B, Guo H B, Emili A, Chan W C W. J. Am. Chem. Soc., 2012, 134(4):2139.

doi: 10.1021/ja2084338 pmid: 22191645
[92]
Zhu Z J, Posati T, Moyano D F, Tang R, Yan B, Vachet R W, Rotello V M. Small, 2012, 8(17):2659.

doi: 10.1002/smll.v8.17
[93]
Sakulkhu U, Mahmoudi M, Maurizi L, Salaklang J, Hofmann H. Sci. Rep., 2015, 4:5020.

doi: 10.1038/srep05020
[94]
Farace C, Sánchez-Moreno P, Orecchioni M, Manetti R, Sgarrella F, Asara Y, Peula-García J M, Marchal J A, Madeddu R, Delogu L G. Sci. Rep., 2016, 6:18423.

doi: 10.1038/srep18423
[95]
Yang X Z, Du J Z, Dou S, Mao C Q, Long H Y, Wang J. ACS Nano, 2012, 6(1):771.

doi: 10.1021/nn204240b
[96]
Poon Z, Chang D, Zhao X Y, Hammond P T. ACS Nano, 2011, 5(6):4284.

doi: 10.1021/nn200876f
[97]
Sethuraman V A, Na K, Bae Y H. Biomacromolecules, 2006, 7(1):64.

pmid: 16398499
[98]
He C B, Hu Y P, Yin L C, Tang C, Yin C H. Biomaterials, 2010, 31(13):3657.

doi: 10.1016/j.biomaterials.2010.01.065
[99]
Zhou Z X, Shen Y Q, Tang J B, Fan M H, van Kirk E A, Murdoch W J, Radosz M. Adv. Funct. Mater., 2009, 19(22):3580.

doi: 10.1002/adfm.v19:22
[100]
Huang Y, Tang Z H, Zhang X F, Yu H Y, Sun H, Pang X, Chen X S. Biomacromolecules, 2013, 14(6):2023.

doi: 10.1021/bm400358z pmid: 23662624
[101]
Xu P S, Van Kirk E, Zhan Y H, Murdoch W, Radosz M, Shen Y Q. Angew. Chem. Int. Ed., 2007, 46(26):4999.

doi: 10.1002/(ISSN)1521-3773
[102]
Han K, Zhang W Y, Zhang J, Lei Q, Wang S B, Liu J W, Zhang X Z, Han H Y. Adv. Funct. Mater., 2016, 26(24):4351.

doi: 10.1002/adfm.v26.24
[103]
Zhou Q, Shao S Q, Wang J Q, Xu C H, Xiang J J, Piao Y, Zhou Z X, Yu Q S, Tang J B, Liu X R, Gan Z H, Mo R, Gu Z, Shen Y Q. Nat. Nanotechnol., 2019, 14(8):799.

doi: 10.1038/s41565-019-0485-z
[104]
Sultana S, Khan M R, Kumar M, Kumar S, Ali M. J. Drug Target., 2013, 21(2):107.

doi: 10.3109/1061186X.2012.712130
[105]
Rádis-Baptista G, Campelo I S, Morlighem J É R L, Melo L M, Freitas V J F. J. Biotechnol., 2017, 252:15.

doi: S0168-1656(17)30203-1 pmid: 28479163
[106]
LeCher J C, Nowak S J, McMurry J L. Biomol. Concepts, 2017, 8(3-4): 131.
[107]
Regberg J, Srimanee A, Langel Ü. Pharmaceuticals, 2012, 5(9):991.

doi: 10.3390/ph5090991 pmid: 24280701
[108]
Xiang B, Jia X L, Qi J L, Yang L P, Sun W H, Yan X, Yang S K, Cao D Y, Du Q, Qi X R. Int. J. Nanomed., 2017, 12:2385.

doi: 10.2147/IJN.S129574 pmid: 28405163
[109]
Peer D, Karp J M, Hong S, Farokhzad O C, Margalit R, Langer R. Nat. Nanotechnol., 2007, 2(12):751.

doi: 10.1038/nnano.2007.387 pmid: 18654426
[110]
Tang L, Yang X, Yin Q, Cai K, Wang H, Chaudhury I, Yao C, Zhou Q, Kwon M, Hartman J A, Dobrucki I T, Dobrucki L W, Borst L B, Lezmi S, Helferich W G, Ferguson A L, Fan T M, Cheng J. PNAS, 2014, 111(43):15344.

