中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (2): 189-205 DOI: 10.7536/PC220731   Next Articles

• Review •

Development and Application of Dioxetane-based Chemiluminescent Probes

Anchen Fu1(), Yanjia Mao2, Hongbo Wang2, Zhijuan Cao1   

  1. 1 School of Pharmacy, Fudan University,Shanghai 201203, China
    2 China State Institute of Pharmaceutical Industry, Incubation Center for S&T Achievements,Shanghai 201203, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail:zjcan@fudan.edu.cn
  • Supported by:
    Shanghai Agriculture Science and Technology Support Project(21N31900500); Shanghai Municipal Health Commission Project(202140016); project of Basic Medicine funded by Minhang Hospital, Fudan University(2021MHJC10)
Richhtml ( 69 ) PDF ( 742 ) Cited
Export

EndNote

Ris

BibTeX

Optical analysis is non-destructive, real-time with a specific spatial resolution, which has been developed as an essential technology to study the occurrence, development, diagnosis, and treatment of diseases. It contains fluorescent (FL), bioluminescent (BL) and chemiluminescent (CL) methods. Among them, CL probes with an adamantane-dioxetane chemiluminescence (AD-CL) scaffold attracted much attention. Recently, significant improvement on these probes has been achieved with the elimination of external light source, low phototoxicity, high sensitivity, and a facile system without additional reagents, such as oxidants. Until now, the CL probes were further developed with special modifications and new synthesis routes based on the AD-CL scaffold, realizing the detection and optical imaging of various biomolecules in living systems with enhanced properties. Herein, the recent research progress on AD-CL probes has been reviewed. The review is divided into two parts. The first part will mainly introduce the molecular modification strategy of AD-CL probes and the second part will focus on their application in several cases.

Contents

1 Introduction

2 Modification of AD-CL probes

2.1 Intramolecular modification of AD-CL probes

2.2 Supramolecular modification of AD-CL probes

3 Application of AD-CL probes

3.1 Application on small molecules detection

3.2 Application on macromolecules detection

3.3 Application on pathogenic and drug-resistance bacteria detection

3.4 Other application

4 Conclusion and outlook

Fig.1 The activation pathway of the AD-CL probe
Fig.2 Molecular modification of AD-CL probes: (A) Increase the intensity of CL-introduce the electron-withdrawing group; (B) elongate the wavelength of CL-introduce near-infrared/fluorescent molecules; (C) speed up the CL reaction-introduce the phenoxy group
Fig.3 (A) Multiple AD-CL structures connected by the linking group; (B) the domino-cascaded AD-CL structure
Fig.4 Using CRET strategy (A) and materials (B) to increase the CL intensity and prolong the CL wavelength of AD-CL probes: (a) Surfactant-fluorophore molecular system; (b) β-cyclodextrin-fluorophore supramolecular system; (c) the application of nanoprecipitation technology with amphiphilic substances
Fig.5 (A) AD-CL probe for single oxygen detection and its mechanism; (B) AD-CL probe for detection of small molecules; (C) the schematic principle of dual-lock CL probe for detection
Fig.6 (A) The schematic principle of the probe for protease detection based on CRET strategy; (B) AD-CL probes for detection of macromolecules
Fig.7 Visualization of Prodrug 1 and Prodrug 2 for monitoring drug progression in vivo
Fig.8 AD-CL probes for the detection of pathogenic and drug-resistant bacteria
Fig.9 (A,B)CL-FL duplex probes
Table 1 Applications of AD-CL probes
[1]
Siraj N, El-Zahab B, Hamdan S, Karam T E, Haber L H, Li M, Fakayode S O, Das S, Valle B, Strongin R M, Patonay G, Sintim H O, Baker G A, Powe A, Lowry M, Karolin J O, Geddes C D, Warner I M. Anal. Chem., 2016, 88(1): 170.

doi: 10.1021/acs.analchem.5b04109
[2]
Zhang Z, Lai J H, Wu K S, Huang X C, Guo S, Zhang L L, Liu J. Talanta, 2018, 180: 260.

doi: S0039-9140(17)31226-2 pmid: 29332809
[3]
Mezzanotte L, van ‘t Root M, Karatas H, Goun E A, Löwik C W G M. Trends Biotechnol., 2017, 35(7): 640.

doi: S0167-7799(17)30061-6 pmid: 28501458
[4]
Yan Y C, Shi P F, Song W L, Bi S. Theranostics, 2019, 9: 4047.

doi: 10.7150/thno.33228
[5]
Yang M W, Huang J G, Fan J L, Du J J, Pu K Y, Peng X J. Chem. Soc. Rev., 2020, 49(19): 6800.

