中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Methods for Separation and Analysis of Nanomaterials in the Environment

L? Jitao, Zhang Shuzhen*   

  1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
  • Received: Revised: Online: Published:
PDF ( 1469 ) Cited
Export

EndNote

Ris

BibTeX

With the rapid development of nanotechnology and the wide application of manufactured nanomaterials, the potential for their release into the environment will increase drastically in the near future. Studies have suggested that the released nanomaterials can cause some potential adverse effects on both ecosystem and human health. Therefore, knowledges of concentration, behavior, and fate of nanomaterials in the environment will help us to accurately evaluate their environmental risks in order to make proper prevention and control countermeasures. However, due to the fact that many properties will influence the behavior and toxicity of nanomaterials in the environment, analysis of nanomaterials includes not only the determination of their concentration but also the identification of their characteristics such as composition, size, surface charge etc., therefore posing a great challenge to accurate analysis of nanomaterials in the environment. This review presents the update methods used for extraction, separation, fractionation and analysis of nanomaterials in the environment, mainly including extraction and preseparation procedures, field flow, chromatographic and electrophoretic methods used for fractionation, and microscopic and spectroscopic techniques applied in characterization and quantification of nanomaterials. It concludes with future research perspectives of these methods, which will hopefully help to establish normative methods and strategies for environmental analysis and improve the ecological risk assessment of nanomaterials in the environment. Contents
1 Introduction
2 Nanomaterials in the environment
3 Sampling and extraction of nanomaterials in the environment
3.1 Prefractionation
3.2 Extract separation
4 Fractionation of nanomaterials in the environment
4.1 Dispersion
4.2 Field flow fractionation
4.3 Chromatographic separation
4.4 Electrophoresis separation
5 Characterization and quantitative analysis of nanomaterials in the environment
5.1 Microscopic tests
5.2 Light-scattering techniques
5.3 Spectroscopic methods
5.4 Quantitative analysis
6 Conclusion and perspectives

CLC Number: 