doi: 10.1073/pnas.1411499111 pmid: 25316794
[111]
Zhang P F, Wang J Q, Chen H, Zhao L, Chen B B, Chu C C, Liu H, Qin Z N, Liu J Y, Tan Y Z, Chen X Y, Liu G. J. Am. Chem. Soc., 2018, 140(44):14980.

doi: 10.1021/jacs.8b09396
[112]
Tan J, Li H, Hu X X, Abdullah R, Xie S T, Zhang L L, Zhao M M, Luo Q, Li Y Z, Sun Z J, Yuan Q, Tan W H. Chem, 2019, 5(7):1775.

doi: 10.1016/j.chempr.2019.05.024
[113]
Deng X R, Liang S, Cai X C, Huang S S, Cheng Z Y, Shi Y S, Pang M L, Ma P G, Lin J. Nano Lett., 2019, 19(10):6772.

doi: 10.1021/acs.nanolett.9b01716
[114]
Nie W D, Wu G H, Zhang J F, Huang L L, Ding J J, Jiang A Q, Zhang Y H, Liu Y H, Li J C, Pu K Y, Xie H Y. Angew. Chem. Int. Ed., 2020, 59(5):2018.

doi: 10.1002/anie.v59.5
[115]
Yang X T, Hu C, Tong F, Liu R, Zhou Y, Qin L, Ouyang L, Gao H L. Adv. Funct. Mater., 2019, 29(32):1901896.

doi: 10.1002/adfm.v29.32
[116]
Liu J B, Song L L, Liu S L, Jiang Q, Liu Q, Li N, Wang Z G, Ding B Q. Nano Lett., 2018, 18(6):3328.

doi: 10.1021/acs.nanolett.7b04812
[117]
Ma B J, Wang S, Liu F, Zhang S, Duan J Z, Li Z, Kong Y, Sang Y H, Liu H, Bu W B, Li L L. J. Am. Chem. Soc., 2019, 141(2):849.

doi: 10.1021/jacs.8b08714
[118]
Behroozi F, Abdkhodaie M J, Abandansari H S, Satarian L, Molazem M, Al-Jamal K T, Baharvand H. Acta Biomater., 2018, 76:239.

doi: S1742-7061(18)30307-6 pmid: 29928995
[119]
Jia X B, Zhang Y H, Zou Y, Wang Y, Niu D C, He Q J, Huang Z J, Zhu W H, Tian H, Shi J L, Li Y S. Adv. Mater., 2018, 30(30):1870217.

doi: 10.1002/adma.v30.30
[120]
Wang X L, Li X L, Liang X Y, Liang J Y, Zhang C, Yang J, Wang C, Kong D L, Sun H F. J. Mater. Chem. B, 2018, 6(7):1000.

doi: 10.1039/C7TB02688A
[121]
Zhang Y, Guo Q, An S, Lu Y F, Li J F, He X, Liu L S, Zhang Y J, Sun T, Jiang C. ACS Appl. Mater. Interfaces, 2017, 9(14):12227.

doi: 10.1021/acsami.6b16815
[122]
Zheng M, Liu Y Y, Wang Y B, Zhang D Y, Zou Y, Ruan W M, Yin J L, Tao W, Park J B, Shi B Y. Adv. Mater., 2019, 31(37):1903277.

doi: 10.1002/adma.v31.37
[123]
Wang S, Yu G, Wang Z, Jacobson O, Chen X. Angew. Chem. Int. Ed., 2019, 58:20848.
[124]
Liu H M, Zhang R L, Niu Y W, Li Y, Qiao C M, Weng J, Li J, Zhang X N, Xiao Z B, Zhang X. RSC Adv., 2015, 5(27):20848.

doi: 10.1039/C4RA14875D
[125]
Kulkarni P, Haldar M K, You S, Choi Y, Mallik S. Biomacromolecules, 2016, 17(8):2507.

doi: 10.1021/acs.biomac.6b00350
[126]
Chen W F, Wang Y, Qin M, Zhang X D, Zhang Z R, Sun X, Gu Z. ACS Nano, 2018, 12(6):5995.

doi: 10.1021/acsnano.8b02235
[127]
de la Rica R, Aili D, Stevens M M. Adv. Drug Deliv. Rev., 2012, 64(11):967.