doi: 10.1039/D0CS00348D
[6]
Gnaim S, Green O, Shabat D. Chem. Commun., 2018, 54(17): 2073.

doi: 10.1039/C8CC00428E
[7]
White E H, McCapra F, Field G F. J. Am. Chem. Soc., 1963, 85(3): 337.

doi: 10.1021/ja00886a019
[8]
Hummelen J C, Luider T M, Wynberg H. Pure Appl. Chem., 1987, 59(5): 639.

doi: 10.1351/pac198759050639
[9]
Schaap A P, Gagnon S D. J. Am. Chem. Soc., 1982, 104(12): 3504.

doi: 10.1021/ja00376a044
[10]
Eilon-Shaffer T, Roth-Konforti M, Eldar-Boock A, Satchi-Fainaro R, Shabat D. Org. Biomol. Chem., 2018, 16(10): 1708.

doi: 10.1039/c8ob00087e pmid: 29451576
[11]
Fu A C, Mao Y J, Wang H B, Cao Z J. J. Pharm. Biomed. Anal., 2021, 204: 114266.

doi: 10.1016/j.jpba.2021.114266
[12]
Green O, Gnaim S, Blau R, Eldar-Boock A, Satchi-Fainaro R, Shabat D. J. Am. Chem. Soc., 2017, 139(37): 13243.

doi: 10.1021/jacs.7b08446 pmid: 28853880
[13]
Huang J S, Jiang Y Y, Li J C, Huang J G, Pu K Y. Angew. Chem. Int. Ed., 2021, 60(8): 3999.

doi: 10.1002/anie.v60.8
[14]
Hananya N, Eldar Boock A, Bauer C R, Satchi-Fainaro R, Shabat D. J. Am. Chem. Soc., 2016, 138(40): 13438.

pmid: 27652602
[15]
Hananya N, Reid J P, Green O, Sigman M S, Shabat D. Chem. Sci., 2019, 10(5): 1380.

doi: 10.1039/c8sc04280b pmid: 30809354
[16]
Turan I S, Akkaya E U. Org. Lett., 2014, 16(6): 1680.

doi: 10.1021/ol5003412
[17]
Seven O, Sozmen F, Simsek Turan I. Sens. Actuat. B Chem., 2017, 239: 1318.

doi: 10.1016/j.snb.2016.09.120
[18]
Gnaim S, Shabat D. J. Am. Chem. Soc., 2017, 139(29): 10002.

doi: 10.1021/jacs.7b04804
[19]
Gnaim S, Gholap S P, Ge L, Das S, Gutkin S, Green O, Shelef O, Hananya N, Baran P S, Shabat D. Angewandte Chemie Int. Ed., 2022, 61(22): e202202187.
[20]
Gnaim S, Scomparin A, Eldar-Boock A, Bauer C R, Satchi-Fainaro R, Shabat D. Chem. Sci., 2019, 10(10): 2945.

doi: 10.1039/C8SC05174G
[21]
Ni X, Zhang X Y, Duan X C, Zheng H L, Xue X S, Ding D. Nano Lett., 2019, 19(1): 318.
[22]
Andronico L A, Chen L, Mirasoli M, Guardigli M, Quintavalla A, Lombardo M, Trombini C, Chiu D T, Roda A. Nanoscale, 2018, 10(29): 14012.

doi: 10.1039/c8nr03092h pmid: 29995031
[23]
Cui D, Li J C, Zhao X H, Pu K Y, Zhang R P. Adv. Mater., 2020, 32(6): 1906314.

doi: 10.1002/adma.v32.6
[24]
Sies H. Redox Biol., 2017, 11: 613.

doi: 10.1016/j.redox.2016.12.035
[25]
Dickinson B C, Chang C J. Nat. Chem. Biol., 2011, 7(8): 504.

doi: 10.1038/nchembio.607 pmid: 21769097
[26]
Green O, Eilon T, Hananya N, Gutkin S, Bauer C R, Shabat D. ACS Cent. Sci., 2017, 3(4): 349.

doi: 10.1021/acscentsci.7b00058
[27]
Ye S, Hananya N, Green O, Chen H S, Zhao A Q, Shen J G, Shabat D, Yang D. Angew. Chem. Int. Ed., 2020, 59(34): 14326.

doi: 10.1002/anie.v59.34
[28]
Hananya N, Green O, Blau R, Satchi-Fainaro R, Shabat D. Angew. Chem. Int. Ed., 2017, 56(39): 11793.

doi: 10.1002/anie.201705803 pmid: 28749072
[29]
Yang M W, Zhang J W, Shabat D, Fan J L, Peng X J. ACS Sens., 2020, 5(10): 3158.