[1] Masciangioli T, Zhang W X. Environ. Sci. Technol., 2003, 37: 102a-108a
[2] 白春礼(Bai C L). 科学通报(Chin. Sci. Bull.), 2001, 46: 89-92
[3] Nel A, Xia T, Madler L, Li N. Science, 2006, 311: 622-627
[4] Bai C L. Science, 2005, 309: 61-63
[5] Wiesner M R, Lowry G V, Alvarez P, Dionysiou D, Biswas P. Environ. Sci. Technol., 2006, 40: 4336-4345
[6] Service R F. Science, 2003, 300: 243-243
[7] Brumfiel G. Nature, 2003, 424: 246-248
[8] Colvin V L. Nat. Biotechnol., 2003, 21: 1166-1170
[9] Lowry G V, Casman E A. Nato. Sci. Peace Secur., 2009, 125-137
[10] Klaine S J, Alvarez P J J, Batley G E, Fernandes T F, Handy R D, Lyon D Y, Mahendra S, McLaughlin M J, Lead J R. Environ. Toxicol. Chem., 2008, 27: 1825-1851
[11] Navarro E, Baun A, Behra R, Hartmann N B, Filser J, Miao A J, Quigg A, Santschi P H, Sigg L. Ecotoxicology, 2008, 17: 372-386
[12] Singh N, Manshian B, Jenkins G J S, Griffiths S M, Williams P M, Maffeis T G G, Wright C J, Doak S H. Biomaterials, 2009, 30: 3891-3914
[13] Zhao Y L, Xing G M, Chai Z F. Nat. Nanotechnol., 2008, 3: 191-192
[14] Li M, Zhu L Z, Lin D H. Environ. Sci. Technol., 2011, 45: 1977-1983
[15] Liu W, Wu Y A, Wang C, Li H C, Wang T, Liao C Y, Cui L, Zhou Q F, Yan B, Jiang G B. Nanotoxicology, 2010, 4: 319-330
[16] Fischer H C, Chan W C W. Curr. Opin. Biotech., 2007, 18: 565-571
[17] Hassellov M, Readman J W, Ranville J F, Tiede K. Ecotoxicology, 2008, 17: 344-361
[18] Simonet B M, Valcarcel M. Anal. Bioanal. Chem., 2009, 393: 17-21
[19] Barnard A S. Nat. Mater., 2006, 5: 245-248
[20] Benna T M, Westerhoffa P, Herckesb P. Environ. Pollut., 2011, 159: 1334-1342
[21] Thomas K, Sayre P. Toxicol. Sci., 2005, 87: 316-321
[22] Auffan M, Rose J, Bottero J Y, Lowry G V, Jolivet J P, Wiesner M R. Nat. Nanotechnol., 2009, 4: 634-641
[23] Becker L. Science, 1994, 265: 1644-1644
[24] Murr L E, Esquivel E V, Bang J J, de la Rosa G, Gardea-Torresdey J L. Water Res., 2004, 38: 4282-4296
[25] Nowack B, Bucheli T D. Environ. Pollut., 2007, 150: 5-22
[26] Hochella M F. Geochim. Cosmochim. Acta, 2002, 66: 735-743
[27] Wigginton N S, Haus K L, Hochella M F. J. Environ. Monitor, 2007, 9: 1306-1316
[28] Howard A G. J. Environ. Monitor, 2010, 12: 135-142
[29] Franklin N M, Rogers N J, Apte S C, Batley G E, Gadd G E, Casey P S. Environ. Sci. Technol., 2007, 41: 8484-8490
[30] Gueguen C, Belin C, Dominik J. Water Res., 2002, 36: 1677-1684
[31] 马骁轩(Ma X X), 冉勇(Ran Y). 水资源保护(Water Resources Protection), 2009, 25: 57-65
[32] Tang Z Y, Wu L H, Luo Y M, Christie P. Environ. Geochem. Health., 2009, 31: 1-10
[33] Keller A A, Wang H T, Zhou D X, Lenihan H S, Cherr G, Cardinale B J, Miller R, Ji Z X. Environ. Sci. Technol., 2010, 44: 1962-1967
[34] Li X, Lenhart J J, Walker H W. Langmuir, 2010, 26: 16690-16698
[35] Bian S W, Mudunkotuwa I A, Rupasinghe T, Grassian V H. Langmuir, 2011, 27: 6059-6068
[36] Perez S, Farre M, Barcelo D. Trac-Trend Anal. Chem., 2009, 28: 820-832
[37] Buseck P R. Earth Planet. Sci. Lett., 2002, 2003: 781-792
[38] Liu J F, Liu R, Yin Y G, Jiang G B. Chem. Commun., 2009, 1514-1516
[39] Liu J F, Chao J B, Liu R, Tan Z Q, Yin Y G, Wu Y, Jiang G B. Anal. Chem., 2009, 81: 6496-6502
[40] Huang H L, Wang H P, Wei G T, Sun I W, Huang J F, Yang Y W. Environ. Sci. Technol., 2006, 40: 4761-4764
[41] Zhang Y, Chen Y S, Westerhoff P, Crittenden J. Water Res., 2009, 43: 4249-4257
[42] Wang P, Shi Q H, Liang H J, Steuerman D W, Stucky G D, Keller A A. Small, 2008, 4: 2166-2170
[43] Lewinski N, Colvin V, Drezek R. Small, 2008, 4: 26-49