doi: 10.1016/j.addr.2012.01.002
[128]
Cheng K M, Ding Y P, Zhao Y, Ye S F, Zhao X, Zhang Y L, Ji T J, Wu H H, Wang B, Anderson G J, Ren L, Nie G J. Nano Lett., 2018, 18(5):3250.

doi: 10.1021/acs.nanolett.8b01071
[129]
Zhang C, Pan D, Li J, Hu J, Bains A, Guys N, Zhu H, Li X, Luo K, Gong Q. Acta. Biomater., 2017, 29:10668.
[130]
Kern H B, Srinivasan S, Convertine A J, Hockenbery D, Press O W, Stayton P S. Mol. Pharmaceutics, 2017, 14(5):1450.
[131]
Naito M, Ishii T, Matsumoto A, Miyata K, Miyahara Y, Kataoka K. Angew. Chem. Int. Ed., 2012, 51(43):10904.

doi: 10.1002/anie.v51.43
[132]
Biswas S, Kinbara K, Niwa T, Taguchi H, Ishii N, Watanabe S, Miyata K, Kataoka K, Aida T. Nat. Chem., 2013, 5(7):613.

doi: 10.1038/nchem.1681
[133]
Mpekris F, Baish J W, Stylianopoulos T, Jain R K. PNAS, 2017, 114(8):1994.

doi: 10.1073/pnas.1700340114 pmid: 28174262
[1] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[2] Jiawei Liu, Jing Wang, Qi Wang, Quli Fan, Wei Huang. Applications of Activatable Organic Photoacoustic Contrast Agents [J]. Progress in Chemistry, 2021, 33(2): 216-231.
[3] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[4] Yifan Xue, Wenhui Meng, Runze Wang, Junjie Ren, Weili Heng, Jianjun Zhang. Supersaturation Theory and Supersaturating Drug Delivery System(SDDS) [J]. Progress in Chemistry, 2020, 32(6): 698-712.
[5] Tianxi He, Wenbin Wang, Jiu Wang, Boshui Chen, Qionglin Liang. Mesoporous Carbon Spheres: Synthesis and Applications in Drug Delivery System [J]. Progress in Chemistry, 2020, 32(2/3): 309-319.
[6] Ziru Sun, Shengnan Liu, Qingzhi Gao. Development of Anticancer Drugs Targeting Glucose Transporters(GLUTs) [J]. Progress in Chemistry, 2020, 32(12): 1869-1878.
[7] Juan Shen, Yang Zhu, Hongdong Shi, Yangzhong Liu. Multifunctional Nanodrug Delivery Systems for Platinum-Based Anticancer Drugs [J]. Progress in Chemistry, 2018, 30(10): 1557-1572.
[8] Panpan Chen, Bingbing Shi*. Supramolecular Drug Delivery Systems Based on Macrocyclic Hosts [J]. Progress in Chemistry, 2017, 29(7): 720-739.
[9] Gong Zhaocui, Yin Chao, Zhao Hui, Lu Xiaomei, Fan Quli, Huang Wei. Light-Controlled Nanocarriers for Drug Release [J]. Progress in Chemistry, 2016, 28(9): 1387-1396.
[10] Yu Jing, Ha Wei, Shi Yanping. Intelligent Hydrogel-Based Dual Drug Delivery System [J]. Progress in Chemistry, 2015, 27(11): 1640-1648.
[11] Li Yan, Huang Wei, Huang Ping, Zhu Xinyuan, Yan Deyue. Anti-Cancer Drug Delivery System [J]. Progress in Chemistry, 2014, 26(08): 1395-1408.
[12] Han Bin, Liao Xiali, Yang Bo. Targeted Drug Delivery Systems Based on Cyclodextrins [J]. Progress in Chemistry, 2014, 26(06): 1039-1049.
[13] Zhang Lei, Liu Xiaoyan, Shen Jingjing, Lu Xiaomei, Fan Quli, Huang Wei. Application of Nanoparticles with Targeting, Triggered Release in Anti-Cancer Drug Delivery [J]. Progress in Chemistry, 2013, 25(08): 1375-1382.
[14] Yang Yiyi, Yan Zhiqiang*, Zhong Jian, He Dannong*, Lu Weiyue. Peptide-Mediated Nano Drug Delivery System for Tumor Targeting [J]. Progress in Chemistry, 2013, 25(06): 1052-1060.
[15] Yang Huayan, Xiong Huanming, Yu Shaoning. Quantum Dots-Based Drug Delivery System [J]. Progress in Chemistry, 2012, 24(11): 2234-2246.