doi: 10.1021/acssensors.0c01291
[30]
Ye S, Yang B W, Wu M L, Chen Z F, Shen J G, Shabat D, Yang D. CCS Chem., 2022, 4(6): 1871.

doi: 10.31635/ccschem.021.202101108
[31]
An W W, Ryan L S, Reeves A G, Bruemmer K J, Mouhaffel L, Gerberich J L, Winters A, Mason R P, Lippert A R. Angew. Chem. Int. Ed., 2019, 58(5): 1361.

doi: 10.1002/anie.v58.5
[32]
Cao J, An W W, Reeves A G, Lippert A R. Chem. Sci., 2018, 9(9): 2552.

doi: 10.1039/C7SC05087A
[33]
Sun J Y, Hu Z A, Zhang S C, Zhang X R. ACS Sens., 2019, 4(1): 87.

doi: 10.1021/acssensors.8b00936
[34]
Klotz L O, Briviba K, Sies H. Methods Enzymol., 2000, 319: 130.
[35]
Beghetto C, Renken C, Eriksson O, Jori G, Bernardi P, Ricchelli F. Eur. J. Biochem., 2000, 267(17): 5585.

pmid: 10951218
[36]
Lucky S S, Soo K C, Zhang Y. Chem. Rev., 2015, 115(4): 1990.

doi: 10.1021/cr5004198
[37]
Zhang H, Xu L Z, Chen W Q, Huang J, Huang C S, Sheng J R, Song X Z. Anal. Chem., 2019, 91(3): 1904.

doi: 10.1021/acs.analchem.8b03869 pmid: 30592207
[38]
Li X, Qian S J, He Q J, Yang B, Li J, Hu Y Z. Org. Biomol. Chem., 2010, 8(16): 3627.

doi: 10.1039/c004344c
[39]
Hou D Y, You Y, Wu X H, Li C, Wu S, Zhang C L, Xian Y Z. Sens. Actuat. B Chem., 2021, 332: 129508.

doi: 10.1016/j.snb.2021.129508
[40]
Bruemmer K J, Green O, Su T A, Shabat D, Chang C J. Angew. Chem. Int. Ed., 2018, 57(25): 7508.

doi: 10.1002/anie.201802143 pmid: 29635731
[41]
Zhang Y T, Yan C X, Wang C, Guo Z Q, Liu X G, Zhu W H. Angew. Chem. Int. Ed., 2020, 59(23): 9059.

doi: 10.1002/anie.v59.23
[42]
Schaap A P, Sandison M D, Handley R S. Tetrahedron Lett., 1987, 28(11): 1159.

doi: 10.1016/S0040-4039(00)95314-0
[43]
Gao L P, Li Y, Huang Z Z, Tan H L. Anal. Chimica Acta, 2021, 1148: 238193.

doi: 10.1016/j.aca.2020.12.068
[44]
Siegel D, Yan C, Ross D. Biochem. Pharmacol., 2012, 83(8): 1033.

doi: 10.1016/j.bcp.2011.12.017 pmid: 22209713
[45]
Son S, Won M, Green O, Hananya N, Sharma A, Jeon Y, Kwak J H, Sessler J L, Shabat D, Kim J S. Angew. Chem. Int. Ed., 2019, 58(6): 1739.

doi: 10.1002/anie.v58.6
[46]
Shelef O, Sedgwick A C, Pozzi S, Green O, Satchi-Fainaro R, Shabat D, Sessler J L. Chem. Commun., 2021, 57(86): 11386.

doi: 10.1039/D1CC05217A
[47]
Kakoti A, Kumar A K, Goswami P. J. Mol. Catal. B Enzym., 2012, 78: 98.

doi: 10.1016/j.molcatb.2012.03.013
[48]
Patel N G, Meier S, Cammann K, Chemnitius G C. Sens. Actuat. B Chem., 2001, 75(1/2): 101.

doi: 10.1016/S0925-4005(01)00545-7
[49]
Gnaim S, Shabat D. Org. Biomol. Chem., 2019, 17(6): 1389.

doi: 10.1039/C8OB03042A
[50]
An R B, Wei S X, Huang Z, Liu F, Ye D J. Anal. Chem., 2019, 91(21): 13639.

doi: 10.1021/acs.analchem.9b02839
[51]
Kim S J, Yoon J W, Yoon S A, Lee M H. Molecules, 2021, 26(4): 1088.

doi: 10.3390/molecules26041088
[52]
Sun J Y, Hu Z A, Wang R H, Zhang S C, Zhang X R. Anal. Chem., 2019, 91(2): 1384.