[44] Giddings J C. Separation Sci., 1966, 1: 123-125
[45] 张学军(Zhang X J), 左春柽(Zuo C C), 文伟力(Wen W L). 精细化工(Fine Chemicals), 2005, 22: 773-787
[46] Moon M H, Kim H J, Kwon S Y, Lee S J, Chang Y S, Lim H. Anal. Chem., 2004, 76: 3236-3243
[47] Thompson G H, Myers M N, Giddings J C. Anal. Chem., 1969, 41: 1219-1222
[48] Giddings J C, Yang F J F, Myers M N. Anal. Chem., 1974, 46: 1917-1924
[49] Latham A H, Williams M E. Anal. Chem., 2005, 77: 5055-5062
[50] Baalousha M, Kammer F V D, Motelica-Heino M, Baborowski M, Hofmeister C, Coustumer P L. Environ. Sci. Technol., 2006, 40: 2156-2162
[51] Jackson B P, Ranville J F, Neal A L. Anal. Chem., 2005, 77: 1393-1397
[52] Baalousha M, Lead J R. Environ. Sci. Technol., 2007, 41: 1111-1117
[53] Baalousha M, Lead J R. Sci. Total Environ., 2007, 386: 93-102
[54] Gimbert L J, Hamon R E, Casey P S, Worsfold P J. Environ. Chem., 2007, 4: 8-10
[55] Tadjiki S, Assemi S, Deering C E, Veranth J M, Miller J D. J. Nanopart. Res., 2009, 11: 981-988
[56] Kim S T, Kang D Y, Lee S H, Kim W S, Lee J T, Cho H S, Kim S H. J. Liq. Chromatogr. Relat. Technol., 2007, 30: 2533-2544
[57] Contado C, Argazzi R. J. Chromatogr. A, 2009, 1216: 9088-9098
[58] Farre M, Sanchis J, Barcelo D. Trac-Trend Anal. Chem., 2011, 30: 517-527
[59] Wei G T, Liu F K. J. Chromatogr. A, 1999, 836: 253-260
[60] Helfrich A, Bruchert W, Bettmer J. J. Anal. Atom. Spectrom., 2006, 21: 431-434
[61] Krueger K M, Al-Somali A M, Falkner J C, Colvin V L. Anal. Chem., 2005, 77: 3511-3515
[62] Ziegler K J, Schmidt D J, Rauwald U, Shah K N, Flor E L, Hauge R H, Smalley R E. Nano Lett., 2005, 5: 2355-2359
[63] Blom M T, Chmela E, Oosterbroek R E, Tijssen R, van den Berg A. Anal. Chem., 2003, 75: 6761-6768
[64] Williams A, Varela E, Meehan E, Tribe K. Int. J. Pharm., 2002, 242: 295-299
[65] Isaacson C W, Kleber M, Field J A. Environ. Sci. Technol., 2009, 43: 6463-6474
[66] Chao T C, Song G X, Hansmeier N, Westerhoff P, Herckes P, Halden R U. Anal. Chem., 2011, 83: 1777-1783
[67] Heymann D, Chibante L P F, Smalley R E. J. Chromatogr. A, 1995, 689: 157-163
[68] Pyell U. Electrophoresis, 2010, 31: 814-831
[69] Liu F K, Ko F H, Huang P W, Wu C H, Chu T C. J. Chromatogr. A, 2005, 1062: 139-145
[70] Liu F K, Wei G T. Anal. Chim. Acta, 2004, 510: 77-83
[71] Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic B M, Lu J J, Wanzer M B, Woloschak G E, Smalle J A. Nano Lett., 2010, 10: 2296-2302
[72] Wild E, Jones K C. Environ. Sci. Technol., 2009, 43: 5290-5294
[73] Thurn K T, Paunesku T, Wu A G, Brown E M B, Lai B, Vogt S, Maser J, Aslam M, Dravid V, Bergan R, Woloschak G E. Small, 2009, 5: 1318-1325
[74] Qu Y, Li W, Zhou Y L, Liu X F, Zhang L L, Wang L M, Li Y F, Iida A, Tang Z Y, Zhao Y L, Chai Z F, Chen C Y. Nano Lett., 2011, 11: 3174-3183
[75] Tiede K, Tear S P, David H, Boxall A B A. Water Res., 2009, 43: 3335-3343
[76] Burleson D J, Driessen M D, Penn R L. J. Environ. Sci. Heal. A, 2004, 39: 2707-2753
[77] Zhou D X, Keller A A. Water Res., 2010, 44: 2948-2956
[78] Filipe V, Hawe A, Jiskoot W. Pharm. Res-Dordr., 2010, 27: 796-810
[79] Aryal S, Bahadur K C R, Bhattarai N, Kim C K, Kim H Y. J. Colloid Interf. Sci., 2006, 299: 189-195
[80] Link S, El-Sayed M A. J. Phys. Chem. B, 1999, 103: 8410-8426
[81] Wang F, Banerjee D, Liu Y S, Chen X Y, Liu X G. Analyst, 2010, 135: 1839-1854
[82] Kim J W, Son J A, Yun J I, Jung E C, Park S H, Choi J G. Chem. Phys. Lett., 2008, 462: 75-77
[83] Latkoczy C, Kagi R, Fierz M, Ritzmann M, Gunther D, Boller M. J. Environ. Monitor., 2010, 12: 1422-1429