doi: 10.1021/acs.analchem.8b03955
[53]
Sun R, Wu X S, Mao Y J, Wang H B, Bian C, Lv P P, Zhao Z, Li X W, Fu W, Lu J Z, Cao Z J. Luminescence, 2022, 37(8): 1335.

doi: 10.1002/bio.v37.8
[54]
Fujimoto T, Tsunedomi R, Matsukuma S, Yoshimura K, Oga A, Fujiwara N, Fujiwara Y, Matsui H, Shindo Y, Tokumitsu Y, Suzuki N, Kobayashi S, Hazama S, Eguchi H, Nagano H. Oncol. Lett., 2020, 21(1): 30.
[55]
Roth-Konforti M E, Bauer C R, Shabat D,. Angew. Chem. Int. Ed., 2017, 56(49): 15633.
[56]
Fu A C, Wang H B, Huo T T, Li X W, Fu W, Huang R Q, Cao Z J. Anal. Chem., 2021, 93(16): 6501.

doi: 10.1021/acs.analchem.1c00413
[57]
Angelis G D, Rittenhouse H G, Mikolajczyk S D, Shamel L B, Semjonow A. Rev. Urol., 2007, 9: 113.
[58]
Gutkin S, Green O, Raviv G, Shabat D, Portnoy O. Bioconjugate Chem., 2020, 31(11): 2488.

doi: 10.1021/acs.bioconjchem.0c00500 pmid: 33090770
[59]
Hananya N, Press O, Das A, Scomparin A, Satchi-Fainaro R, Sagi I, Shabat D. Chem. Eur. J., 2019, 25(64): 14679.
[60]
Lenci E, Angeli A, Calugi L, Innocenti R, Carta F, Supuran C T, Trabocchi A. Eur. J. Med. Chem., 2021, 214: 113260.

doi: 10.1016/j.ejmech.2021.113260
[61]
Wohlschlaeger J, Stubbe H D, Schmitz K J, Kawaguchi N, Takeda A, Takeda N, Hinder F, Baba H A. Pathol. Res. Pract., 2005, 201(12): 809.

pmid: 16308106
[62]
Nguyen R, Wu H Y, Pounds S, Inaba H, Ribeiro R C, Cullins D, Rooney B, Bell T, Lacayo N J, Heym K, Degar B, Schiff D, Janssen W E, Triplett B, Pui C H, Leung W, Rubnitz J E. J. Immunotherapy Cancer, 2019, 7: 81.

doi: 10.1186/s40425-019-0564-6
[63]
Scott J I, Gutkin S, Green O, Thompson E J, Kitamura T, Shabat D, Vendrell M. Angew. Chem. Int. Ed., 2021, 60(11): 5699.

doi: 10.1002/anie.v60.11
[64]
Chatterjee S K, Bhattacharya M, Barlow J J. Cancer Res., 1979, 39: 1943.

pmid: 445394
[65]
Redy-Keisar O, Kisin-Finfer E, Ferber S, Satchi-Fainaro R, Shabat D. Nat. Protoc., 2014, 9(1): 27.

doi: 10.1038/nprot.2013.166 pmid: 24309975
[66]
Gnaim S, Scomparin A, Das S, Blau R, Satchi-Fainaro R, Shabat D. Angew. Chem. Int. Ed., 2018, 57(29): 9033.

doi: 10.1002/anie.201804816
[67]
Roth-Konforti M, Green O, Hupfeld M, Fieseler L, Heinrich N, Ihssen J, Vorberg R, Wick L, Spitz U, Shabat D. Angew. Chem. Int. Ed., 2019, 58(30): 10361.

doi: 10.1002/anie.201904719 pmid: 31233265
[68]
Sher A A, Mustafa B E, Grady S C, Gardiner J C, Saeed A M. Int. J. Infect. Dis., 2021, 105: 54.

doi: 10.1016/j.ijid.2021.02.022
[69]
Yang X Y, Jiang Y J, Song Y, Qin X, Ren Y W, Zhao Y M, Man C X, Zhang W. Int. Dairy J., 2021, 118: 105022.

doi: 10.1016/j.idairyj.2021.105022
[70]
Fan Y L, Paoli G, Song M H, Shi X M, Yang M C. J. Chin. Inst. Food Sci. Technol., 2021, 21(3): 253.
(范一灵, George C.Paoli, 宋明辉, 史贤明, 杨美成. 中国食品学报, 2021, 21(3): 253.).
[71]
Babin B M, Fernandez-Cuervo G, Sheng J, Green O, Ordonez A A, Turner M L, Keller L J, Jain S K, Shabat D, Bogyo M. ACS Cent. Sci., 2021, 7(5): 803.

doi: 10.1021/acscentsci.0c01345
[72]
Che H J, Liao Q F, Wu S Y, Liu Y, Zhang W L, Peng L, Zhou Y, Kang M. Modern Preventive Medicine, 2021, 48: 524.
(车辉娟, 廖全凤, 吴思颖, 刘雅, 张为利, 彭丽, 周益, 康梅. 现代预防医学, 2021, 48: 524.).
[73]
Das S, Ihssen J, Wick L, Spitz U, Shabat D. Chem. Eur. J., 2020, 26(16): 3647.

doi: 10.1002/chem.v26.16
[74]
Gholap S P, Yao C Y, Green O, Babjak M, Jakubec P, Malatinský T, Ihssen J, Wick L, Spitz U, Shabat D. Bioconjugate Chem., 2021, 32(5): 991.

doi: 10.1021/acs.bioconjchem.1c00149
[75]
Wu Z, Liu M M, Liu Z C, Tian Y. J. Am. Chem. Soc., 2020, 142(16): 7532.

doi: 10.1021/jacs.0c00771
[76]
Yang L, Zhang Y, Ren X J, Wang B H, Yang Z G, Song X Z, Wang W. Anal. Chem., 2020, 92(6): 4387.

doi: 10.1021/acs.analchem.9b05270 pmid: 32098470
[77]
Cheng P H, Miao Q Q, Li J C, Huang J G, Xie C, Pu K Y. J. Am. Chem. Soc., 2019, 141(27): 10581.

doi: 10.1021/jacs.9b02580
[78]
Huang J G, Li J C, Lyu Y, Miao Q Q, Pu K Y. Nat. Mater., 2019, 18(10): 1133.

doi: 10.1038/s41563-019-0378-4
[1] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[2] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[3] Yu Lin, Xuecai Tan, Yeyu Wu, Fucun Wei, Jiawen Wu, Panpan Ou. Two-Dimensional Nanomaterial g-C3N4 in Application of Electrochemiluminescence [J]. Progress in Chemistry, 2022, 34(4): 898-908.
[4] Yunxue Wu, Hengyi Zhang, Yu Liu. Application of Azobenzene Derivative Probes in Hypoxia Cell Imaging [J]. Progress in Chemistry, 2021, 33(3): 331-340.
[5] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[6] Jiawei Liu, Jing Wang, Qi Wang, Quli Fan, Wei Huang. Applications of Activatable Organic Photoacoustic Contrast Agents [J]. Progress in Chemistry, 2021, 33(2): 216-231.
[7] Yunxue Xu, Renfu Liu, Kun xu, Zhifei Dai. Fluorescent Probes for Intraoperative Navigation [J]. Progress in Chemistry, 2021, 33(1): 52-65.
[8] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[9] Yunbo Jiang, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Thermally Activated Delayed Fluorescence Polymers and Applications in Organic Light Emitting Devices [J]. Progress in Chemistry, 2019, 31(8): 1116-1128.
[10] Cong Zhang, Qiaoli Yue, Lixia Tao, Yingying Hu, Chen-Zhong Li, Bo Tang. Construction of Photochemical Method and Cell Imaging Based on Nucleic Acid Probes [J]. Progress in Chemistry, 2019, 31(6): 858-871.
[11] Yuehua Yuan, Yongjun Zhu, Wei Hu, Jun Qin, Maozhong Tian, Feng Feng. Double Recognition Fluorescence Probes for Copper and Mercury Ions Based on Small Molecules [J]. Progress in Chemistry, 2019, 31(4): 550-560.
[12] Jinbo Fei, Qi Li, Jie Zhao, Junbai Li. Optical Properties and Potential Applications of Diphenylalanine Dipeptide-Based Assemblies [J]. Progress in Chemistry, 2019, 31(1): 30-37.
[13] Xi Wang, Rui Hu, Shayu Li. Design Strategy and Application of F- Luminescent Probes [J]. Progress in Chemistry, 2018, 30(9): 1364-1379.
[14] Benzhan Zhu, Xuan Xiao, Xijuan Chao, Miao Tang, Rong Huang, Jie Shao. Investigation of the Mechanism of Cellular Uptake, Distribution and Toxicity of the DNA ‘Light-Switch’ Ru(Ⅱ) Polypyridyl Complexes [J]. Progress in Chemistry, 2018, 30(12): 1975-1991.
[15] Yingwu Lin. Rational Design of Artificial Metalloenzymes: Case Studies in Myoglobin [J]. Progress in Chemistry, 2018, 30(10): 1464-1474.