[84] Walther C, Buchner S, Filella M, Chanudet V. J. Colloid Interf. Sci., 2006, 301: 532-537
[85] 李伟(Li W), 罗磊(Luo L), 张淑贞(Zhang S Z). 化学进展(Prog. Chem.), 2011, 23: 2576-2587
[86] Yang K, Lin D H, Xing B S. Langmuir, 2009, 25: 3571-3576
[87] Jiang W, Yang K, Vachet R W, Xing B S. Langmuir, 2010, 26: 18071-18077
[88] Kerr L L, Li X N, Canepa M, Sommer A J. Thin Solid Films, 2007, 515: 5282-5286
[89] Birkefeld A, Schulin R, Nowack B. Environ. Sci. Technol., 2005, 39: 3302-3307
[90] Lin S J, Reppert J, Hu Q, Hudson J S, Reid M L, Ratnikova T A, Rao A M, Luo H, Ke P C. Small, 2009, 5: 1128-1132
[91] Levard C, Reinsch B C, Michel F M, Oumahi C, Lowry G V, Brown G E. Environ. Sci. Technol., 2011, 45: 5260-5266
[92] Waychunas G A, Kim C S, Banfield J F. J. Nanopart. Res., 2005, 7: 409-433
[93] Hesterberg D, Liu Y T. Environ. Sci. Technol., 2011, 45: 6283-6289
[94] Ha J Y, Trainor T P, Farges F, Brown G E. Langmuir, 2009, 25: 5574-5585
[95] Scheckel K G, Luxton T P, El Badawy A M, Impellitteri C A, Tolaymat T M. Environ. Sci. Technol., 2010, 44: 1307-1312
[96] Domingos R F, Baalousha M A, Ju-Nam Y, Reid M M, Tufenkji N, Lead J R, Leppard G G, Wilkinson K J. Environ. Sci. Technol., 2009, 43: 7277-7284
[97] Scheffer A, Engelhard C, Sperling M, Buscher W. Anal. Bioanal. Chem., 2008, 390: 249-252
[98] Lyven B, Hassellov M, Turner D R, Haraldsson C, Andersson K. Geochim. Cosmochim. Acta, 2003, 67: 3791-3802
[99] Tiede K, Boxall A B A, Wang X M, Gore D, Tiede D, Baxter M, David H, Tear S P, Lewis J. J. Anal. Atom. Spectrom., 2010, 25: 1149-1154
[100] Tiede K, Boxall A B A, Tiede D, Tear S P, David H, Lewis J. J. Anal. Atom. Spectrom., 2009, 24: 964-972
[101] Bouby M, Geckeis H, Manh T N, Yun J I, Dardenne K, Schafer T, Walther C, Kim J I. J. Chromatogr. A, 2004, 1040: 97-104
[102] Hyung H, Fortner J D, Hughes J B, Kim J H. Environ. Sci. Technol., 2007, 41: 179-184
[103] Chen K L, Elimelech M. Langmuir, 2006, 22: 10994-11001
[104] Isaacson C W, Usenko C Y, Tanguay R L, Field J A. Anal. Chem., 2007, 79: 9091-9097
[105] Zhu H, Han J, Xiao J Q, Jin Y. J. Environ. Monitor., 2008, 10: 713-717
[1] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[2] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[3] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[4] Jiali Zhong, Weigang Wang, Chao Peng, Nan Ma, Zhijun Wu, Maofa Ge. Atmospheric Aerosol Hygroscopicity and Their Influence on Environment [J]. Progress in Chemistry, 2022, 34(4): 801-814.
[5] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[6] Yimin Sun, Houshen Li, Zhenyu Chen, Dong Wang, Zhanpeng Wang, Fei Xiao. The Application of MXene in Electrochemical Sensor [J]. Progress in Chemistry, 2022, 34(2): 259-271.
[7] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[8] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[9] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[10] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[11] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[12] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[13] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[14] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[15] Haodong Ji, Juanjuan Qi, Maosheng Zheng, Chenyuan Dang, Long Chen, Taobo Huang, Wen Liu. Application of Nanotechnology for Virus Inactivation in Water:Implications for Transmission-Blocking of the Novel Coronavirus SARS-CoV-2 [J]. Progress in Chemistry, 2022, 34(1): 207-226.